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Abstract

Although DNA methylation is the best characterized epigenetic mark, the mechanism by
which it is targeted to specific regions in the genome remains unclear. Recent studies have
revealed that local DNA methylation profiles might be dictated by cis-regulatory DNA
sequences that mainly operate via DNA-binding factors. Consistent with this finding, we
have recently shown that disruption of CTCF-binding sites by rare single nucleotide variants
(SNVs) can underlie cis-linked DNA methylation changes in patients with congenital anoma-
lies. These data raise the hypothesis that rare genetic variation at transcription factor bind-
ing sites (TFBSs) might contribute to local DNA methylation patterning.

In this work, by combining blood genome-wide DNA methylation profiles, whole genome
sequencing-derived SNVs from 247 unrelated individuals along with 133 predicted TFBS
motifs derived from ENCODE ChIP-Seq data, we observed an association between the dis-
ruption of binding sites for multiple TFs by rare SNVs and extreme DNA methylation values
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manuscript. affected only single CpGs, 24% were associated with multiple outlier CpGs within +1kb of
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that no competing interests exist. motifs lead to larger DNA methylation changes at nearby CpG sites. Altogether, these find-
ings suggest that rare SNVs at TFBS negatively influence TF-DNA binding, which can lead
to an altered local DNA methylation profile. Furthermore, subsequent integration of DNA
methylation and RNA-Seq profiles from cardiac tissues enabled us to observe an associa-
tion between rare SNV-directed DNA methylation and outlier expression of nearby genes.

In conclusion, our findings not only provide insights into the effect of rare genetic variation

at TFBS on shaping local DNA methylation and its consequences on genome regulation,
but also provide a rationale to incorporate DNA methylation data to interpret the functional
role of rare variants.

Author summary

One of the major challenges for human genetics in the post-genomic era is to interpret the
functional relevance of genetic variation. Quantitative trait locus (QTL) analyses have
associated an important fraction of genetic variants with a wide range of molecular pheno-
types including gene expression (eQTL) and DNA methylation (meQTL), providing
insights into the mechanisms by which genetic variation can contribute to health and dis-
ease. Although QTL mapping represents an excellent approach to identify biologically rel-
evant functional variants, these studies have been mainly focused on common variants
and do not include low-frequency and rare variants. Here, we observed that rare regula-
tory variants, i.e, single nucleotide variants (SNVs) that disrupt transcription factor bind-
ing sites (TFBSs), are associated with changes in DNA methylation at both local and, to a
lesser extent, broader locations, most likely, by altering the DNA-binding affinity of tran-
scription factors (TFs). Interestingly, we have also shown that this change in DNA methyl-
ation can alter expression levels of nearby genes. Overall, these data suggest a role of rare
regulatory SNVs in shaping DNA methylation, and suggest that the incorporation of
DNA methylation data may help to interpret the functional consequences of human
genetic variation.

Introduction

Over the last decade, genomic DNA sequence variation has been associated with quantitative
changes in multiple molecular phenotypes, including variation in gene expression and epige-
netic marks such as chromatin accessibility and DNA methylation [1-5]. These variants are
commonly referred to as quantitative trait loci (QTLs), the mapping of which has allowed us to
unravel the primary mechanisms by which cis-regulatory variants can influence phenotypic
variation. Single nucleotide variants (SNVs) present within cis-regulatory regions such as tran-
scription factor binding sites (TFBSs) are enriched for different types of QTLs, such as those
influencing chromatin structure/accessibility [1,2] and DNA methylation (meQTL) [3], sug-
gesting these as functional regulatory variants. However, to date, most studies have focused on
common variants, and the functional consequences of rare variants (minor allele frequency
(MAF) <1%) have not been systematically interrogated.
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Large population-scale projects using deep sequencing have provided extensive catalogues
of human genomic variation, showing that rare genetic variants are abundant in the human
genome [6-8]. It has been hypothesized that rare variants likely also contribute to the genetic
architecture of complex diseases, which cannot be entirely explained by common genetic vari-
ation. Recent studies have demonstrated that some rare SN'Vs induce dramatic changes to the
expression levels of nearby genes [9-11], which likely contribute to phenotypic variation.
However, there is limited insight about how these variants can regulate these transcriptional
changes. An important regulatory mechanism for controlling transcriptional activity is DNA
methylation [12].

DNA methylation is an epigenetic modification crucial for mammalian development, play-
ing a critical role in many cellular processes such as X-chromosome inactivation [13], genomic
imprinting or maintenance of genome stability [12,14]. Although DNA methylation has been
extensively characterized in mammals, the mechanisms by which it is targeted to specific geno-
mic regions remains unclear. Recent data have shown that cis-acting methylation-determining
regions (MDRs), short motifs that appear to encode epigenetic patterns in the local region, are
sufficient for the de novo establishment of local DNA methylation patterns during embryonic
development [15]. Interestingly, deleterious mutations at DNA binding motifs within these
MDRs result in methylation changes at the adjacent CpGs. Furthermore, in line with this, we
have recently shown that single base mutations at the canonical binding site for CCCTC-Bind-
ing Factor (CTCF) are enriched around cis-linked DNA methylation changes in both patients
with congenital anomalies (CA) and in the normal population [16]. These findings suggest the
potential for regulatory genetic variation to have profound effects on individual epigenetic
profiles. However, it is still unknown whether this effect is limited to a few TFs or is a more
general mechanism underlying the regulation of DNA methylation. Supporting the latter,
experiments including targeted gene disruption of TFs in mouse stem cells have implicated
DNA-binding factors in the regulation of local DNA methylation profiles [17]. Altogether,
these data support an emerging role of DNA-binding TFs in regulating local DNA methylation
profiles and suggest that this is likely influenced by genetic variation at their transcription fac-
tor binding sites (TFBSs).

Based on the potential role of cis-regulatory elements in modulating DNA methylation pro-
files locally [15,16], we hypothesized that the disruption of TFBSs by rare SNVs can modify
local DNA methylation profiles and lead to altered transcription of nearby genes. To test this
hypothesis, we combined blood DNA methylation profiles and SNVs derived from whole
genome sequencing (WGS) of 247 unrelated individuals together with TFBS motifs for 133 dif-
terent TFs predicted from chromatin immunoprecipitation sequencing (ChIP-Seq) data
[18,19]. Subsequent integration of transcriptome and DNA methylation profiles from cardiac
tissue enabled the study of the functional consequences of the TF-mediated DNA methylation
at the transcriptional level.

Results
Rare variants at canonical TF motifs affect local DNA methylation profiles

The flow diagram presented in Fig 1A represents our approach to integrate, filter and analyze
data to determine the influence of rare regulatory genetic variation on local DNA methylation
profiles. Briefly, after identification of rare SNV that lie within TFBSs, we extracted B-values
corresponding to the Illumina Infinium MethylationEPIC BeadChip (EPIC) microarray
probes located within the proximity of the SNV-disrupted TFBSs and ranked them from low-
est (1) to highest (247) (see methods for further details). Following this approach, we expected
to identify rare regulatory SN'Vs that result in extreme high or low DNA methylation values in
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Fig 1. Effect of regulatory rare variants on shaping local DNA methylation profiles. (A). Analysis pipeline of the
study. Briefly, after identifying rare variants that overlap TFBSs, we extracted DNA methylation values corresponding
to CpGs that fell within the targeted TFBSs and their extended flanks (+1 kb) present on the EPIC array. For each CpG
site, DNA methylation values were transformed into ranks across all individuals (n = 247) in ascending order, ranging
from 1 to 247. Thus, DNA methylation values rise through the ranks, with the minimum and the maximum DNA
methylation values in our cohort represented by the lowest and highest ranks, respectively. CpGs showing both DNA
methylation ranks present into the 5% tails of the distribution and DNA methylation difference of >0.05 (B-value) as
compared to the mean of controls, i.e, non-carriers for the tested rare variant, were considered as differentially
methylated (also referred as DNA methylation outlier). (B) Plot showing DNA methylation profile at
chr2:158,183,226-158,185,240 (CTCF binding site +1 kb). Red dots indicate DNA methylation values for individual
carrying rare variant (chr2:158,184,228), while black dots and bars represents the mean and mean +2 standard
deviation of controls, respectively. Disrupted CTCF motif (chr2:158,184,226-158,184,240) is highlighted in light green
within the CTCF ChIP-peak (black box). Position of rare variant is depicted by vertical gray dashed line. (C) Plot
showing distribution of DNA methylation ranks across population for all tested TFBSs (n = 133). Red dots represent
the frequency of the rank for individuals carrying the rare variant, while the black horizontal line is the frequency in
controls. Peaks at gray shaded areas of the graph represent an excess of individuals with extreme DNA methylation
values for a given CpG site.

https://doi.org/10.1371/journal.pgen.1009189.g001

individuals carrying the tested SNV as compared to controls, i.e, individuals who do not carry
the tested variant (Fig 1B).

The intersection between our genotype and DNA methylation datasets yielded a total of
127,335 SNV:TEBS pairs including 91,356 rare SNVs (MAF<1%) within 120,096 different
TFBS motifs that were informative for DNA methylation, i.e., EPIC probes mapping within 1
kilobase (kb)- flanks of SNV-targeted TFBS (S1 Table). To detect the effects of rare genetic var-
iation on local DNA methylation profiles, we focused on the 5% tails of the rank distribution
that showed an absolute minimum B-value difference of 0.05 between SNV carriers and con-
trols. We observed that carriers of rare SNVs that disrupt TFBSs (SNV-TFBSs) show an
increased burden of extreme methylation values as compared to individuals without rare vari-
ants (Fig 1C), suggesting a potential effect of rare regulatory SNVs in modulating local DNA
methylation profiles.

To determine the extent of the effect of rare genetic variation within TFBS on DNA methyl-
ation, we explored whether a single or multiple CpG sites show extreme methylation values in
the proximity of the mutated TFBS. Here, we considered those TFBS with 3 or more CpG sites
located within 1kb and, at least one of them showing extreme methylation (n = 16,708). Of
these, we observed that 12,682 (76%) had only a single outlier CpG, while 4,026 (24%) had
between 2 and 13 CpG sites within 1kb with outlier DNA methylation values. To formally
assess whether loci with outlier DNA methylation could be identified using an analysis that
searches for regions containing multiple outlier CpGs, termed differentially methylated
regions (DMRs), we performed a prospective screen for DMRs in each sample using a sliding
window algorithm, similar to that described in Barbosa et al. [16]. Using this approach, we
identified a total of 9,689 different DMRs in our cohort (median of 202 DMRs per sample).
Because our algorithm was only able to detect DMRs at loci containing >3 probes within a
1kb interval, we intersected our DMR list with the set of 16,708 SNV-TEBS described above,
and observed 744 loci (4.5%) of SNV-TFBS that showed a DMR within 1kb of the mutated
TFBS (S2 Table).

We used permutation testing to assess the association between the disruption of TFBSs by
rare SNVs and extreme CpG methylation (see Methods), and observed that 46 of the 133 tested
TFBSs were significantly associated with extreme methylation values levels (Fig 2) (S3 and S4
Tables), suggesting that the sequence-specific binding of TFs to these 46 TFBSs could be
involved in shaping local DNA methylation patterns. Amongst these TFBSs, 36 correspond to
the canonical motif for well-known human TFs such as Yin and Yang 1 (YY1), CTCF and
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Fig 2. TFBS associated with local DNA methylation profile. Bars indicate P-values obtained for 46 TFBSs that were
significantly enriched for outlier methylation marks when mutated by permutation analysis (see Methods), after
Bonferroni-correction for the number of tested TEBSs (n = 133). For each factor, enrichment for differentially
methylated CpGs between regulatory rare variants carriers and non-carriers is shown at the base of the bar in white.
Significance threshold is indicated by the red-dashed vertical line.

https://doi.org/10.1371/journal.pgen.1009189.9002

Specificity Protein 1 (SP1), while the remaining 10 correspond to anonymous motifs for which
the potential binding factor has not yet been characterized.

As the direction of DNA methylation change can have different potential functional conse-
quences on genome regulation, we next assessed the direction of the effect of rare SNVs on
local DNA methylation changes. We observed a 1.45-fold enrichment for methylation gains
across all tested SNV-TFBS pairs. For example, both CTCF and SP1 showed an enrichment for
gains of methylation, which is in accordance with the known protective role of these two fac-
tors against DNA methylation [20].

Minimal intersection between extreme DNA methylation values and DNA
methylation quantitative trait loci

As variation in DNA methylation can also be driven by common genetic variation, we next
assessed whether our results might be confounded by known meQTL or regions of haplotype-
specific methylation (HSMs). We overlapped our results with CpGs where it is known that
DNA methylation levels are associated with common genetic variation [21,22], and observed
that only a very small fraction of CpG sites showing extreme DNA methylation and the disrup-
tion of TFBS by rare SNV (n = 189, or ~1% of the total) correspond to known meQTL or HSM
regions. While these numbers do represent a significant enrichment for meQTL and HSM
regions when compared to CpG sites that do not show outlier DNA methylation, these results
indicate that the vast majority of our results are likely not driven by effects of common genetic
variation.

Disruption of functionally constrained sites within TF binding motifs is
associated with larger methylation changes

Since the binding affinity for many TFs relies on the recognition of specific DNA sequences
[23], a possible direct consequence of DNA sequence variation at TFBSs could be alterations of
the TF-DNA interaction. The binding affinity preferences of TFs for a specific DNA sequence
can be represented by position weight matrices (PWM). These matrices denote the nucleotide
frequencies at each position of a given DNA sequence motif, allowing an estimation of the
effect of motif variation on TF binding affinity in a site-specific manner.

To infer the effect of rare SNV-TFBSs on TF-DNA binding, we computed separately for
each SNV-TEBS the difference between the PWM score of the reference and alternate alleles
(APWM) [19] (http://hgdownload.soe.ucsc.edu/goldenPath/hgl19/database/
factorbookMotifPwm.txt.gz). Smaller values of APWM correspond to SNVs at less constrained
sites, which we hypothesized might be less likely to have an effect on TF binding efficiency (Fig
3A). Conversely, larger values of APWM correspond to SNVs at more conserved positions
within the motif that we hypothesized were more likely to alter the TF binding, and conse-
quently impact DNA methylation (Fig 3B and 3C).

We analyzed 45 TFBSs, at which SN'V's were associated with extreme DNA methylation
changes and for which PWMs were available. Consistent with our hypothesis, we observed
that rare SN'V's disrupting those TFBSs associated with outlier methylation values showed
higher APWM scores compared to SNVs that are not associated with extreme methylation
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changes (Wilcoxon paired signed rank test, p = 0.0026) (Fig 3D). These results are consistent
with rare variants altering local DNA methylation through altered binding of TFs to their
motifs.

Rare SNVs within TFBS exert stronger effects on local DNA methylation
than SNVs within flanking regions

To confirm the key role of TFs in modulating local DNA methylation profiles, we compared
the effect on local DNA methylation between SNV-TFBSs and SNV’ that lie adjacent to but
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outside of annotated TFBS (SNV-noTFBS). Following the same approach as above, we assessed
the effect on local DNA methylation for 571,137 different rare SNV-noTFBSs.

Analogous to our previous analysis of rare SNV-TFBS, we observed a genome-wide enrich-
ment for extreme methylation values for rare SNV-noTFBS, suggesting that local DNA meth-
ylation changes can also be driven by variants outside of annotated TFBSs. However, we
observed that the effect of SNV-TFBSs on DNA methylation was 1.18 fold greater when com-
pared to SNV-noTFBS (Paired t test, P-value<0.0001, Fig 4), indicating that rare genetic vari-
ants at TFBSs are enriched for effects on local epigenetics.

Rare genetic variation within TFBS can influence DNA methylation over
larger distances in cis

So far, we have shown that the disruption of TFBSs by rare SNV is associated with altered
DNA methylation profiles at the local level. However, we hypothesized that the effect of genetic
variation on DNA methylation might also occur across wider regions [4,5]. To address this, we
followed a similar approach to that described above, but selected -values corresponding to
CpGs located between 1-100 kb around each disrupted TFBS. We first binned B-values
according to their separation from the disrupted TFBS, ranked and categorized them to define
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Fig 5. Long-range effects of regulatory rare variants on DNA methylation. For each TFBS containing a rare variant, CpGs located up to 100 kb away were grouped
into bins according to their distance. Dots indicate p-values obtained for each TFBS by permutation testing after Bonferroni-correction for the number of TFBSs tested
(n =133). TFBSs with Bonferroni corrected p<0.05 in each bin are colored red, all others in black.

https://doi.org/10.1371/journal.pgen.1009189.g005

those showing extreme methylation, and then performed permutation testing for each TFBS
per bin. After applying a multiple testing correction, we observed many significant associations
between extreme DNA methylation and different TFBSs. However, there was a clear effect of
physical distance, with the number of TFBS associations reducing markedly once separation of
TFBS and CpG was >30 kb (Fig 5), suggesting that the majority of TF binding events modulate
DNA methylation over relatively short distances (S5 Table).

Disruption of DNA methylation by rare genetic variation at TFBS alters
expression levels of nearby genes

Next, based on the key role of DNA methylation in the control of transcription [12], we
explored the impact of DNA methylation changes associated with the disruption of TFBSs on
the expression of nearby genes. As both DNA methylation and gene expression profiles are
often tissue-specific, we used available cardiac DNA methylation and RNA sequencing (RNA-
seq) expression profiles from 20 unrelated individuals for whom WGS data were also available.

After quality control (QC) procedures and filtering (see Methods), we identified 12,903 rare
SNVs that overlapped with 17,620 TFBS motifs. From these, we selected 4,944 rare SNV that
disrupted TFBSs within gene promoter regions (TSS+2kb), intersected these with normalized
gene expression data, allowing evaluation of the impact of 3,978 rare regulatory SN'Vs on 3,478
independent transcripts. In comparison to gene promoters with a normal DNA methylation
profile, this analysis revealed a 2.58-fold enrichment for extreme expression levels (>2 Z-
scores from the mean) associated with genes with altered promoter methylation and a rare
SNV in a nearby TFBS (p = 0.0363, two-tailed Fisher’s exact test, Fig 6A) (S6 Table). An
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expression levels.

https://doi.org/10.1371/journal.pgen.1009189.g006

example is shown in Fig 6B and 6C, where an individual with a rare variant within the canoni-
cal TFBS for UA4 (predicted to be THAP1) shows increased methylation levels at the promoter
of the nearby GUSBP11 gene (Fig 6B). Consistent with the known repressive effects of DNA
methylation at gene promoters, this is associated with reduced expression of GUSBP11 (Fig
6C). This result suggests that a fraction of rare genetic variation at TFBS contribute to local
transcriptional regulation by modulating DNA methylation profiles.

Discussion

Here, we evaluated the association of rare regulatory genetic variation on DNA methylation
profiles by focusing on extreme methylation values in a cohort of 247 individuals for whom
both WGS and methylation profiles were available. Our results indicate that a fraction of rare
SNV-TFBSs are associated with outlier DNA methylation profiles, which we suggest is poten-
tially due to alterations in TF binding, and these events are associated with altered expression
of nearby genes. Furthermore, our results highlight the value of incorporating DNA methyla-
tion data to interpret the functional consequences of rare regulatory genetic variation.

Analogous to our results, it has been recently shown that rare genetic variation is sometimes
associated with extreme expression levels of nearby genes [9]. Interestingly, these regions are
strongly enriched for variants at CpG-rich promoter regions and TFBSs. Based on our results,
we hypothesize that a certain fraction of this altered gene expression might be due to changes
in DNA methylation profiles as a consequence of rare genetic variation, especially involving
SNVs within TFBSs.

We observed that a total of 46 canonical TFBSs are significantly associated with local DNA
methylation patterns. Consistent with previous reports showing that genetic variation at
CTCF binding sites have been involved in modulating, creating and propagating DNA methyl-
ation profiles in mammals [16,17,21], we observed a significant association between local
DNA methylation profiles and the presence of rare SNVs in CTCF-binding sites. In addition
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to CTCF, disruption of the binding sites of ten other TFs in our list of 46 has recently been
shown to cause alterations of local allelic DNA methylation [24]. In line with our results,
Onuchic et al. showed that the resulting DNA methylation patterns are more often linked to
rare, rather than common, genetic variation, reinforcing our approach of focusing on rare
genetic variation. Altogether, these studies not only validate our approach to detect rare
SNV-TEBS-directed DNA methylation but also suggest that the modulation of local DNA
methylation by TFs represents a general mechanism involved in the regulation of genome
function, rather than being limited to a few TFs.

In addition to local effects on DNA methylation, we also observed that, in some instances,
rare genetic variation at TFBSs is also associated with changes in DNA methylation up to dis-
tances of 100 kb. This is in agreement with the potential role of some TFs in DNA loop forma-
tion [25-27], which can bring regions located hundreds of kilobases away into contact. For
instance, we observed that CTCF, a structural protein involved in the establishment and main-
tenance of the 3D conformation of the genome [27], is consistently associated with extreme
methylation values up to 50 kb from the disrupted TFBS. Similarly to CTCF, we also observed
that AP-1 has effects on DNA methylation over large distances; notably, AP-1 has also been
implicated in the formation of DNA loops during development [28].

According to our results, TFs seem to play a key role in preferentially dictating local DNA
methylation profiles. Nevertheless, we still observed an enrichment for extreme methylation
values associated with rare genetic variation outside of TFBSs. An explanation for this enrich-
ment could be that, despite being outside of these regulatory elements, SNVs can still have an
impact on TF activity, as recently shown by both computational and experimental approaches
[29-32]. For instance, mutations at positions immediately adjacent to GATA1 binding motifs
result in reduced binding of this TF [31], indicating that TF binding is not only regulated by
genetic variation within the TF motif. Another possible explanation could be that these vari-
ants might lie within unannotated binding motifs for TFs that were not included in this study.
For example, it is estimated that approximately one third of human TFs lack DNA-binding
affinity models [33]. Furthermore, we cannot rule out that local DNA methylation profiles
could be modulated by additional mechanisms.

The mechanisms by which TF binding mediates local DNA methylation are still unclear.
Since TFs lack enzymatic activity, it is unlikely that they directly catalyze the gain or loss of
DNA methylation at CpG sites. One possible mechanism would involve the formation of com-
plexes with DNA methylation machinery, such as DNA methyltransferases (DNMTs) and ten-
eleven translocation (TET) proteins [34-36]. For example, it has recently been shown that
nuclear receptor subfamily 6 group A member 1 (Nr6al) can interact with Dnmt3a and
Dnmt3b proteins and induce DNA methylation at the Oct4 gene promoter that contains
Nré6al binding sites [36,37]. Conversely, local DNA demethylation could result from the inter-
action between TFs and TET proteins in mammalian cells [34,35]. However, mutations at
CTCEF binding sites result in abnormal methylation of the maternal unmethylated allele of the
H19 Imprinted Control Region in mice [38], suggesting that the binding of the TF on the
DNA itself can protect against DNA methylation, likely by preventing accessibility to DNMTs
at these sites. Altogether these data provide a possible mechanistic link between the alteration
of TFBS by rare SNVs and the resulting DNA methylation profile.

While previous studies have shown that epigenetic changes due to regulatory mutations
often lead to regional changes affecting clusters of multiple CpGs, it should be noted that for
the majority of SNV-TEFBS in our study (74%), we identified only a single associated outlier
CpG. There are several possible explanations for this observation: (i) the EPIC array that we
used to interrogate DNA methylation only has relatively sparse genomic coverage, sampling
only a small subset of CpGs at most genomic loci; (ii) due to the large number of SNV-TFBS
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we interrogated, some of the pairwise associations with outlier methylation occurred by
chance, and (iii) differential methylation of single CpGs might sometimes result from inaccu-
rate measurements due to poorly performing probes or other technical artefacts, and does not
represent true epigenetic variation [39]. To minimize this latter possibility, we performed pre-
processing of the methylation dataset including the removal of potentially confounded probes
and normalization. Despite this, we observed a 1.7-fold enrichment (p<0.0001, two-tailed
Fisher’s Exact test) for multi-mapping probes reported by Pidsley et al. [40] in our set of CpGs
showing extreme DNA methylation. However, it is important to note that these CpGs only
account for a very small fraction of the overall set of outlier CpGs we reported (approximately
500, or <3% of outlier CpGs). Therefore, although we cannot rule out that a proportion of our
results might be driven by technical artefacts, we believe that this fraction is likely very small
and does not affect the overall conclusions of this study.

Conclusions

Our data suggest that a meaningful fraction of rare genetic variation at TFBSs can play a role
in shaping DNA methylation profiles in cis, which in turn can result in altered expression of
the nearby genes. Furthermore, we provide a rationale for integrating DNA methylation data
to identify genuine functional genetic variation from the broader genetic background, which
represents a current challenge in human genetics.

Materials and methods
Sample description

A total of 249 unrelated individuals with paired data for WGS and EPIC DNA methylation
profiling of peripheral blood collected at the time of enrollment were selected from the cohort
collected via Pediatric Cardiac Genomic Consortium (PCGC) [41]. An extensive description
of PCGC cases as well as further details about sample collection can be found in a summary
publications released by the PCGC [41,42]. Briefly, our cohort comprises 249 individuals, aged
from newborn to 47 years (mean 8.2 years) and diagnosed with a range of congenital heart
defects, with conotruncal and left-sided obstructive lesions being the two most common diag-
noses (S7 Table).

Ethics statement

This research was approved by the Institutional Review Board of the Icahn School of Medicine
at Mount Sinai under IRB #17-01980. All samples were collected after obtaining written
informed consent from each participant or their parents for broad genomic studies approved
by the Institutional Review Boards of Boston’s Children’s Hospital, Brigham and Women’s
Hospital, Children’s Hospital of Los Angeles, Children’s Hospital of Philadelphia, Columbia
University Medical Center, Great Ormond Street Hospital, Icahn School of Medicine at
Mount Sinai, Rochester School of Medicine and Dentistry, Steven and Alexandra Cohen Chil-
dren’s Medical Center of New York and Yale School of Medicine. Further details of ethical
issues regarding PCGC samples, including patient privacy, data storage, and return of results
to participants, can be found in a summary publication released by the PCGC [41].

Illumina sequencing, quality control and variant filtering

After TruSeq DNA PCR-free (Illumina Inc., San Diego, CA, USA) library preparation, WGS
was performed on genomic DNA isolated from peripheral blood at Baylor College of Medicine
(Houston, TX, USA) using Illumina HiSeq instrument to obtain an average of 36-fold genome
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coverage (range from 25- to 39-fold). Paired-end reads were aligned to human reference
genome (GRCh37/hg19) using BWA-mem [43]. SN'Vs were called from aligned reads using
GATK (v2.7) as previously described [44-46].

After applying filters for variant quality (GATK VQSR, >10 total reads, genotype quality
score >30 and alternate allele fraction between 0.2-0.8 and >0.9 for heterozygous and homo-
zygous SNPs, respectively), we retained for further analysis those SNVs with MAF <1% in the
1000 Genomes Project (1000G) [6] and Genome Aggregation Database (GnomAD) [7]
(http://gnomad.broadinstitute.org/about) databases, as well as in our cohort (n = 247).

INlumina Infinium MethylationEPIC BeadChip array profiling

Genome-wide DNA methylation profiling was performed on genomic DNA isolated from
peripheral blood using the EPIC array (Illumina, Inc., San Diego, CA, USA) according to Infi-
nium HD Methylation Assay Protocol (Illumina). Methylation levels are given as B-values,
representing the ratio of intensities between the methylated and unmethylated signals. Result-
ing B-values range from 0 for completely unmethylated to 1 for completely methylated.

For every sample, raw data files with B-values, intensity values per channel, and detection
p-values per probe were obtained from the New York Genome Center. Before processing, QC
of raw data was performed comprising a gender check comparing X and Y-chromosome data
against reported sample gender, principal component analysis (PCA) plots and density plots
of M values. Based on these steps, two samples were excluded from downstream analysis, as
they were clear outliers on PCA plots. To prevent technical biases that could influence methyl-
ation measurements, we initially excluded EPIC probes with (i) internal common SNPs (MAF
>5% in 1000G database) within the last 5 bases of the 3" end of the probe or (ii) non-unique
mapping to the bisulfite-converted genome. Due to gender differences on the sex chromo-
somes, only B-values of autosomal probes were utilized in downstream processing. Raw -val-
ues for 822,016 EPIC probes for the remaining samples (n = 247) were background and color
corrected and quantile normalized using lumi and methylumi R packages [47]. Finally, Infi-
nium probe design biases were corrected using BMIQ [48].

Since DNA methylation patterns are often tissue-specific and blood consists of multiple dif-
ferent cell-types [12], resulting B-values can simply reflect differences in cell-type composition
among samples. To prevent this potential confounder, we first estimated the fraction of six
blood cell types (CD4+, CD8+, B and natural killer cells, granulocytes and monocytes) in our
samples applying Houseman algorithm [49] and correlated these estimates with -values of
each probe. We observed that the probes most significantly correlated with cell-type fraction
(Bonferroni corrected P-value for number of probes <0.05) showed larger methylation differ-
ences, suggesting that heterogeneity in white blood cells across our samples had the potential
to confound our DNA methylation measurements (S1 Fig, right panel). Subsequently, this bias
was removed by excluding most highly correlated probes with every cell fraction up to 5% of
the total number of processed probes on the EPIC array (S1 Fig, left panel). Following this
approach, a total of 76,776 potentially cell-type confounded EPIC probes were excluded from
our analysis. Furthermore, we also excluded EPIC probes with rare SNV-TFBSs present within
the probe, at the interrogated CpG or its adjacent base.

Enrichment of extreme DNA methylation values due to the disruption of
TFBS by rare SNVs

For this analysis, only autosomal SNVs derived from WGS data from 247 unrelated with
minor allele frequency (MAF) <1% in GnomAD and 1000G databases as well as in our cohort
(n =247) (Number of rare SNV per individual, mean = 84,245, max = 320,786, min = 47,391)
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were included. Furthermore, to capture rare events, SNVs that were present in >2 individuals
were also excluded. Based on previous observations about the potential role of TFs in shaping
DNA methylation profiles and how this process can be affected by genetic variation at their
binding sites [15-17], we focused on rare SNVs overlapping TFBSs. We used a catalogue of
2,298,872 motifs for 133 human TFBSs identified from ChIP-Seq peaks generated by the
ENCODE project [18,19,50]. Finally, to avoid redundancy in our analysis, we merged overlap-
ping TEBSs for the same TF that share the same SNV, respectively. This resulted in a total of
131,357 SNVs that overlap 188,226 TFBSs.

After performing standard QC and processing (See above), we extracted B-values corre-
sponding to EPIC probes located within the proximity of the SNV-disrupted TFBS, i.e., the
SNV-disrupted TFBSs and their +1-kb-extended flanks, and ranked these from lowest (1) to
highest (247). As a result of intersecting our genotype and DNA methylation datasets, we iden-
tified a total of 91,356 rare SNV across 120,096 different binding motifs that were informative
for DNA methylation, i.e., EPIC probes mapping within 1-kb-extended flanks of SNV-targeted
TFBS (217,578 different EPIC probes). Bedtools (v2.27) was used to intersect rare SNVs
derived from WGS with 2,298,872 motifs instances corresponding to 133 canonical TFBSs,
obtained from the UCSC Genome Browser track “Transcription Factor ChIP-seq (161 factors)
from ENCODE with Factorbook Motifs”. These motifs (size 8-24 bp) have been predicted
using data obtained from ChIP-Seq experiments on 119 human TFs in multiple cell lines gen-
erated by the ENCODE Consortium [19]. (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
database/factorbookMotifPos.txt.gz, March 16" 2014 release) [18,19].

To avoid redundancy in our analysis, overlapping motif instances of the same TFBS with a
single SNV were merged into a single motif using bedtools groupby tool (v2.27). CpGs of
interest, i.e. those within 1 kb flanking each TFBS, were identified using bedtools (v2.27). Next,
the selected CpGs were ranked by increasing B-value and annotated for our extreme CpG
methylation criteria, defined as within the 5% tails of rank distribution and a minimum abso-
lute difference of 0.05 in B-value between SNV-TFBS carriers and non-carriers. Individuals
were also annotated according to the presence (SNV carrier) or absence (SNV non-carrier) of
a given SNV-TFBS. Enrichment for extreme methylation values was calculated as the ratio of
the fraction of extreme CpG methylation values in the group of SNV-carriers over the fraction
of extreme methylation values in the group of SNV-non-carriers. In order to assess statistically
the ability of SNV-TFBSs to modulate local DNA methylation profiles, we performed 10,000
permutations where we randomized our data and re-calculated the ratio of extreme methyla-
tion values between the groups of SNV carriers and non-carriers. P-values were calculated as
the fraction of permutations where this ratio was equal to or exceeded the observed data. We
then applied a Bonferroni correction for the number of different TFBS tested (n = 133).

A similar approach was carried out to determine the effect of the disruption of TFBSs by
rare SNVs on DNA methylation over distances >1 kb. However, here we first binned CpGs
according to separation from the TFBS, and permutation testing was performed separately for
each TFBS and bin, as described above. For each bin, resulting p-values from the permutation
test were Bonferroni corrected for the number of different tested TFBSs (n = 133).

Identification of differentially methylated regions

We screened for DMRs in each sample using a sliding window algorithm, similar to that
described in [16]. Briefly, for each individual sample, this algorithm searches for genomic
intervals where, within a 1 Kb window:

- at least 3 probes each have B values above the 95th percentile of the cohort distribution for
that probe, and are >0.1 above the cohort mean (Hypermethylation).
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- at least 3 probes each have B values below the 5th percentile of the cohort distribution for that
probe, and are <0.1 below the cohort mean (Hypomethylation).

Because our algorithm is only able to detect DMRs at genomic intervals where >3 probes
within 1 kb are assayed by the EPIC array, we intersected our DMR list with the set of
SNV-TEBS that had at least one sample with an overlapping mutation associated with outlier
methylation, and which had 3 or more CpGs located within 1kb (n = 16,708).

Enrichment analysis for meQTL and HSMs

As the meQTL reported by Do et al. [21] are based on CpG sites present on the Infinium
Human Methylation 450K BeadChip (450K), we first selected 145,041 CpG probes that are
present within the proximity of mutated TFBS (£1Kb either side) and are present on both the
450K and EPIC array platforms. After categorizing these according to their presence in the list
of meQTL provided by Do et al. [21] and their methylation profile (extreme and non-
extreme), we estimated enrichment of these probes for meQTL according to their methylation
profile.

Similarly, to assess the potential impact of HSMs on our results, we first categorized the set
of 217,578 EPIC probes included in our study according to their presence within HSMs and
their methylation profile (extreme and non-extreme). Subsequently, we estimated the enrich-
ment of them for these genomic intervals according to their methylation profile. Statistical sig-
nificance was tested by two-tailed Fisher’s Exact test.

Positional impact of genetic variants within TF motifs

The potential effect of each base substitution on predicted DNA-binding was estimated by
computing the absolute difference in Position Weight Matrix (APWM) scores of the two alleles
at the variant site using available PWMs (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
database/factorbookMotifPwm.txt.gz) (March 16" 2014 release). This file includes PWM:s for
131 different canonical TFBSs generated from ChIP-Seq data generated by the ENCODE proj-
ect [19].

We analyzed 45 TFBSs, at which SNV's were associated with extreme DNA methylation
changes and for which PWMs were available. Prior to computing APWM scores, for each
tested TFBS we categorized rare SNV-TFBSs into two groups according to their association to
extreme methylation values. One group included those SNV-TFBSs associated with local
extreme methylation values and another consisting of the remaining SNV-TFBSs. In cases
where multiple EPIC probes overlap the same 1-kb-extended TFBS interval, we considered
rare SNV-TFBSs as associated with local extreme methylation when at least 1/3 of the CpGs
tulfilled our criteria for extreme CpG methylation. Furthermore, to avoid ambiguity in our
PWM-based approach, we only selected those variants within isolated TFBSs, i.e., that has not
been previously merged with any overlapping TFBS. After this selection, a total of 62,400
(66.1%) rare SNV-TFBSs were included in this analysis. We next calculated the APWM score
between the alleles for the selected SNV and compared the median of the APWM score
between the two groups. For each TFBS, the median of the absolute APWM scores was calcu-
lated for each SNV-TFBS group and statistically compared using a Wilcoxon matched-pairs
signed rank test.

Functional constraint and effect size on DNA methylation

Each CpG was annotated with the absolute APWM score based on the cis-linked SNV-TFBS.
CpGs were binned according to their association with extreme CpG methylation values, and

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009189 November 20, 2020 16/22


http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/factorbookMotifPwm.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/factorbookMotifPwm.txt.gz
https://doi.org/10.1371/journal.pgen.1009189

PLOS GENETICS

Rare variants at TFBS modulates local DNA methylation

the magnitude of the methylation change between SNV-carriers and non-carriers. Pearson
correlation between the median values of absolute APWM scores and magnitude of methyla-
tion change was computed across each bin.

Rare TFBS vs non-TFBS rare SNVs effect on DNA methylation at nearby
CpG sites

Rare SNV that were present within 1-kb flanks of TFBS but did not overlap an annotated
TFBS were identified by bedtools (v2.27). After ranking CpGs based on their B-values and
annotating for extreme CpG methylation, we calculated enrichment for extreme methylation
in individuals carrying SNVs outside TFBSs. A paired t-test was used for matched chromo-
somal enrichment for extreme CpG methylation values between SNV-TFBS and SNV outside.

Functional consequences of rare genetic variation at TFBS in heart tissues

Selection of rare SNVs. Similar to our previous analysis in blood, only rare SNV derived
from WGS with MAF <1% in the 1000G [6] and GnomAD [7] databases as well as in the
PCGC cohort were retained for further analysis. These SN'Vs were intersected with motifs of
133 canonical TFBSs using bedtools (v2.27). Furthermore, overlapping motif instances for the
same TFBS that are targeted for the same SNV were merged using bedtools groupby tool
(v2.27).

RNA-Sequencing. Twenty four transcriptome profiles derived from RNA-Seq of ventricle
tissue were collected from Richter F. et al.[51]. Briefly, RNA extracted from cardiac tissues that
were either snap-frozen or conserved in RNA-later from 327 participants who underwent car-
diac surgery were sequenced on the Illumina Hi-Seq X Ten or NextSeq instrument using
50-bp paired-end sequencing. After sequence reads were aligned to the hgl9 reference genome
using Subread [52], read counts were calculated per gene using featureCounts [53]. Genes
showing a mean of >1 read per kb per million mapped reads (RPKM) across the samples were
considered as expressed in cardiac tissue. Genes below this threshold were excluded from fur-
ther analysis. For the remaining genes, expression levels were corrected for known covariates
(tissue, library preparation, sequencing platform, tissue storage, age, and gender) and subse-
quently, converted to Z-scores. Expression levels >2 Z-scores from the mean were considered
as outliers.

Although PCA plots for gene expression profiles did not show high variance across our
samples, four samples were excluded from this analysis as they display a significantly higher
number of genes showing outlier expression as compared to the remaining samples (S2 Fig).

Cardiac methylation profiling. Genome-wide DNA methylation profiling was per-
formed on genomic DNA isolated from ventricular tissues obtained from 25 individuals who
underwent cardiac surgery. One sample was excluded from this analysis as there was a mis-
match between array-inferred gender utilizing data from the sex chromosomes and the
reported gender. Raw data files with -values, intensity values per channel, and detection p-
values per probe were processed as previously described for blood DNA methylation profiling,
without controlling for leukocyte distribution.

A total of 20 individuals with available WGS data, cardiac RNA sequencing (RNA-Seq),
and EPIC DNA methylation profiles were selected. Processed B-values for CpGs present within
the targeted TFBS by SNV or their 1-kb flanks were selected for downstream analysis. Unlike
our previous analysis in blood samples, due to the smaller size of our cohort we considered
extreme CpG methylation values as those at the top (1) or bottom (20) of the rank distribution
and showing an absolute minimum f-value difference of 0.05 between SNV carriers and non-
carriers. Subsequently, SNV-TFBSs were categorized according to the extreme CpG
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methylation content within its flank. In cases where there were multiple CpGs within 1 kb of a
TFBS, we considered this SNV-TFBS associated with extreme methylation values when at least
one third of the CpGs fulfilled our criteria for extreme methylation.

After DNA methylation and gene expression outlier annotation, SNV-TFBSs were anno-
tated with the closest RefSeq gene using bedtools (v2.27). Only those SNV-TFBSs that fell
within gene promoter (TSS£2kb) of the closest gene were selected. Expression and DNA meth-
ylation data were intersected using the dplyr R package and, subsequently, an enrichment anal-
ysis for expression outliers between SNV-TFBSs associated with extreme methylation and
SNV-TFBSs that were not associated with extreme methylation was performed. Statistical sig-
nificance was tested by two-tailed Fisher’s exact test.

Supporting information

S1 Fig. Blood cell-type specific composition influences DNA methylation. Correlation
between DNA methylation values and blood cell-type specific fraction was calculated for each
CpG site present on the EPIC Illumina using Houseman algorithm [49]. CpG sites mapping
within TFBSs that overlap with rare SNVs or their flanks (+1 kb) were ranked according to
their correlation level with cell type fraction. These CpG sites were plotted in decreasing rank
against the absolute B-value difference between individual carrying tested SNV and controls.
Individual CpG sites are represented by dots and they are displayed in decreasing order
according to their correlation with specific blood cell-type. Black and red-filled dots represent
ranks outside and inside of 5% tails of the DNA methylation ranks distribution, respectively.
The white curve represents smoothed line.

(EPS)

S2 Fig. Principal component analysis (PCA). (A) based on 13,190 genes expressed in ventric-
ular tissue obtained from 24 individuals and (B) bar plot showing the number of genes show-
ing outlier expression (expression value above/below +2 Z-score) in these individuals.

(EPS)

S1 Table. TFBS included in association study.
(XLSX)

S2 Table. List of differentially methylated regions due to the disruption of TFBS by rare
SNVs.
(XLSX)

§3 Table. Permutation test for individual TFBSs to test local effect of the disruption of
TFBSs by rare SNVs on DNA methylation.
(XLSX)

$4 Table. List of EPIC probes associated with extreme DNA methylation upon disruption
of TFBSs by rare SNVs.
(XLSX)

S5 Table. Wider effect on DNA methylation profile of rare SNVs that disrupt TFBSs.
(XLSX)

S6 Table. Genes showing outlier expression associated to local extreme DNA methylation
profile due to the disruption of TFBSs by rare SNVs in ventricular tissues.
(XLSX)

S7 Table. Phenotype of individuals included in the study.
(XLSX)
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