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Abstract: We studied the metal gate work function of different metal electrode and high-k dielectric
combinations by monitoring the flat band voltage shift with dielectric thicknesses using capacitance–
voltage measurements. We investigated the impact of different thermal treatments on the work
function and linked any shift in the work function, leading to an effective work function, to the
dipole formation at the metal/high-k and/or high-k/SiO2 interface. We corroborated the findings
with the erase performance of metal/high-k/ONO/Si (MHONOS) capacitors that are identical to the
gate stack in three-dimensional (3D) NAND flash. We demonstrate that though the work function
extraction is convoluted by the dipole formation, the erase performance is not significantly affected
by it.

Keywords: work function; effective work function; dipole; metal gate; high-k; SiO2; interfacial
reaction; MHONOS; erase performance; 3D NAND flash memory

1. Introduction

When it comes to low-cost and large density non-volatile memory, three-dimensional
(3D) NAND flash memory technology is the industry standard [1,2]. The memory stack
used in 3D NAND is inspired by a typical SONOS memory cell, which allows easy vertical
integration and is addressed by horizontal word lines (WL). To improve the bit density, the
number of cells in the vertical 3D NAND string is increased. This requires the stacking of
many WLs, which need to be as thin as possible to limit the total height and mechanical
stress of the structure [3]. Tungsten (W) metal-based WL is currently being used by the
industry. However, novel materials with lower resistivity are being considered as future
candidates to reduce the high resistive-capacitive (RC) delay that results as a consequence
of WL thinning and continued stacking of the WLs (i.e., downscaling the metal thickness)
in the vertical direction.

Moreover, the WL metal can act as an enabler to improve the 3D NAND erase oper-
ation. It was shown that high work function metals, such as TiN and Ru, can delay the
electron injection from the gate (i.e., electrons tunneling from the gate into the charge-trap
layer), thereby improving the erase window [4]. It has also been demonstrated [5] that
when a metal gate is used in combination with a thin high-k liner, such as Al2O3, HfO2,
or ZrO2 (i.e., a Metal/High-k/ONO/Si (MHONOS) structure), the erase performance can
be further improved. Figure 1 plots the erase saturation levels (lowest possible threshold
voltage, VTH, shift achievable) for different scenarios, with and without a high-k liner, as
simulated using our in-house developed 1D simulator [6]. The high-k liner helps to lower
the injecting field for the electrons at the gate, and even proves to have a larger impact
than the metal work function (WF). The erase is found to be penalized when the MHONOS
stack is treated with a high thermal budget [3]. To thoroughly investigate the WL metal and
high-k liner combination, and its effect on erase operation, metal work function extraction
experiments have been proposed and studied in this work.
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Figure 1. Simulations of erase saturation levels in a memory stack without high-k liner, or with 2 nm
Al2O3 or ZrO2. Addition of a high-k liner shows more benefit than (work function) WF.

WF analysis of metal gate electrodes on high-k dielectrics, by monitoring flat-band
voltage, VFB (or threshold voltage, VTH), have been demonstrated in the literature [7–12].
The studies report an undesirable shift in the VFB (or VTH) of metal-oxide-semiconductor
(MOS) devices. The origins are unclear, leading to an effective work function (eWF) for the
metal, different from the bulk values. Some reports in the literature attribute this shift to
Fermi level pinning (FLP) caused either by metal-induced gap states [13–15] or charged
defects/oxygen transfers, at the metal/high-k interface [12,16,17]. Dipole formation at the
high-k/SiO2 interface due to oxygen vacancies [18,19], and/or the energy offsets between
the high-k and SiO2 [20], have also been suggested in the literature as possible root causes
for an eWF. Though, these studies suggest a notable dependence of eWF on the choice of
high-k used, other process parameters such as gate electrode deposition and annealing
conditions have been found to affect the eWF in a significant way as well [21].

In this paper, we investigate the change in WF (i.e., eWF) of metal electrodes deposited
on high-k dielectrics. Based on the process conditions used, we evidence it to either the
interfacial reactions at the WL-to-high-k contact or between the high-k and the oxide. The
aim of this work is to understand the origins and consequences of WF shifts based on
process conditions within the context of 3D NAND flash memory devices. Therefore, we
also analyze various MHONOS stacks containing Al2O3, ZrO2, HfO2 high-k liners and TiN,
Ru, Mo as gate metal, and corroborate the eWF with the erase performance of these stacks.

2. Materials and Methods

Capacitors with and without the charge trap layer were fabricated on 300 mm p-doped
Si (100) wafers for erase analysis and WF extraction, respectively.

2.1. Work Function Extraction Methodology

The WF of a metal on high-k is determined by extracting VFB from capacitance–voltage
(CV) measurements on a metal-insulator-semiconductor (MIS) structure [22]. The schematic
in Figure 2 shows the energy band diagram of an MIS structure. From this, we note that
the metal work function can be expressed as follows

ΦM = VFB + χSi + [EC − EF], (1)

where ΦM is metal work function, VFB is flat-band voltage computed from CV measure-
ments, χSi is electron affinity of Si substrate, EC and EF are the conduction band minima
and fermi level.
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Figure 2. Schematic of the energy band diagram of a metal-insulator-semiconductor (MIS) capacitor.

However, the charges present in the bulk and at the interfaces of the oxides [23] can
affect the VFB as follows

∆VFB =
∫ tox

0

ρ(z)(tox − z)
ε(z)ε0

dz, (2)

From the above equation, it is clear that the effect of these oxide charges can be
cancelled out by extracting the VFB at zero oxide thickness. This calls for variations in SiO2
and high-k thicknesses. With the help of a slant etch technique, the thickness of SiO2 was
varied across the wafer as shown in schematic in Figure 3. For each electrode, a set of
3 wafers with different high-k thicknesses (typically 3 nm, 5 nm, 7 nm) was used to provide
enough variation and extract the WF conveniently. Typical CV measurements and VFB
extraction procedure are discussed in Appendix A.

Micromachines 2021, 12, x FOR PEER REVIEW 3 of 16 
 

 

𝛷ெ ൌ 𝑉ி஻ ൅ 𝜒ௌ௜ ൅ ሾ𝐸஼ െ 𝐸ிሿ, (1) 

where ΦM is metal work function, VFB is flat-band voltage computed from CV measure-
ments, ΧSi is electron affinity of Si substrate, EC and EF are the conduction band minima 
and fermi level. 

However, the charges present in the bulk and at the interfaces of the oxides [23] can 
affect the VFB as follows ∆𝑉ி஻ ൌ ׬ ఘሺ௭ሻሺ௧೚ೣି௭ሻఌሺ௭ሻఌబ 𝑑𝑧௧೚ೣ଴ , (2) 

 
Figure 2. Schematic of the energy band diagram of a metal-insulator-semiconductor (MIS) capaci-
tor. 

From the above equation, it is clear that the effect of these oxide charges can be can-
celled out by extracting the VFB at zero oxide thickness. This calls for variations in SiO2 and 
high-k thicknesses. With the help of a slant etch technique, the thickness of SiO2 was var-
ied across the wafer as shown in schematic in Figure 3. For each electrode, a set of 3 wafers 
with different high-k thicknesses (typically 3 nm, 5 nm, 7 nm) was used to provide enough 
variation and extract the WF conveniently. Typical CV measurements and VFB extraction 
procedure are discussed in Appendix A. 

 

Figure 3. Schematic of MIS capacitor with slant etch for SiO2. Corresponding oxide charge densities
are indicated.

The impact of oxide charges on VFB can be mathematically expressed in terms of
equivalent oxide thickness (EOT) and the corresponding charge densities as follows [24]

VFB = ΦMS + q·ρHK·εHK·
EOT2

HK
2·ε2

ox·εo
+ q·σHK·

EOTHK
εox·εo

+ q·ρSiO2 ·
0.5·T2

SiO2
+
(

εHK
εox

)
·TSiO2 ·EOTHK

εox·εo
+ q·σSiO2 ·

EOTtotal
εox·εo

, (3)
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where q is the electron charge, ρHK and σHK are the bulk and interface charge densities
of high-k dielectric, respectively. The terms ρSIO2 and σSIO2 are the corresponding bulk
and interface charge densities of SiO2, respectively. EOTHK, TSiO2, and EOTtotal are the
equivalent oxide thickness of high-k, thickness of SiO2, and both combined, respectively.
The EOTtotal is in fact the measured EOT computed from the CV measurement of the
MIS capacitors. The terms εHK, εox, εo are the relative permittivity of high-k, SiO2 and
permittivity of free space, respectively. The ΦMS in the above equation, from which the
metal WF is extracted, is later computed by extrapolating VFB at EOT (both high-k and
SiO2) = 0.

First, a 30 nm thick layer of high quality SiO2 was thermally grown at 900 ◦C. This
was then etched back with a slant profile (as shown in Figure 3) by slowly immersing (at a
constant rate) the wafer in a 1.9% hydrofluoric acid (HF) solution. The desired thickness
range of SiO2 is obtained across the wafer by modifying the rate of immersion accordingly.
A nominal thickness range of 3–12 nm was used in this work. Then, after the slant etch, a
3 nm plasma enhanced atomic layer deposition (PEALD) SiO2 was uniformly deposited at
300 ◦C, to mimic the blocking oxide in a 3D NAND device. Little wafer-to-wafer variations
were observed in the oxide thickness, as measured by ellipsometry (see Figure 4a). The
total EOT measured from CV will vary across the wafer due to the slant etch of thermal
oxide, as shown in Figure 4b (bubble size represents magnitude of EOT).
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voltage (CV) measurement. Bubble size represents EOT magnitude.

After this, high-k liners, such as Al2O3, ZrO2, and HfO2, were deposited at 300 ◦C
to their desired thicknesses, using atomic layer deposition (ALD). Finally, 20 nm ALD Ru
or ALD TiN or PVD Mo were then deposited as the gate electrode. In order to isolate the
impact of thermal treatment on individual layers, a high temperature anneal (Tanneal) was
performed at different stages of the stack formation (as shown in Figure 5). For instance,
some of the capacitors were subjected to a post metallization anneal (PMA) for 20 min at
750 ◦C in N2 ambient. A few others were subjected to a post high-k deposition anneal
(PDA), where the entire stack sans the metal electrode received a thermal treatment for
1 min at 1050 ◦C for Al2O3-based stacks and 1 min at 750 ◦C for the rest, all in N2 ambient.
All wafers received a final sintering anneal in 5 atm H2 ambient at 450 ◦C for 30 min.
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the process.

CV measurements were performed on 70 × 70 µm2 capacitors at a frequency of
100 kHz. The parameters needed for the WF extraction, namely, VFB, the substrate doping
concentration and the total EOT, EOTtotal, are estimated (see Appendix A) with the help of
NCSU’s CVC model fitting software [25]. Based on the expression for VFB from Equation (3),
we can express VFB as a second order polynomial equation in terms of the EOT, as the
one below

VFB = ΦMS + a·EOT2
HK + b·EOTHK + p·T2

SiO2
+ q·TSiO2 , (4)

where a, b, p, and q contain the charge densities of high-k and SiO2.
From the above equation, we can first eliminate the effect of charges in SiO2 with a

second order polynomial fit of the VFB with the thickness of SiO2, TSiO2. A sample fit is
shown in Figure 6. The intercept from the first fit contains the polynomial equation with
high-k EOT, EOTHK and hence is used to eliminate the charges from high-k in a second fit.
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Figure 6. The VFB measured from CV is plotted as a function of SiO2 thickness. A second order fit is
performed to isolate the terms p and q containing the charge densities in its bulk and interface.

As mentioned earlier, we have the EOTtotal of the stack as measured from CV. In order
to get the TSiO2 to be used in the first fit, we make use of the ellipsometry data that was
measured at preset locations across the wafer, after the slant etch and PEALD deposition.
This data is then compared with corresponding dies for which the CV was measured. The
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difference between the measured EOTtotal and this ellipsometry data will give an estimate
of the EOTHK.

The three curves shown in Figure 6 represent the three wafers with three different
high-k thicknesses needed for sufficient variation to eliminate the charges affecting the VFB.
The corresponding intercept from the 2nd order fit of the above curves is then used in a
second fit, as shown in Figure 7 below.

Micromachines 2021, 12, x FOR PEER REVIEW 6 of 16 
 

 

Figure 6. The VFB measured from CV is plotted as a function of SiO2 thickness. A second order fit is 
performed to isolate the terms p and q containing the charge densities in its bulk and interface. 

As mentioned earlier, we have the EOTtotal of the stack as measured from CV. In order 
to get the TSiO2 to be used in the first fit, we make use of the ellipsometry data that was 
measured at preset locations across the wafer, after the slant etch and PEALD deposition. 
This data is then compared with corresponding dies for which the CV was measured. The 
difference between the measured EOTtotal and this ellipsometry data will give an estimate 
of the EOTHK. 

The three curves shown in Figure 6 represent the three wafers with three different 
high-k thicknesses needed for sufficient variation to eliminate the charges affecting the 
VFB. The corresponding intercept from the 2nd order fit of the above curves is then used 
in a second fit, as shown in Figure 7 below. 

 
Figure 7. The intercepts from the part 1 fit are plotted as a function of high-k EOT. A second order 
fit is performed to extract the metal work function. 

The intercepts vs. the EOTHK will now help to eliminate the charges in high-k. The 
intercept from this second fit is the ΦMS from which the WF is computed using the formula 𝑊𝐹 ൌ 4.05 ൅ 𝛷ெௌ ൅ 𝐸஼ െ 𝐸ி, (5) 

where 𝐸஼ െ 𝐸ிሺ𝑖𝑛 𝑒𝑉ሻ ൌ 1.12 െ 0.0257 ∗ ln ቀ ଵ.଼ଷாଵଽ௠௘ௗ௜௔௡ ௗ௢௣௜௡௚ ௖௢௡௖௘௡௧௥௔௧௜௢௡ ௜௡ ௧௛௘ ௦௨௕௦௧௥௔௧௘ቁ. 
2.2. NAND Flash Erase Analysis 

Incremental Step Pulse Erase (ISPE) characteristics were studied by monitoring the 
shift in VTH of MHONOS capacitors from their fresh state. The erase operation is divided 
into a number of steps with increasing amplitude (for a duration of 1 ms) in applied volt-
age and at the end of each of them a verify operation is applied to check the VTH. The 
amplitude and rate of change in VTH is considered as a measure of erase performance. 

Large MHONOS capacitors (50 × 50 μm2) were fabricated on 300 mm p-doped Si (100) 
wafers, as shown in Figure 8b. N+-doped rings were processed, surrounding the active 
area of the capacitors, to provide minority carriers for program operation. In a study re-
ported elsewhere [3], we have demonstrated a 3D NAND test structure with 5 layers and 
showed that the memory characteristics of the stack (see Figure 8a) are qualitatively sim-
ilar to that of the planar test structures that we typically use (see Figure 8b). Moreover, the 
gate stack deposited in this work mimics the one of 3D NAND in production [3,26] in 
terms of annealing processes and high-k/metal gate depositions performed. Therefore, we 

Figure 7. The intercepts from the part 1 fit are plotted as a function of high-k EOT. A second order fit
is performed to extract the metal work function.

The intercepts vs. the EOTHK will now help to eliminate the charges in high-k. The
intercept from this second fit is the ΦMS from which the WF is computed using the formula

WF = 4.05 + ΦMS + EC − EF, (5)

where EC − EF(in eV) = 1.12 − 0.0257 ∗ ln
(

1.83E19
median doping concentration in the substrate

)
.

2.2. NAND Flash Erase Analysis

Incremental Step Pulse Erase (ISPE) characteristics were studied by monitoring the
shift in VTH of MHONOS capacitors from their fresh state. The erase operation is divided
into a number of steps with increasing amplitude (for a duration of 1 ms) in applied voltage
and at the end of each of them a verify operation is applied to check the VTH. The amplitude
and rate of change in VTH is considered as a measure of erase performance.

Large MHONOS capacitors (50 × 50 µm2) were fabricated on 300 mm p-doped Si
(100) wafers, as shown in Figure 8b. N+-doped rings were processed, surrounding the
active area of the capacitors, to provide minority carriers for program operation. In a study
reported elsewhere [3], we have demonstrated a 3D NAND test structure with 5 layers and
showed that the memory characteristics of the stack (see Figure 8a) are qualitatively similar
to that of the planar test structures that we typically use (see Figure 8b). Moreover, the gate
stack deposited in this work mimics the one of 3D NAND in production [3,26] in terms of
annealing processes and high-k/metal gate depositions performed. Therefore, we could
fairly say that the results obtained from the planar capacitors in this work are relevant for
3D NAND flash memory devices.
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few metal/high-k combinations. No high temperature anneals were performed for these 
splits. W Ref represents the CVD W/thin (3 nm) ALD TiN/Al2O3 liner stack similar to the 
one used currently in 3D NAND production. We could note that the WF of TiN in combi-
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Figure 8. (a) Cross-section schematic of the memory gate stack in a vertical three-dimensional (3D) NAND device;
(b) schematic of a planar test structure used in this work. The components of the gate stack are indicated in the figure.

The MHONO stack, as seen from the TEM image in Figure 9a, consists of a 6 nm
SiON (with 20% N-to-O ratio) tunnel layer deposited using CVD at 780 ◦C, 6 nm LPCVD
Si3N4 charge trap layer deposited at 690 ◦C, 7 nm PEALD SiO2 blocking oxide deposited at
300 ◦C, and 2 nm ALD Al2O3 or ZrO2 or HfO2 high-k liner deposited at 300 ◦C. A total of
20 nm ALD Ru or ALD TiN or PVD Mo were then deposited as the gate electrode (WL,
wordline). Similar to the study of WF extraction, a post metallization anneal, PMA for
20 min at 750 ◦C in N2 ambient, and a post deposition anneal, PDA for 2 min at 1050 ◦C for
Al2O3 based stacks and 1 min at 750 ◦C for the rest, all in N2 ambient, were performed for
some of the capacitors (see Figure 9b). All wafers were subject to a final sintering anneal
either in forming gas at 420 ◦C for 20 min or in 5 atm H2 ambient at 450 ◦C for 30 min. We
may note that the sintering anneal has little influence on the final erase saturation levels.
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Figure 9. (a) Transmission electron microscope (TEM) image of a memory stack fabricated in this work; (b) different anneal
types and the corresponding MHONOS layers that received the anneal.

3. Results and Discussion

The metal WF extracted in this work are listed as a histogram plot in Figure 10 for a few
metal/high-k combinations. No high temperature anneals were performed for these splits.
W Ref represents the CVD W/thin (3 nm) ALD TiN/Al2O3 liner stack similar to the one
used currently in 3D NAND production. We could note that the WF of TiN in combination
with Al2O3 is estimated to be about 4.53 eV and is in close agreement with the actual TiN
WF reported in the literature [27,28]. What is surprising is the WF of Ru in combination
with Al2O3, which is about 200–300 meV less than those reported in the literature for Ru
metal [29,30]. It has been demonstrated, using internal photoemission experiments [31],
that subtle changes in the chemical bonding at the metal/high-k interface can cause
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a significant impact on the barrier height (Φb, as shown in Figure 2) at this interface.
Such chemical modifications could occur from various processing, such as conditions of
deposition, thermal budget, and ambient of annealing process. As a consequence, this
could lead to a shift in the WF of the metal. However, it is possible to avert this interfacial
reaction by using appropriate interfacial layer (IL), as can be seen from Figure 10. The WF
of Ru improves to 4.8 eV by adding a thin (3 nm) TiN liner between Ru and Al2O3.
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Figure 10. Metal work function listed for a few metal/high-k combinations from this work. No high temperature anneals
were performed for these stacks.

In order to verify whether these shifts, measured in WF of Ru, reflect the actual change
in metal WF, we compared the erase performance of these stacks. Figure 11 shows the ISPE
curves for MHONOS stacks containing the metal/high-k combinations from Figure 10.
The erase saturation (lowest VT shift achieved in ISPE) for TiN and Ru on Al2O3 (WF
~4.6 eV) is comparable after accounting for the differences in the starting VTH, while that of
W Ref (WF ~4.9 eV) is better, corroborating the WF difference between these stacks. With
the addition of TiN liner, the WF of Ru improves, and so does the erase saturation.
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We may note that the WF extracted from the Ru/TiN/Al2O3 stack is slightly less
than that of W Ref, i.e., W/TiN/Al2O3 stack, yet the erase is better with Ru. Before
addressing this, let us look at Figure 12a,b, which display the WF extracted for Ru, Mo, and
TiN in combination with HfO2, ZrO2, and Al2O3 after different annealing conditions, as
described in Figure 5. From Figure 12a, we could note a significant reduction (>500 meV)
in the WF of Ru after the thermal treatment, irrespective of whether the metal electrode
received the anneal (PMA) or not (PDA). The ISPE curves for these stacks are shown
in Figure 13a. The stack that received the PDA does not change in erase while the one
that received a PMA degrades both in erase slope and saturation level. We can also note
from Figures 12b and 13b that without any high temperature anneals, both Ru and Mo
show similar WF and erase saturation levels in combination with ZrO2. Though after a
thermal treatment (PMA or PDA), the WF reduces irrespective of the metal or high-k used,
the erase saturation depends on the type of anneal applied. These observations (made
from Figure 10, Figure 12, Figure 13) hint that (a) the WF alone is not the reason for erase
functionality, and (b) an extra factor, unaccounted in the extraction, is affecting the WF,
resulting in an effective work function, eWF, being measured from the experiments.
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vations made for HfO2- and ZrO2-based stacks, and definitely not reflected in the WF
reduction in TiN. A closer study on the high-k material properties reported elsewhere [32],
investigated by trap spectroscopy, revealed that worse erase saturation levels at increased
thermal budgets could be due to an increase in defect density in the high-k rather than
a reduction in the metal WF itself. Higher defect density could increase trap-assisted
tunneling [33], thereby increasing the leakage current during the erase operation (a typical
band diagram during erase can be seen in Figure 14).
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Figure 14. A typical band diagram of MHONOS during erase. Higher trap density reduces the
tunneling path for gate electrons resulting in poor erase.

As discussed before, Fermi level pinning (FLP) at the metal/high-k interface, dipole
formation at the high-k/SiO2 interface, and/or the energy offsets between the high-k and
SiO2 have been suggested in the literature as possible root causes for an eWF. If the metal
fermi level is pinned, then the Φb at the interface should be different, which reflects in
the erase saturation levels. Based on the observations made from Figure 11 for Ru with
TiN liner and Figure 13 for Ru stacks after PDA, this effect can be ruled out. A common
opinion in the literature [21,34–36] is that a dipole formed at the high-k/SiO2 interface is
the dominant factor causing appreciable shifts in VFB, and hence, the WF extracted from
it. Many physical models exist to explain this dipole formation, attributing it to dielectric
contact induced gap states [37] or dictated by the electronegativity and ionic radii of the
cations (from the high-k) [38], However, the most acceptable explanation seems to be oxygen
vacancies driven by structural stabilization at the high-k/SiO2 interface [18–21,34,39,40].
Moreover, the dipole formation at the high-k/SiO2 interface should not affect the erase
performance of flash memory, which is determined by the electron injection dynamics at
the gate contact.

To further clarify the impact of dipole formation on erase performance of flash memory,
dipole-forming interlayers (DIL) [36,41,42], namely, Al2O3 and La2O3 (0.6 nm each), were
studied as part of the MHONOS stack (shown in Figure 15). The DIL were deposited
between metal and high-k or high-k and SiO2, with TiN/HfO2 being used as the control
gate electrode and high-k dielectric. All the stacks received a PDA for 1.5 s at 1050 ◦C in
N2 ambient. The corresponding shifts in VFB caused by the interlayers were extracted from
CV measurements using CVC fitting (as can be seen in Figure 16).
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Figure 16. Flat band voltage monitored from CV traces, for MHONOS stacks with different dipole interlayers from Figure 15
(a) without any PMA and (b) with PMA for 20 min at 750 ◦C in N2 ambient.

We could note from Figure 16a that with the addition of Al2O3 DIL between HfO2
and SiO2, the VFB positively increases by about 120 meV, while it remains unchanged
when Al2O3 is inserted between the metal and high-k. Though much higher VFB shifts are
theoretically reported for Al2O3 [18], the processing conditions and thickness of the DIL
play a major role in determining the magnitude of the VFB shifts [21,42,43]. Furthermore, if
we add 0.6 nm La2O3 DIL between HfO2 and SiO2 while keeping the Al2O3 between TiN
and HfO2, we notice a negative drop of about 140 meV in the VFB, which is in line with
trends reported in the literature [44,45]. It is worth to note that the trend in VFB remains
unchanged after a PMA for 20 min at 750 ◦C in N2 ambient (see Figure 16b).

The ISPE curves for these stacks without PMA are shown in Figure 17a. We could
note, despite the differences in VFB, that there is no difference in the erase performance of
these stacks. On the contrary, when the stacks were subjected to PMA, the erase depends
on the material present in the stack, as can be seen in Figure 17b. The control sample with
only TiN and HfO2 shows slight degradation after PMA. However, the stacks with DIL
show higher reduction in erase, even worse when the Al2O3 is present next to the blocking
oxide, though it shows a positive VFB shift (indicating a higher eWF). It is well known that
Al2O3 dielectric suffers from a wider band of defect profile [46]. Recalling the discussion
from before on the possible impact of defect density in the high-k on erase (see Figure 14),
we could fairly say that the above results corroborate this hypothesis.
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Appendix A

Figure A1 shows the typical capacitance and conductance curves obtained on 70 × 70 µm2

capacitors at a frequency of 100 kHz. The capacitors were fabricated on a p-doped, 300 mm
Si substrate with SiO2 bevel. Data is shown for 3 nm HfO2 high-k liner and Ru gate
electrode. The capacitors are sequentially measured at different voltage sweep ranges
(i) 1 V to −1 V, (ii) 2 V to −2 V, (iii) 3 V to −3 V. We could notice that there is little impact of
the voltage sweep on the hysteresis of the curves. Capacitance data from the 2 V to −2 V
voltage sweep range is then used to subsequently extract the flat band voltage, VFB.
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Figure A1. Typical (a) capacitance and (b) conductance measurements performed in this work. Data shown for Ru/HfO2
combination on a SiO2 bevel (slant etch) on a p-type Si substrate. The capacitors are sequentially measured at different
voltage sweep ranges (i) 1 V to −1 V, (ii) 2 V to −2 V, (iii) 3 V to −3 V.

Figure A2 shows the schematic of an automated VFB extraction with a robust and
traceable procedure. Test for gate leakage is performed in the measurement routine (not
shown) and warnings are issued if any issues are encountered. Only those data with
appropriate fit errors are filtered for further analysis. The rest of the analysis follows as
discussed in the main article (see page 5 onwards).
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