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Abstract

Computational circuit design with desired functions in a living cell is a challenging task in
synthetic biology. To achieve this task, numerous methods that either focus on small scale
networks or use evolutionary algorithms have been developed. Here, we propose a two-
step approach to facilitate the design of functional circuits. In the first step, the search space
of possible topologies for target functions is reduced by reverse engineering using a Bool-
ean network model. In the second step, continuous simulation is applied to evaluate the per-
formance of these topologies. We demonstrate the usefulness of this method by designing
an example biological function: the SOS response of E. coli. Our numerical results show
that the desired function can be faithfully reproduced by candidate networks with different
parameters and initial conditions. Possible circuits are ranked according to their robustness
against perturbations in parameter and gene expressions. The biological network is among
the candidate networks, yet novel designs can be generated. Our method provides a scal-
able way to design robust circuits that can achieve complex functions, and makes it possible
to uncover design principles of biological networks.

Introduction

Synthetic biology is an emerging field focusing on understanding the behaviors of biological
systems through designing and constructing of synthetic gene circuits. Inspired by electric cir-
cuits and cellular systems, various synthetic genetic circuits have been created, including toggle
switch [1], oscillator [2, 3], counter [4], and logic gates [5]. In addition, multiple well-character-
ized parts are combined together to achieve more complex functions, such as biosensing [6],
edge detection [7] and Pavlovian-like conditioning [8]. However, designing circuits with com-
plex functions remains a challenge. In previous work, methods based on continuous simulation
have been developed to select out networks that are capable of executing different functions. A
very useful method is enumeration of network structures [9-11]. Through computer simula-
tion, the full range of possible network architecture was explored and the interacting network
of biological components was converted into a set of differential equations. Solutions to these
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ordinary differential equations (ODEs) provided the dynamics of each component of the net-
work. Functional topologies with fewer parameter constraints can thus be selected. A list of
these functions includes adaptation [9], dose-response alignment [10], and segment polarity in
development [11]. However, enumeration of network structures usually leads to a dramatic
rise in computational cost with increasing number of genes, thus making it difficult to scale-
up. In other approaches, network structures are evolutionarily optimized from a finite set of in-
dependent circuits. However, this method may not result in an optimal design, as only a limited
space of topology is sampled [12-14].

On the other end of the spectrum lies the class of discrete models ranging from simple logic
circuits to finite state machines and Boolean networks. In these models, each component in the
system has only two states: ON (1) and OFF (0). The regulation rule for each component is
defined by Boolean functions, such as two-input AND gate and OR gate. In electronic circuit
design, constructing digital circuits with a given truth table and logic gates is a standard proce-
dure called combinational logic design. One of the basic methods is “Karnaugh map”, which is
also applied in the design of biological digital circuits [15]. However, it is difficult to construct
biological circuits with sequential logic behaviors using standard methods of electronics, be-
cause these methods usually involve flips-flops that are quite rare in standard biological parts
[16]. Boolean network model has been used to illustrate the dynamic behaviors of biological
systems and to reconstruct biological networks underlying specific functions, thus contributing
to a natural method of constructing sequential logic circuits in biology [17, 18]. Although these
discrete models are quite efficient in computation, they suffer from several inherent limitations:
It is unclear whether the circuits designed using discrete framework can execute desired func-
tions robustly in a wet-lab implementation. In addition, it is difficult to rank the possible cir-
cuits based on their ability to tolerate perturbations in parameters and gene expression levels.

In this paper, we present a two-step method that combines the discrete model and the
continuous model to generate a novel design of functional circuits. In our approach, first, a
Boolean network model is applied to generate candidate networks that are better capable of ex-
ecuting the target functions. Then, continuous simulation is used to quantitatively assess the
robustness of these candidate networks. Here, we focus on one critical biological behavior, the
SOS response in E. coli., wherein DNA repair is induced in response to the existence of a single
stranded DNA (ssDNA). The desired function of this network is as follows: Upon accumula-
tion of ssDNA, RecA is recruited to the single stranded regions of DNA and becomes activated.
Activation of RecA releases the inhibition of SOS genes by facilitating self-cleavage of their re-
pressor LexA. The main activator of SOS gene is 0”°, which belongs to a family of transcription
initiation factors responsible for stress response. Its downstream genes can be simplified into
two genes, SSB and UmuDC, which are responsible for the repair of DNA damage and inhibi-
tion of RecA. When the DNA repair is completed, LexA is activated and the expression of SOS
genes is down-regulated [19, 20]. The natural network performing this function is presented in
Fig 1A. This DNA damage response may represent a large class of response pathways and we
use our approach to design functional circuits underpinning this function. The analysis of
functional circuits obtained by our approach allows us to discover core motifs responsible for
robust response.

Methods
Boolean Network Model and Reverse Engineering

In the Boolean network model, each node represents a biological species. S;(t)€{0,1} represents
the state of node i at time t. The network topology can be described by its connection matrix A,
in which a;; indicates regulation from node i to node j. a; is positive for activation and negative
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Fig 1. The SOS network and its dynamics. (A) Regulatory network of the SOS response of E. coli. The
nodes represent the signal and the essential proteins. The green lines represent activation and the red lines
represent inhibition. (B) Dynamics of the SOS response in the Boolean network model. (C) Three criteria and
their representations in the discrete and continuous model. The first criteria addresses degradation time of
ssDNA, i.e., ssDNA should be down-regulated to zero at the end of the simulation. In the second criteria, the
final state of the system should return to the initial state, except for the degradation of ssDNA. The third
criteria requires that the dynamics of each node in the ODE model should be in accordance with those in
Boolean trajectory. (D) Example of a successful response in the ODE model.

doi:10.1371/journal.pone.0128630.g001

for inhibition [17]. As changes in weight of inhibition regulation render the Boolean trajectory
nearly unchanged [21], we take a dominant inhibition form of regulation in our Boolean
network model, which means that inhibition has a much larger weight than activation, i.e.,

|@; wn|>>|@ac)- If the state of node j is 1 (On) at time t and one of its inhibitor is activated, then
Si(t + 1) = 0 regardless of all the activation terms. This captures the combinatorial mechanism
of transcription regulation, in which existence of an inhibitor can block transcription of the tar-
get gene. Although some limitations persist, our method is able to recover the regulatory net-
work from different types of data in an efficient way [22]. The level of genes in the next time
step is determined by the level of genes in the current time step by the following rule:

Si(t + 1) = 0(2 Sj(t)aﬁ)a Zsj(t)a]’i #0

S(t+1) =S,(t), Zsj(t)aﬁ —0 (1)

Where 6(x) is a Heaviside step function with 6(x) = 1 for x > 0 and 6(x) = 0 for x < 0. In our
example of SOS response pathway, LexA is constitutively expressed to bind to the SOS box of
the target genes, whereas ¢”° is not stimulated in the normal state. RecA is expressed in normal
conditions, yet it only becomes functional when forming filaments around single stranded
DNA. Thus only LexA and ssDNA are 1 in the initial state and the dynamics (trajectory) of the
network can be generated according to Fig 1A and using Eq 1 until the system returns to its

PLOS ONE | DOI:10.1371/journal.pone.0128630 June 10,2015 3/12



@’PLOS ‘ ONE

Use Boolean Network and Continuous Model to Design Functional Circuits

normal state, as illustrated in Fig 1B. In the first step of our circuit design method, the purpose
is to generate a set of networks that can perform this trajectory of the SOS network.

We apply reverse engineering methods [18] in the first step to limit the number of possible
topologies. Reverse engineering presents a class of methods aiming to uncover biological regu-
latory networks based on experimental data. In our inhibition dominant Boolean network
model, the constraint of network topology by the Boolean trajectory can be represented in an
analytical manner [21].

Si(t + 1) = (Z(Sj(t) g]x) + Si(t> : r_n + % 'gii> . H(Sj(t) ’ rji) (2)

i i

In the equation, g;; and r;; are the Boolean variables corresponding to activation and inhibi-
tion from node i to node j, respectively. The OR gate is indicated by addition (‘+” and Y’), and
used to combine all activation terms in the first bracket, whereas inhibition terms are linked
by AND gate, which is represented by multiplication (‘> and ‘IT’). The bar in Eq 2 denotes the
NOT logic gate. For each node in the pathway, the logical constraints (Eq 2) of different time
steps are combined together to get all possible regulations for that node. This reverse engi-
neering method generates 7.1x10° possible networks using the biological trajectory of SOS
response.

Minimal Network Constraint

When the number of nodes is fixed, the complexity of practical implementation of our design
depends largely on the number of edges. Circuits with fewer edges are more favored in a wet-
lab implementation. Minimal networks have been proposed to contribute to the core motif re-
sponsible for the main functional response [21]. Moreover, our previous work indicates that bi-
ological networks may prefer to use minimal networks to fulfill their functions, providing
evidence that the edge number is limited in the evolutionary process [22]. To apply minimal
network constraint in our approach, we enumerate all possible regulations of each node and
obtain the ones with the fewest edges. These regulations are then combined together to obtain
48 minimal networks. By definition of our target function, we exclude all networks with self-
loop on the input node, i.e., ssDNA.

Continuous Model Simulation

To investigate the continuous dynamics of our designed circuits, we modeled the selected net-
works via ordinary differential equations (ODEs) in the second step. In the simulation, we lim-
ited ourselves to transcriptional regulatory networks, which are quiet common in synthetic
biological networks. Input node is ssDNA, and all other nodes are assumed to be transcription-
al factors (TFs) that can bind to upstream sequences of the target genes. In our model, Hill
functions with Hill coefficient 2 are used to model the activation terms. The inhibition terms of
nodes take a multiplication form, except for the input node (ssDNA), implying that the inhibi-
tors are independent of one another and can independently block the transcription of the target
gene. Repair of ssDNA is modeled by sum of the Hill function terms in order to take the coop-
erative nature of the functional proteins into account [23]. Basal production and degradation is
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also introduced in the equations. The ordinary equations are as follows:

dx. x40, 1
- Wa S |
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& xN

dt:_zc—;xj”

negative ~J

In this equation, b denotes the dissociation constant and a denotes the kinetic constant. §
represents leakage of the promoter. Wp and Wn are the two parameters determining the rela-
tive weight of the inhibition and activation terms. All nodes are numbered as in Fig 1 to avoid
confusion in the following analysis, i.e., ssDNA as node 1, RecA as node 2, LexA as node 3, 0”°
as node 4, UmuDC and SSB as nodes 5 and 6. The initial value of node 1 (ssDNA) and node 3
(LexA) is set to be 1.0, and the rest of the nodes are set to be 0.1.

To evaluate the performance of candidate networks, quantitative criteria should be em-
ployed. Although we start from a Boolean trajectory, it is meaningless to reproduce the same
trajectory in ODE simulations, partly because of the lack of time scale in the Boolean network
model and arbitrary ways of discretization. We assume that the core dynamics of the DNA
damage response lies behind the exact Boolean trajectory and can be abstracted to several crite-
ria. Three conditions are assigned to capture the main characteristic of a successful response:

i. Level of ssDNA (node 1) should be down-regulated to zero at the end of simulation, which is
exactly the function we need.

ii. The final state of the system will be same as the initial state, except for the decrease of node
1, i.e., the system relaxes to its normal state after a transient response to input signal (node
1). At the initial state, LexA (node 3) is ON in order to repress the downstream SOS genes,
so that the level of node 3 should be larger than any other nodes in the end.

iii. The dynamics patterns of nodes in continuous simulation must be the same as those in the
Boolean trajectory; the correspondence is presented in Fig 1C. We identify the dynamic
patterns of each node, which are classified into three categories, namely, ‘peak’, ‘valley’ and
‘decline’ according to the ‘shape’ of their time trajectories. The dynamics of ‘peak’ should
have a maximum level of expression and ‘valley’ should have a minimum level.

In criteria ii), we restricted the final state of the system to be the normal state of the cell, in
which only LexA is activated. Many response pathways share similar characteristics, yet it is
not always true. For example, activation of the mating pathway of budding yeast drives the cell
to a different phenotype called ‘shmoo’. Then, different criteria for the final state should be
chosen to take into consideration the Boolean trajectory and the biological interpretations of
the biological pathway. In addition, we add a constraint that maximum expression of each
gene should be larger than 0.1. These criteria correspond to the main characteristics of the
Boolean trajectory, leaving details, such as specific time of activation, unconstrained.

Performance of circuit

The evaluation process of circuit performance is presented in Fig 2, in which two scores that
can reflect robustness of networks are employed. The first score is Q value that estimates the
volume of the functional parameter space [9]. For each network, we randomly choose 1000 sets
of parameters using Latin hypercube sampling. Starting from the same initial state, the network
dynamics with each parameter set is obtained by solving the ODEs. Time series of all nodes are
then checked to see if they present a successful response, i.e., if they meet three criteria above.
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Fig 2. Workflow of continuous simulation. For networks selected by Boolean network model, 1000 random parameter sets and 32 initial conditions are
used to quantitatively assess their robustness. The ordinary differential equations describing these transcriptional networks are solved numerically to
generate the dynamics of each network component. The proportion of parameter sets and number of initial conditions that can achieve a successful
response is termed as the Q value and basin size, respectively, for the corresponding network.

doi:10.1371/journal.pone.0128630.9002

For a particular network structure, the proportion of parameter sets that can achieve our de-
sired function is defined as the Q value of that structure. A larger Q value implies that the net-
work can generate successful response to DNA damage over a wide range of parameters and,
hence, is less sensitive to parameter variation. The second score is relevant to robustness in
state space. For the Boolean network model, the state of the system is updated using Eq 1 until
it reaches a fixed point, which can also be called an attractor. The number of initial states that
will flow into an attractor is defined as the basin size of that attractor. It is proposed that a bio-
logical state should have a large basin size in order to generate stability [17]. We held similar as-
sumption in our design procedure that normal state with node3 activated should be a big
attractor and stable against fluctuations in gene expression. In the Boolean network model, all
possible initial conditions (2N for network with N nodes) are enumerated to calculate the basin
size, which is not practical in continuous simulation. To sample the space of initial states in the
ODE model, we employ a similar approach in which the state of the nodes is treated as a con-
tinuous variable instead of a Boolean variable, e.g., the initial state (1.0, 0.1, 1.0, 0.1, 0.1, 1.0) is
used instead of (1, 0, 1, 0, 0, 1). Criteria (i) and (ii) are used to see if the state of system flows
into the normal state. Criteria (iii) is abandoned, as changing of the initial state may affect the
dynamic patterns of the nodes. ssDNA is set to be 1.0, leaving 32 initial states in total.

Results
Performance of minimal networks and candidate networks

In addition to minimal networks, we randomly selected 100 candidate networks that can gener-
ate the Boolean trajectory to compare the performance of both types of networks. The Q value
distributions of minimal and candidate networks are illustrated in Fig 3A. Most of the first-
step-selected networks have Q values larger than zero. On the contrary, only ~15% random
networks have a positive Q value (data not shown), suggesting that filtering networks by the
Boolean network model is efficient in obtaining the functional topologies. Former work has
shown that the transform from differential equations to Boolean networks is possible under
several assumptions [24]; our results reveal that the Boolean dynamics can also be transformed
to continuous ones. Application of Boolean network model can largely reduce the search space
of topologies in which most networks have a non-zero Q value, thus helping us focus on net-
works that are better capable of achieving target functions.
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Fig 3. Distribution of Q value and basin size for minimal networks and candidate networks. (A) Distribution of Q value for minimal networks and
candidate networks. Minimal networks are represented in red and the candidate networks in black. (B) Distribution of basin size for minimal networks and
candidate networks.

doi:10.1371/journal.pone.0128630.9003

The distribution of Q value and basin size of minimal and candidate networks differs dra-
matically. For candidate networks, the proportion of networks decreases quickly as the Q value
increases. Only a small fraction of networks can robustly execute the response function. Ap-
proximately 15% of the networks have a zero Q value, indicating that among all candidate
networks filtered out in the first step, a small fraction is not functional in a more realistic
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networks. Minimal networks are represented in red and candidate networks in black. The large blue star represents the biological network.

doi:10.1371/journal.pone.0128630.9004

circumstance. Although our criteria have relaxed the requirement for time sequence of events,
they may be violated by some networks due to incoherence of regulations or mismatch of time
scales. All minimal networks have a Q value larger than zero and the distribution peaks in 0.05,
providing evidence that minimal networks are more robust against parameter perturbations.
To discriminate between the two distributions in a quantitative way, we employed a measure of
Jensen-Shannon Divergence (JSD), which describes the similarity of the two distributions and
used statistical tests to examine the significance of difference. Our null hypothesis is that the
distribution of minimal network and candidate networks have no significant difference, i.e.,
Ho:JSD(p,pe) = 0. The JSD of the Q value distribution for minimal networks and candidate
networks is 0.31 with a p-value < 0.0001, indicating that the two distributions are significantly
different. Similar results hold for the basin size distribution (Fig 3B), where the JSD of the two
distributions is 0.13 with a p-value < 0.0001. Minimal networks are more likely to have a large
basin size compared to candidate networks. Interestingly, although most networks we sampled
have a full basin in the Boolean network model, only one of them has a full basin attractor in
the continuous model simulation.

Our results suggest that minimal networks may be more robust to parameter and expression
perturbations than candidate networks, which is apparent in Fig 4. Minimal networks tend to
outperform the candidate networks, and mainly distribute in the upper right corner of the fig-
ure. In our previous work [22], we have proposed that least number of regulatory edges is pre-
ferred to implement biological functions. Our results here provide further evidence and suggest
that minimal network constraints may also be useful in the design of functional circuits. As
shown in Fig 4, the natural SOS network has a larger Q value and basin size than most net-
works, indicating that the biological design may be optimized in the course of evolution.
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Fig 5. Core motifs responsible for successful response. Four minimal networks have larger Q values and basin sizes than the biological network. Aside
from the edges shared by all of the candidate networks, all these topologies employed self-activation of node 3 and direct activation of node 4 by node 1,
which contributes to the robustness of the network.

doi:10.1371/journal.pone.0128630.g005

Nonetheless, there are a small number of minimal networks that outperform the biological net-
work; these networks may provide the basis for rational design of functional networks that can
outperform the natural network.

Topology analysis

We next analyze the backbone motifs (minimal networks) responsible for robust response.
Among all 48 minimal networks, the main difference is the activation mode of node 3 (LexA)
and node 4 (6”°). In the biological network (Fig 1A), node 3 is activated by node 4, and node 4
has a self-activation loop, whereas 4 minimal networks that have a better performance than the
biological network employ another regulation pattern (Fig 5). These networks all include self-
activation of node 3, and activation of node 4 by node 1. The only difference is the different
combination of inhibition of node 1 and node 2 by node 5 and node 6, which is not significant-
ly different, as node 5 and node 6 both belong to the genes regulated by node 4. These results
suggest that direct activation of node 4 by upstream signals may be more reliable than a self-ac-
tivation loop in signal transduction. In addition, self-activation of node 3 may help build up its
expression level when DNA is repaired.

Discussion

By limiting the search space of networks through reverse engineering of the Boolean network
model, we have developed an efficient method to generate networks that can achieve robust re-
sponse to the DNA damage signal. Starting from a discretized time trajectory, reduction of
candidate networks using Boolean network model can make the following simulation more
practical. In a network of 6 interacting nodes, as in our case, there are 1.5x10"7 different topol-
ogies, making it impossible to select out networks that are capable to perform the desired
function by enumerating all topologies. Even when enumeration is possible, computational re-
sources are largely wasted because only a small fraction of these networks are able to execute a
successful response. Application of Boolean network model can reduce the number of possible
networks by 10'° fold, and there only exist 48 minimal networks.

Networks found by the discrete model are better capable to reproduce the desired dynamics
in continuous model simulation than random networks, which may suggest a good correspon-
dence between the ODE and Boolean models in our problem. However, these networks are not
equivalent in their ability to achieve robust response in more realistic implementation. Net-
work performance is characterized by continuous model simulation under different parameters
and initial conditions. The Q value and Basin size are used to quantitatively assess the ability of
networks to robustly respond to the damage signal. Among all the candidate networks derived
by the Boolean network model, those with the minimal number of edges are more robust than
the rest. This implies that adding edges to minimal networks can barely improve the network
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performance. Biological networks usually not only have more edges, but also show better per-
formance than minimal networks, providing evidence of the efficiency of network evolution.

The main feature of SOS response is the transit down-regulation of the inhibitor and the ac-
tivation of functional proteins. Another similar response pathway in E coli. is the heat shock re-
sponse pathway, in which the cell expresses chaperones to refold unfolded proteins induced by
high temperature or chemicals such as ethanol. In the response system, the heat shock genes
are activated by another sigma factor named ¢°%. 0> is inhibited by chaperone DnaK, which
can also bind to unfolded proteins [25]. Upon temperature up-shift, DnaK is driven to form a
complex with unfolded proteins, thus releasing 6> from inhibition. Translation of 0> is in-
creased at the same time [26] and heat shock genes are expressed [27], leading to a process as
damage is repaired [28]. We found that the heat shock pathway shares a similar structure with
networks that are designed to response to DNA damage (Fig 6). Although the two biological
networks function in different biological contexts, our finding suggests that response pathways
may employ a limited number of strategies to achieve reliable response, and investigating the
design principle of one function may hint to the control logic of another.

Our proposed method can largely facilitate design of synthetic circuits that can achieve se-
quential logic behaviors and can be easily scaled up. Design of functional circuits opens up the
possibility of broad application, ranging from biological sensors to medical care [29, 30]. More-
over, illustration of function circuits underlying known biological functions helps us under-
stand the design principles of biological networks [9]. Nevertheless, our method is not without
limitations: the performance of our approach may be deteriorated when the dynamics of the
network components do not have a significant ON and OFF state. Another issue should be
called is that our method does not address the optimization of parameters. In our approach,
the networks are ranked according to the volume of the functional parameter space, which is
estimated by random sampling of the parameters. However, if possible, the functional parame-
ters should be determined in a wet-lab design. Some of the parameters are not easily adjusted
in the experiment, which imposes constraints on the parameter space. In addition, perturba-
tion of several sensitive parameters can dramatically affect the network performance. Thus,
further work should be performed to introduce limitations of parameters to contribute to a bet-
ter design procedure.

Supporting Information

S1 Fig. Budding yeast cell cycle network and its dynamics. (A) The regulatory network of the
budding yeast cell cycle network. The nodes represent the signal and the essential proteins. The
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green lines represent activation and the red lines represent inhibition. (B) Dynamics of cell
cycle process in the Boolean network model. (C) Three criteria and their representations in the
discrete and continuous model. The first criteria addresses the duration and separation times
of the different cell phases. In the second criteria, the final state of the system should return to
the G1 state, except for the inactivation of Cln3. The third criterion requires that the dynamics
of each node in the ODE model should be in accordance with those in the Boolean trajectory.
(D) Example of a successful response in the ODE model.

(TIF)

S2 Fig. The distribution of Q value for minimal networks and candidate networks, and the
common edges in robust topologies. (A) Distribution of Q value for minimal networks and
candidate networks. The minimal networks are represented in red and candidate networks in
black. (B) Common edges in robust networks. Black edges represent common edges in all mini-
mal networks. Edges responsible for robust capacity are illustrated in red and green.

(TIF)

S1 Text. Performance of our approach on the cell cycle dynamics of budding yeast.
(DOC)
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