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An automated deep learning 
method and novel cardiac index 
to detect canine cardiomegaly 
from simple radiography
Yeojin Jeong & Joohon Sung*

Since most of degenerative canine heart diseases accompany cardiomegaly, early detection of 
cardiac enlargement is main priority healthcare issue for dogs. In this study, we developed a new 
deep learning-based radiographic index quantifying canine heart size using retrospective data. 
The proposed “adjusted heart volume index” (aHVI) was calculated as the total area of the heart 
multiplied by the heart’s height and divided by the fourth thoracic vertebral body (T4) length from 
simple lateral X-rays. The algorithms consist of segmentation and measurements. For semantic 
segmentation, we used 1000 dogs’ radiographic images taken between Jan 2018 and Aug 2020 at 
Seoul National University Veterinary Medicine Teaching Hospital. The tversky loss functions with 
multiple hyperparameters were used to capture the size-unbalanced regions of heart and T4. The aHVI 
outperformed the current clinical standard in predicting cardiac enlargement, a common but often 
fatal health condition for small old dogs.

Abbreviations
VHS	� Vertebra heart score
T4	� 4Th thoracic vertebral body
MMVD	� Myxomatous mitral valve disease
HE	� Heart enlargement
LAE	� Left atrial enlargement
LA/Ao	� Left atrial: aorta ratio in the right-sided short axis view in early diastole
LVIDDN	� Left ventricular internal diameter in diastole, normalized for body weight
DL	� Deep learning
aHVI	� Adjusted heart volume index
TL	�  Tversky loss

The global population of dogs was estimated to be around 900 million in 2013, and 20% of them cohabitate with 
humans1. Cohabitating dogs are often regarded as family members, with growing vigilance on their healthcare. 
With improved care and increased life span, it is estimated that approximately 10% of dogs represented in primary 
care veterinary practices have heart disease2.

Unlike humans, where coronary heart diseases are predominant, myxomatous mitral valve disease (MMVD) is 
the most common type of heart disease in dogs, with its prevalence increasing markedly with age. About 75 ~ 80% 
of small-breed dogs (< 15 kg) over 13 years of age are reported to have degenerative heart diseases2. The MMVD 
is characterized by progressive deformation of the valve structure, resulting in mitral valve regurgitation (MR). 
The progression of MR results in left heart overload, with signs of left atrial and left ventricular enlargement 
(LAE and LVE)3,4. Since cardiac enlargement ensues pharmacological intervention to prevent fatal heart failure, 
early detection of cardiac enlargement is a priority healthcare issue for dogs.

The American College of Veterinary Internal Medicine Veterinarian (ACVIM) guideline for staging MMVD2 
is widely used for diagnosing cardiac enlargement. In the ACVIM consensus guideline, vertebral heart score 
(VHS)5 larger than 11.5 from lateral thoracic radiograph is suggested as radiographic evidence of cardiomegaly 
alone without echocardiographic measurements. VHS is an index of normalized heart size to body size using 
mid-thoracic vertebrae for adjustment. For measuring VHS, the longest axis and its perpendicular axis of the 
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cardiac silhouette from a simple canine chest X-ray are summed and then divided by the length of the mid-
thoracic vertebral body, starting at the cranial edge of T4. Because of its relative simplicity, the VHS is the most 
widely used index of cardiac enlargement, at the cost of involving efforts and possible measurement errors.

We propose a new automated cardiac index for dogs to improve the VHS index, adjusted heart volume index 
(aHVI). The deep learning (DL) algorithms automate the measures and enable two-dimensional measurement of 
the heart area. The purpose of this study is 1) to develop a method that automatically measures and a new cardiac 
index from a simple X-ray and 2) to compare the performance of a new method versus the current standard 
method in predicting clinically proven cardiomegaly.

Material and methods
Data sources.  The images and clinical information were collected from Seoul National University Veteri-
nary Medicine Teaching Hospital (SNU-VMTH) between January 2018 to August 2020. For all participants, 
informed consent was obtained by owners. All radiographs were taken with dog in right lateral recumbency and 
included radiologic reports made by veterinary radiologists at SNU-VMTH.

A total of 1000 radiographs (1000 dogs) with complete information were randomly selected to develop a 
radiographic index. Additional 200 images (191 dogs) with concurrent echocardiographs were collected to 
compare the diagnostic performance of new and conventional indices in detecting echocardiography-confirmed 
cardiomegaly. The entire workflow is shown in Fig. 1.

After an initial quality check, image data were selected; inadequately positioned or exposed radiographs 
were excluded by manual inspection of veterinary radiologists. Some disease conditions that interrupt heart 
margin were excluded, including pleural effusion, overlying mediastinal nodules, and lung mass superimposed 
over the heart. Clinical information such as sex, age, breed, radiologic report, and manually measured VHS was 
also collected.

Image preprocessing and ground truth establishment.  All images were center cropped with Pillow 
library in Python and resized to 256 × 256. Contrast Limit Adaptive Histogram Equalization (CLAHE)6 was 
applied using the OpenCV library7 in Python to mitigate variability in exposure level and enhance the contrast 
of images. Veterinary radiologists in SNU-VMTH manually generated contour labels of heart and T4 vertebrae 
body with the “labelme opensource tool”8. Experts’ labels were used as ground truth to train the semantic seg-
mentation.

Improved attention U‑net.  Focal Tversky loss.  For semantic segmentation, the Dice score coefficient 
(DSC) is widely used to assess segmentation performance. The 2-class DSC variant for class c is expressed in 
Eq. (1), where gic ∈ {0, 1} and pic ∈ [0, 1] represent the ground truth label and predicted label, respectively. The 
total number of pixels in an image is denoted by N . The ǫ provides numerical stability to prevent division by zero. 
The linear Dice loss (DL) is defined a minimization of the overlap between the prediction and ground truth9.

Figure 1.   An overall process of developing a new cardiac index of adjusted heart volume index (aHVI). After 
the quality check, one thousand images were randomly divided into 800 training, 100 validation, and 100 test 
sets to develop a deep learning model. In the training stage, segmentation, measurements, and optimization 
were conducted. The performance of aHVI from the trained model was compared with the VHS (vertebral heart 
score, the current standard, manual measure) against the echocardiographic measurement of cardiomegaly 
(combined LA/Ao and LVIDDN) using 200 independent data.
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One of the limitations of the DL is that it equally weights false positive (FP) and false negative (FN) detec-
tions. For our model, the segmentation maps for heart required high recall to accurately detect heart contour, 
while the segmentation maps for T4 needed to penalize false positive detections more strongly to prevent over-
estimation of T4 length. The Tversky similarity index is a generalization of the DSC which allows for flexibility 
in balancing FP and FNs (Eq. (2)):

where, pic is the probability that pixel i is of the lesion class c and pic is the probability pixel i is of the non-lesion 
class c . The same is true for gic and gic , respectively. Hyperparameters α and β can be tuned to shift the emphasis 
to false positive and false negative detections. The Tversky index is adapted to a loss function (TL) by minimizing 
∑

c
1− TIc

10. In case of α = β = 0.5 , TI simplifies to the DSC. If α > 0.5, TI weights more emphasis on minimiz-
ing FN predictions, while setting β larger than 0.5 weights more emphasis on minimizing FP predictions.

In practice, DL struggles to segment small region of interest (RoI) as they do not contribute to the loss sig-
nificantly. To mitigate this problem, the authors of improved attention U-Net paper11 proposed the focal Tversky 
loss function (FTL), which is parameterized by hyperparameter γ to control between easy background and hard 
RoI training examples. The focal parameter exponentiates the cross-entropy loss to focus on hard classes detected 
with lower probability12. FTL is defined as (Eq. (3)):

When γ > 1 , the loss function focuses more on less accurate predictions that have been misclassified. Authors 
observed the best performance with γ = 4

3 . However, they found that using FTL as loss function for all layers 
over-suppressed FTL when the model is close to converge. So they recommended to train intermediate layers 
with FTL but supervised the last layer with the Tversky loss to provide a strong signal and mitigate sub-optimal 
convergence. In this paper, we adapted recommended architecture of improved attention U-Net, but changed 
values of α and β to accurately segment heart and T4 regions.

Network architecture.  The improved attention U-Net11 is based on U-Net13, which is composed of a contracting 
path to extract locality features and an expansive path, to resample the image maps to combine high-resolution 
local features with low-resolution global features and encourage more semantically meaningful outputs.

However, at the deepest stage of encoding where the network has the richest possible feature representation, 
spatial details tend to get lost in the high-level output maps. This makes it difficult to reduce false detections for 
small objects that show large shape variability14. So the attention gates (AG) is added to vanilla U-Net architecture 
to identify relevant spatial information from low-level feature maps and propagate it to the decoding stage. With 
additive attention gate, input features are scaled with attention coefficients to propagate relevant features to the 
decoding layer output. The coarser gating signal provides a contextual information while spatial regions from 
the input features provide locality information. Feature map is then resampled by bilinear interpolation. Details 
for attention-gated U-Net are explained in14.

Segmentation model development.  The segmentation DL model was developed based on improved attention 
U-Net which uses focal Tversky loss function11. The improved attention U-Net outperformed other segmenta-
tion algorithms for multiple imbalanced regions of interest (RoI). Since canine heart (area and diameter) and 
T4 body (length) were substantially different in size and measurement unit, we trained segmentation models 
separately with different hyperparameters α for Tversky loss (Fig. 2).

Dataset was randomly split into 800–100-100 train-validation-test sets. The model receives both input image 
and corresponding ground truth mask contracts the input image by convolution operation to extract locality 
features and expands the contracted input image to resample the image maps with contextual information. The 
model uses soft attention gates and injects the contraction path with the multi-scale input image pyramid to 
reduce measurement errors for DL.

Development of novel canine cardiac index, the adjusted heart volume index (aHVI).  With two binary masks, 
heart area defined by the experts and one predicted by the DL model, we measured the heart area, heart height, 
and T4 length using the OpenCV library15. The heart’s height was measured as the vertical length of the contour 
from the radiography. The length of the T4 body was measured as the width of the “minimum-area rectangle” 
surrounding the vertebral body. The description of binary mask analysis is shown in Fig. 3.

We adapted the volumetric quantification methods for echocardiography that multiply the area and 
diameters16. For allometric scaling of heart volume according to the size of dogs, we used T4 length since the 
earlier study has shown that vertebral body length has an excellent linear correlation with the axial lengths of 
the heart5. The formula for aHVI used in this study is as follows:

(1)DSCc =

∑N
i=1

picgic + ǫ
∑N

i=1
pic + gic + ǫ

(2)TIc =

∑N
i=1

picgic + ǫ
∑N

i=1
picgic + α

∑N
i=1

picgic + β
∑N

i=1
picgic + ǫ

(3)FTLc =
∑

c

(1− TIc)
1/γ

aHVI = (Area of Heart * Height of Heart) /
(

T4 Length * 10,000
)
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Statistical analysis and diagnostic measures of model development.  Dice evaluated segmentation accuracy for 
heart and T4 score coefficient, precision, and recall between the predicted mask and ground truth mask of 100 
test images. Independent 200 data with both X-ray and echocardiography records were used to compare the 
predictive performance of VHS and aHVI in detecting echocardiography-confirmed cardiomegaly. Echocar-
diographic LA:Ao ratio in the right-sided short-axis view in early diastole (LA/Ao) over 1.6 was regarded as left 
atrial enlargement, and left ventricular internal diameter in diastole, normalized for body weight (LVIDDN) 
over 1.7 was considered as the gold-standard of left ventricular enlargement, according to the ACVIM consensus 
guideline2. Receiver operating characteristics (ROC) analysis was used to compare the diagnostic performance 
of aHVI and VHS. The aHVI value with the highest difference between true-positive rate and false-positive 
rate was used as an optimal cutoff value. As recommended by the official guideline, a VHS of 11.5 was used as 
a cutoff. Each test’s sensitivity, specificity, and F1 scores were computed at the cutoff point. We applied standard 

Figure 2.   Schematic representation of improved attention U-Net used in semantic segmentation of heart 
and T4 on canine thoracic radiography. The improved attention U-Net11 receives both preprocessed input 
radiographic images and ground truth mask for the heart (top) and T4 (bottom). Both Networks are trained 
using Tversky loss. Outputs from the networks are predicted masks of heart and T4. Performance of the network 
is evaluated by dice score coefficient, recall and, precision between ground truth mask and predicted mask.

Figure 3.   Analysis of binary mask. Area (A) and height (L) of heart and length of T4 (T) are measured. Height 
of the heart (L) was calculated by the coordinate value of the heart region at its radiographic position. T4 length 
(T) was measured as width of “minimum area rectangle” of T4 body.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14494  | https://doi.org/10.1038/s41598-022-18822-4

www.nature.com/scientificreports/

diagnostic measures of deep learning models including sensitivity, specificity, F1 score, recall and precision. 
For segmentation models, we measured Pearson’s and Spearman’s correlation coefficients between the ground 
truth and predicted segments. The beta coefficients of the linear regression model between the ground truth and 
model prediction were also added as a measure of model performance.

Results
Characteristics of participating dogs.  A total of 1000 images from 1000 dogs (mean age ± standard 
deviation, 9.7 years ± 4.2; 505 female, 89.2% small breeds) were used for DL model establishment. The model 
was trained with 800 images and validated and tested with 100 images. Additional 200 data with concurrent 
simple radiography and echocardiography came from 200 dogs (mean age 10.7 years ± 3.4; 87 female) (Table 1). 
Numbers in parentheses are percentages rounded to one decimal place.

Segmentation model development.  The hyperparameter values with the best test performance were 
chosen for each segmentation DL model. The model with the highest recall was chosen for heart segmenta-
tion, and the model with the highest precision was chosen for T4 segmentation. A comparison of tuned hyper-
parameters is shown in Table 2.

Other hyper-parameters setting is listed in Table 3.

Table 1.   General characteristics of the participating dogs. *Radiographs with report of “possible 
cardiomegaly” or “rule out mitral valve insufficiency (R/O MVI)”.

Characteristic

DL model development data Echocardiography validation data 
(n = 200) Total (n = 1200)Training set (n = 800) Validation set (n = 100) Test set (n = 100)

Age (years)

Mean 9.7 10.3 8.9 10.7 9.9

Standard Deviation 4.2 4.2 4.5 3.4 4.1

Sex

Male 387 (48.4) 56 (56) 52 (52) 91 (51.1) 586 (49.7)

Female 413 (51.6) 44 (44) 48 (48) 87 (48.9) 592 (50.3)

VHS

Mean 10.2 10.4 10.1 10.6 10.3

Standard Deviation 0.9 1.0 1.0 1.0 0.9

Cardiomegaly suspected (Radiologically)* 375 (46.9) 63 (63) 43 (43) 156 (78) 637 (53.1)

Small Breed Dog 710 (88.8) 91 (91) 91 (91) 170 (96.0) 1062 (90.2)

Table 2.   Hyperparameters used for segmentation DL models.

Type Heart segmentation network T4 body segmentation network

Hyperparameter α for Tversky Loss 0.7 0.2

Hyperparameter γ for Focal Tversky Loss 4/3 (adapted from reference11)

Optimizer Adam23 (Learning rate 0.001, Momentum 0.9)

Table 3.   Hyperparameters used for segmentation DL models.

Type Heart segmentation network T4 body segmentation network

Network architecture Improved Attention U-Net11

Data split Training 800, Validation 100, Test 100

Input dimension (512, 512, 1)

Output dimension (512, 512, 1)

Intermediate layer loss function Focal Tversky Loss

Final layer loss function Tversky Loss

Batch size 16

Epochs 100

Callbacks Reduce Learning Rate on Plateau (factor = 0.1, patience = 15, minimum learning rate = 1e-6, Monitor validation loss) Early Stopping (Stop at 
epoch with maximum validation DSC, patience = 15)

Evaluation metrics Dice score, Recall, Precision
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Dice score, precision, and recall values between the predicted and ground truth masks of 100 test images from 
each segmentation model are listed in Table 4. Predicted masks were converted to binary masks by applying a 
threshold of 0.5. We also investigated tuning the hyperparameters by comparing the segmentation performance 
between our new hyperparameter and default setting. The examples of segmentation outputs are listed in Figs. 4 
and 5, and a comparison of accuracy in T4 body length measurement is shown in Fig. 6.

Performance of aHVI for detecting cardiomegaly.  Calculated from the segmentation model, aHVI showed the 
mean value of 13.5 ± 4.7. The diagnostic performance of aHVI to detect left atrial enlargement, left ventricular 
enlargement, and combined left atrial/ventricular enlargement is shown in Fig. 7. The area under the curve of 
ROC (AUROC) for VHS and aHVI were respectively 0.76 (95% CI: 0.68, 0.84) and 0.77 (95% CI: 0.70, 0.84) in 
classifying left atrial enlargement, 0.81 (95% CI: 0.75, 0.87) and 0.81 (95% CI: 0.74, 0.89) in classifying left ven-
tricular enlargement, 0.82 (95% CI: 0.74, 0.89) and 0.83 (95% CI: 0.76, 0.89) in classifying combined left atrial 
and ventricular enlargement. Sensitivity, specificity, F1 score values were calculated using an optimal cutoff value 
of VHS and aHVI. Cutoff value of VHS was 11.5, as guided2 (Table 5). We used Youden’s J statistic to calculate 
the cutoff value of aHVI, the cutoff value with the highest difference between true positive rate and false-positive 
rate. The cutoff was estimated from the left atrial enlargement classification task, with a value of 13.5.

Discussion
This study presents a fully automated deep learning algorithm to estimate a new cardiac index (aHVI) to predict 
canine cardiomegaly from a simple chest X-ray. In the veterinarian practice, morphological characteristics of 
the heart such as VLAS (Vertebral Left Atrial Score) and VHS are used to predict cardiomegaly and decide the 

Table 4.   Key performance indices of segmentation networks.

Type

Heart 
segmentation 
network

T4 body 
segmentation 
network

Hyperparameter tuning Before After Before After

Hyperparameter α for Tversky Loss 0.5 0.7 0.5 0.2

Initial learning rate 0.01 0.001 0.01 0.001

Dice score coefficient 0.961 0.962 0.792 0.857

Recall 0.956 0.961 0.782 0.824

Precision 0.968 0.964 0.837 0.902

Figure 4.   Input images, ground truth masks, and predicted masks for heart segmentation model with default 
and optimized hyperparameter setting.
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needs for further echocardiographic examination3,17. However, the data for the predictive performance of these 
indices is limited18,19. Considering that simple radiographic diagnosis is the mainstay of screening measures 
for dogs, it conveys practical importance to developing radiography-based indices. Our findings suggest that 
VHS, the recommended heart index by ACVIM, does have acceptable performance in predicting cardiomegaly 
(AUROC 0.82). The aHVI showed very similar performance for each left atrial and ventricular indices and slightly 
outperformed the VHS for the gold-standard composite cardiomegaly index, LA:Ao/LVIDDN (AUROC 0.83).

Figure 5.   Input images, ground truth masks, and predicted masks for T4 body segmentation model with 
default and optimized hyperparameter setting.

Figure 6.   Scatter plots of ground truth T4 body length and predicted length by segmentation model. 
Pearson correlation coefficient, spearman correlation coefficient, and beta coefficient from linear regression for 
model with default hyperparameter setting (left) were 0.58, 0.7, 0.34, and 0.84, 0.85, 0.82 for model with tuned 
hyperparameters (right).
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We estimated that an aHVI = 13.5 has the best discriminative value as a single cut-off from the ROC curve. 
When we use the cut-off value of aHVI = 13.5, the aHVI showed generally increased sensitivity and F1 score at the 
cost of decreasing specificity. The increase in sensitivity of the aHVI compared to the VHS is noteworthy (0.48 for 
VHS versus 0.79 for aHVI), whereas the decrease in the specificity is relatively tiny (0.86 versus 0.73). Given the 
screening nature of the radiographic index, we believe indices with higher sensitivity are more important than 
those with higher specificity. The diagnosis of enlarged heart from simple radiography ensues further work-up 
and preventive medication that may help prevent fatal cardiomegaly and heart failure.

The VHS inevitably involves manual measures by trained personnel and is prone to measurement errors. For 
our data, the correlation coefficient of VHS was r = 0.902 when two veterinarian doctors independently measured 
30 images. For the same data, we got the same result using our aHVI method, which makes the aHVI highly 
reproducible. The aHVI was developed using standard Python language-based algorithms, and it is available 
for developing standard application program interfaces (APIs), which will allow real-time diagnosis for canine 
cardiomegaly.

To our knowledge, this is the first study reporting a fully automated method of measuring a dog’s heart condi-
tion from simple radiography. Considering that the need for veterinarian health care is snowballing, our study 
will provide data and references for future related studies.

In this study, we attempted to develop a new volumetric heart index with allometric adjustment, and aHVI 
was first calculated by the product of area and length of heart, then divided by the length of the T4 vertebra. The 
current VHS is a one-dimensional measure, and the new aHVI is a proxy of volumetric measure. We think the 
measurement of the length of the heart may involve some uncertainties, whereas the measurement of the area 
is more reliable than the length.

For accurate segmentation, we employed a semantic segmentation model using a fully convolutional network 
to thoracic radiographs. This study’s two central RoIs, e.g., heart and T4 body, are different in size and measure-
ment unit. The strategy of tuning hyper-parameters in the semantic segmentation needs to be different accord-
ingly. For example, the segmentation of the heart, with ovoid shapes and frequently blurred margins, showed 
good performance when the “α for Tversky Loss” was set higher, meaning more emphasis on sensitivity over 
specificity. On the other hand, for the segmentation of the T4 vertebral body with small and rectangular shapes, 
using lower α for Tversky Loss showed better performance, emphasizing specificity.

There were some limitations to our study. First, this study was based on 1,000 radiographic images to develop 
and validate the DL model. Moreorver, the threshold value of the aHVI is not validated for those breeds who 

Figure 7.   Area under the receiver operating characteristic (AUROC) curves of aHVI (green) and VHS (orange) 
in classifying left atrial enlargement (defined as LA/Ao < 1.6 and LA/Ao ≥ 1.6, left), left ventricular enlargement 
(defined as LVIDDN < 1.7 and LVIDDN ≥ 1.7, middle) and both left atrial and ventricular enlargement (defined 
as LA/Ao < 1.6 or LVIDDN < 1.7 and LA/Ao ≥ 1.6 and LVIDDN ≥ 1.7, right).

Table 5.   Prediction performance comparison between VHS and aHVI.

Sensitivity Specificity F1 Score

Left Atrial Enlargement (LA/Ao ≥ 1.6)
VHS (cutoff = 11.5) 0.58 0.79 0.42

aHVI (cutoff = 13.5) 0.67 0.74 0.56

Left Ventricular Enlargement (LVIDDN ≥ 1.7)
VHS (cutoff = 11.5) 0.68 0.69 0.40

aHVI (cutoff = 13.5) 0.70 0.82 0.69

Left Atrial & Ventricular Enlargement (LA/Ao ≥ 1.6 & LVIDDN ≥ 1.7)
VHS (cutoff = 11.5) 0.48 0.86 0.43

aHVI (cutoff = 13.5) 0.79 0.73 0.55
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has different thoracic conformation20–22. Although U-Net can reach excellent performance with less than 500 
datasets13, a larger number of data may improve the predictive performance considering the diversity of dog 
breeds. Full list of breeds for entire dataset is described in Supplementary Table 1. When we examined the 
outliers in our DL model, we found that the image data lack any quality issues or particular clinical problems 
(Supplementary Figure S1, S2). We believe the errors stem from sub-optimal training that additional data may 
improve. Second, the echocardiogram measure of VHS, LA:Ao ratio, and LVIDDN values were reported by 
multiple radiologists, and we could not perform the test for reliability or validity of the gold-standard measures. 
Specialized veterinarian radiologists did all the reports, and we believe it is not likely that the non-differential 
interpersonal errors between the radiologists would have affected our findings. Third, the data (200 images) 
with both radiograph and echocardiogram tend to be derived from dogs with a higher risk of cardiomegaly. The 
possible selection of data toward more severe cases may have affected the predictive values, but it is not likely, 
that the comparisons between VHS and aHVI were affected differentially by this possible selection.

In conclusion, we developed a new method to diagnose cardiomegaly from a simple X-ray of dogs and 
demonstrated that the new method might outperform the current standard practice. Our method is also fully 
automated using a deep learning algorithm and less prone to human errors. With automated measures and 
higher sensitivity, the proposed method may contribute to diagnosing cardiomegaly for dogs at earlier stages.

Data availability
The data sets generated during and/or analyzed during the current study are not publicly available because they 
are property of the Seoul National University Veterinary Medicine Teaching Hospital but are available from the 
corresponding author on reasonable request.

Code availability
All source codes are available at https://​github.​com/​Jeong​Yeojin/​aHVI.
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