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Abstract: The increasing threat to global health posed by antibiotic resistance remains of serious
concern. Human health remains at higher risk due to several reported therapeutic failures to many
life threatening drug resistant microbial infections. The resultant effects have been prolonged hospital
stay, higher cost of alternative therapy, increased mortality, etc. This opinionated review considers the
two main concerns in integrated human health risk assessment (i.e., residual antibiotics and antibiotic
resistant genes) in various compartments of human environment, as well as clinical dynamics
associated with the development and transfer of antibiotic resistance (AR). Contributions of quorum
sensing, biofilms, enzyme production, and small colony variants in bacteria, among other factors
in soil, water, animal farm and clinical settings were also considered. Every potential factor in
environmental and clinical settings that brings about AR needs to be identified for the summative
effects in overall resistance. There is a need to embrace coordinated multi-locational approaches and
interrelationships to track the emergence of resistance in different niches in soil and water versus the
hospital environment. The further integration with advocacy, legislation, enforcement, technological
innovations and further research input and recourse to WHO guidelines on antibiotic policy would
be advantageous towards addressing the emergence of antibiotic resistant superbugs.

Keywords: residual antibiotics; antimicrobial resistance; total antibiotic resistance; critical control
point; superbug; exposure; health risk assessment

1. Introduction

The emergence of antibiotic resistance (AR) is an outcome of a repertoire of factors in various
environmental and clinical settings. Rizzo et al. [1] described wastewater treatment plants (WWTPs) as
the hotspots for the emergence of AR. Additionally surface water and soil have equally been reported
by several authors to harbour AR-inducing factors [1–8]. The critical role of the environment in the
development and dissemination of antibiotic resistance genes (ARGs) is fast being appreciated, unlike
the time when all focus was on hospital-acquired AR. Antibiotics and ARGs may partly originate from
environmental bacteria, and selection for them is closely connected with anthropogenic contamination
with residual antibiotics (RAbs), to which exposure of pathogenic bacteria in the same environment
occurs [9]. Water environments are one of several platforms for the circulation and accumulation of
discharged antibiotics and are recognized for dissemination of ARGs [10]. ARGs in water environments
correlate with human activities that involve antibiotic usage [11–13]. The concentration of RAbs in
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the environment usually correlates with that of ARGs [14,15]. Antibiotic usage and/or abuse in
human and veterinary medicine, and the pharmaceutical industries as well as their release with
human and animal wastes are closely connected with increased prevalence of antimicrobial-resistant
bacteria (AMRB) [16,17]. A sub-lethal concentration of antibiotic (or sub MIC) selects for resistant
bacteria in any setting [18]. It is therefore imperative to harmonize various factors that bring about
the exposure of bacteria to the sub-lethal or sub-inhibitory concentration of the antibiotics beyond the
clinical settings, in line with WHO global action against AR [19]. Without any doubt, the origin and
spread of antimicrobial resistance (AMR) is a very complex problem that is predicated by multifaceted
contributing factors and requires multidisciplinary solutions [20,21]. This review will identify several
factors in the environment involving wastewater, surface water, soil and important clinical or patient
dependent factors and their interrelationship in contributing to AMR, as well as a possible novel
approach to address it.

2. The Soil Resistome as a Contributor to AMR

Several antibiotics originate from bacteria and/or fungi from soil [2,22] as metabolites for
outcompeting other organisms in the same niche, since competition among microorganisms is natural.
From the history of antibiotics, the knowledge of these antagonistic interactions brought about the
discovery of antibiotics [5,23,24]. This paved the way for the first major success in human struggle
with infectious diseases, with an appreciable reduction in death worldwide [25,26]. No sooner was this
success achieved than the observation of resistance to the first antibiotic, penicillin, was reported [27].
Similarly, the emergence of resistance has been repeatedly shown with each antibiotic subsequently
discovered or developed [23].

Earlier, AR was defined in the light of increased MICs with no regard to microbial intrinsic ability
to resist them [28] nor the potentials of the microbe to harbour ARGs, acquired vertically or horizontally.
In addition the natural ability of antibiotic producers to resist their own metabolites (antibiotics) [5,29],
it is now a known fact that various niches in the environment promote the emergence of AR as they
contain pools of genes similar to ARGs in the hospital [30]. Antibiotic- producing bacteria which are
known for resistance to their own antibiotics have inherent potentials or genes, some of which may be
lost by them and gained by other bacteria in the same niche. The loss and gain in this respect may
be supported by external stress in the soil microbiota. This is exemplified by the loss of plasmids by
Bacillus subtilis due to interaction with B. simplex [31]. Various soil microbiota therefore are critical
niches for the emergence and dissemination of ARGs with direct or indirect effect on the clinical
isolates and therapeutic outcome on infectious diseases [6,7]. The soil thus becomes very significant
because of reports of novel ARGs [30–32].

Factors enhancing the continued persistence of ARGs and AMR in soil include the use of organic
fertilizers or manure containing RAbs, ARGs, AMRB, etc. [33]. The RAbs found in organic fertilizers
originate from human activities. Organic fertilizer was in one instance shown to contribute as much
as 20 mg·kg−1 of tetracycline to the soil, exposing the soil bacteria to sub-lethal concentrations with
resistance as a consequence [34] and selection for antibiotic resistance genes which end up being
released in the soil. The administration of the antibiotics for either therapeutic and prophylactic
purposes in clinical settings as well as in livestock at <0.2 g·kg−1 to improve feed efficiency and growth
rates [21,35] stands as the major contributing factor. The Alliance for Prudent Use of Antibiotics
(APUA) emphasizes the huge impact of antibiotic administration in animal husbandry resulting in
the overall rise in AR globally [36]. In America, up to 200,000 tons of antibiotics are used annually
combined by humans and administered to farm animals [37]. This also includes antibiotic use in
plant agriculture [38]. Table 1 provides a summary of the reported release of some RAbs as well as
exemplifying some of the ARGs in soil, aquatic biomes and other related strata of the environment.

It is noteworthy that each time swine manure was applied to the soil, Pan et al. [39] reported that
0.001–29 mg·kg−1 of sulfonamides, 0.03–765 mg·kg−1 of tetracycline, and 0.05–0.11 mg·kg−1 macrolide
were also released to the soil, as the manure contained them. This is closely linked to high induction of
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AR in soil, as well as the corresponding proportion of ARGs [40], making it critical to track and stop
the emergence of resistance. The impact of emerging resistance in the soil would be appreciated by
reconciling the deposit with the way microorganisms are recycled between hospital and environment.
Despite this, the numbers of studies relating to tracking ARGs in the environment are limited. Most
of the existing studies are limited to cultured microorganisms and with a focus on a few common
resistance genes. Furthermore it is mainly guided by clinical reports with little or no reference to the
environment. Accurate data on the ARGs as well as projection for potential AMRB in the environment
could be acquired, if researchers designed such enumeration towards the uncultured microorganisms
that constitute the majority in the environment [41].

Table 1. Reported sub-lethal concentrations of residual antibiotics (RAbs) and antibiotic resistance
genes (ARGs) in soil, aquatic environments and other related strata of the environment.

Environment Source RAb/ARGs Reported Concentration Country References

Soil

Soil

CIP 2.77 µg/kg

Pakistan [42]
OFL 2.98 µg/kg
LEV 3.35 µg/kg
OXT 4.53 µg/kg
DOX 3.12 µg/kg

Grape soil

Sul 1 (39.19 ± 0.77) × 10−2

China [43]

sulII (0.42 ± 0.08) × 10−3

sulIII (0.48 ± 0.10) × 10−3

tetA (0.02 ± 0.00) × 10−3

tetB (0.44 ± 0.07) × 10−3

tetO (10.55 ± 1.23) × 10−2

Soil
SMT 0.01 µg/g

China [43]OTC 0.02 µg/g

Vegetable soil TET 8400 µg/kg China [44]
Animal manure BAC 0.01–1.76 mg/kg Canada [45]

Aquatic
Environment

Wastewater

CIP 3.0–5.25 mg/L

Pakistan [42]
LEV 0–6.20 mg/L
OFL 2.45–4.12 mg/L
OTC 0–9.40 mg/L
DOX 1.58–6.75 mg/L

AMX 6.94 µg/L Australia [46]
CIP 0.72 µg/L Hong Kong [47]
OFL 0.60 µg/L Italy [48]
ERY 2.5–6.0 µg/L Germany [49]

Surface water OFL 0.31 µg/L Italy [48,50]

Hospital effluents

AMX 35.12 µg/L

Brazil [51]
AMP 389.13 µg/L
CFX 300.1 µg/L

PEN G 434.46 µg/L

Key: AMX = Amoxicillin; BAC = Bacitracin; CFX = Cefotaxime; CIP = Ciprofloxacin; DOX = Doxytetracycline;
ERY = Erythromycin; LEV = Levofloxacin; OTC = Oxytetracycline; OFL = Ofloxacin; PEN G = Penicillin G;
SMT = Sulphamethaxazole; TET = Tetracycline.

Since ARGs reside in both cultured and uncultured bacteria, studies should consider research
approaches using direct detection to determine the total ARGs in the environment. Similarly,
more accurate detection of organisms exemplifies more accurate detection of total ARGs in the
same microbiota. Several uncultured microorganisms harbour biotechnologically and public health
important genes [23]. The use of direct detection (culture-free) techniques that account for uncultured
bacteria in tracking the distribution of ARGs within the surface water environment is hereby advocated.
As stated earlier, this will provide more effective insight into actual distribution of the total ARGs within
the microbiota [17,23]. It also gives room for detection of novel ARGs in the study environment [17].
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This is exemplified by Cheng et al. [17] reports that showed the usefulness of functional metagenomics
in identifying new ARGs. Nesme et al. [30] studied antibiotic resistance in the environment more
effectively through large-scale metagenomics-based investigations. The technique used enabled the
author to describe diverse and abundant antibiotic resistance genes in nonclinical environments as
well as to track their distribution. This was done without leaving the uncultured bacteria behind.

The soil may be a reservoir of larger pools of ARGs than ever imagined and various compartments
like farmlands-water interphase, animal farm-surrounding interphase and sites where soil transport
may occur due to rain run-off or animal movement may be critical for the occurrence of ARG and
may be in focus for the assessment of their occurrence and further spread. Linking the environmental
strains with clinic ones, promoted by human activities, might be a vital consideration [52–54]. In these
cases, several factors like biofilm formation and quorum sensing (to be discussed later in this article)
support the interaction.

3. RAbs and AMR by Aquatic Microbiota

Antibiotic concentrations in aquatic environments generally have been found to range from ng·L−1

to low µg·L−1 levels [3,4,8]. In a summary of studies reporting antibiotic concentrations in aquatic
environments by Gros et al. [3], the median concentrations in surface and ground water were reported
as 0.030 and 0.071 µg·L−1 respectively. Table 1 shows some examples of antibiotic concentrations in
wastewater and hospital effluents. These concentrations are above the MIC/MBC for all the antibiotics,
according to the British Society for Antimicrobial Chemotherapy [55]. The concentrations reduce
due to photolytic effects as the RAbs are transported along the path of water flow and guarantees
exposure to sub-MIC/sub-lethal concentration [40]. Gullberg et al. [18] demonstrated in vitro that
resistant bacteria can be selected for, at antibiotic concentrations lower than the MIC. The half-life
varies. For oxytetracycline, for example, it depends on the prevailing conditions in the environment,
such as temperature, light intensity and flow rate. For the quinolone oxolinic acid, a mean half-life
(photolytic) of 298 days and 509 days in light and dark conditions, respectively, has been reported [56].
The countries listed in Table 1 have low capacities to remove antibiotic contaminants, although
improvements have occurred in the conventional WWTPs (e.g., AAO) [57] that are mainly in use.

The concentrations in vitro are different from the ones in the wastewater environment, since the
RAbs may form complexes with other chemicals or adsorb onto particulates. The complexes so formed
may cause more ecotoxic effects and induce more broad range resilience (resistance) in the bacteria
than the original RAbs. Some of these RAbs can further induce the transfer of ARGs and recombinate
in aquatic bacteria, at sub-lethal concentrations [58,59], suggesting that exchange of ARGs may be
common in environments contaminated with antibiotics.

Assessments of the discharge from the manufacturing companies have shown that extremely
high concentrations of antibiotics in wastewater have been closely linked to antibiotic-manufacturing
industrial effluents [14]. The concentration decreases with dilution and photolytic effects in the
wastewater treatment and in the receiving environment. The original OTC residues of 920 ± 20 mg·L−1

were reduced to 30.5 ± 1.1 mg·L−1 when mixed and later to 19.5 ± 2.9 mg·L−1 in the wastewater
effluent. The OTC concentration in the receiving river decreased to 264 µg·L−1 (probably by
photo-degradation) at 20 km from the discharge point [47]. This explains the critical impact of
industrial effluents (especially from pharmaceutical companies) on the discharge of RAbs and the
emergence of resistance. Li et al. [14] further showed that 94.2% bacterial isolates in wastewater and
95.4% in receiving water bodies harboured 67.0% Tet(A). They also harboured Tet(W), Tet(C), Tet(J),
Tet(L), Tet(D), Tet(Y), and Tet(K) ranging between 21.0% and 40.6%. The Tet genes might have been
acquired vertically by the microorganisms or emerged by selection as adaptation for survival [60].

Emergence of resistance through bacterial exposure to RAbs in aquatic microbiota depends also
on the time of exposure. Li et al. [14] observed that bacterial isolates in downstream parts (after the
point of discharge for wastewater effluents) of rivers exhibit higher multiple antibiotic resistance
index (MARI) and harbour more ARGs than those upstream of the effluent point. The author ascribed
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this to the impact of wastewater treatment plants as there was a correlation in the observed MAR
Index/ARGs between the wastewater and the river studied [14]. Another potential contributing factor
is longer exposure time as the bacteria remained exposed to the RAbs present in the water along
the path of flow [60]. ARGs residing on plasmids and integrons are also shared when bacteria are
together for a longer time [61,62]. More research is hereby advocated for to determine the role of
uncultured bacteria in the ARGs surge as reported by Zhang et al. [63]. Meanwhile, pertinent studies
have identified ARGs now isolated from treated water as well as among bacteria from freshwater but
previously believed to be in exclusive reserve of clinically important bacteria [64–67]. There is further
need for studies tracking the source of such genes in aquatic environments accounting for different
potential sources of contamination.

4. Emergence of AMR in Clinical and Sub-Clinical Settings

The emergence of AMR in clinical settings considers the contribution from human medicine and its
impact on hospital-environmental interface, as well as outpatient administration of antibiotics, leading
to exposure of individuals to sub-lethal concentrations of antibiotics. Several non-environmental
factors have been reported to predicate AMR in clinical settings. However, some factors are
underrated, yet they contribute into the alarming rate of AMR emergence in hospitals. The consequence
encompasses therapeutic failure, prolonged hospital stay, higher cost of alternative treatment option
and possibly higher risk of death [68]. In developing countries where the control on antimicrobial
drugs (AMD) administration is weak and antibiotics are sold like over-the-counter (OTC) drugs,
individuals with symptoms suspected to be similar to an infectious outcome engage in self-medication
prior hospital visit [69]. Self-medication remains a current challenge towards the emergence of
AMR [70]. Self-medication is not limited to developing countries. It extends to countries with strict
control on drug sales and administration [71]. Figure 1 gives an overview of percentage prevalence of
self-medication in developed and middle economic countries. Countries like Switzerland and Italy
have lower prevalence of self-medication (8%) as compared to South Africa (Figure 1), potentially due
to sale restrictions. Orally administered AMDs are more subjected to self-medication than parenteral
as the former ones are self-administered; in overused and underused regimen, leading to several
contraindications, as well as the emergence of AMR [72].
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Poor audit system of the prescriptions in many countries has encouraged the prescription of
antibiotics without reference to laboratory analysis. Inappropriate prescription is in no way better
than self-medication as both promote AMR [72,73]. Between 30% and 50% inappropriate prescription
reflected by wrong indication, incorrect choices of AMD and regimen have been reported [73,74].
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These are also closely related to patients’ non-compliance to a correct regimen prescribed by physician,
the two aberrations lead the failure to achieve and maintain the required plasma concentrations
(inhibitory or lethal dose) within the period of drug administration.

Administration of counterfeit drugs also contributes extensively to the emergence of antibiotic
resistance in developing countries. Factors contributing to fake or substandard drugs which are
common in developing countries include the economic incentives and weak intellectual property
protection in those countries. Counterfeit drugs include drugs without active ingredients, drugs with
lower concentrations of active ingredients than required and drugs with different ingredients from the
indicated label. Drugs with lower concentration of active ingredients are likely to induce antibiotic
resistance [75], as bacteria get exposed to sub-lethal concentrations of the drug in vivo and become
adapted to them.

5. Reported Emerging Threat Level of AMR

As emphasized, emergence of resistance is induced by exposure to RAbs in the soil, wastewater
and in hospital environment, contributing to rise in the level of threat to public health. The Centers
for Disease Control and Prevention [74] identified the following selected organisms as serious threats
especially in the United States: pan-drug resistant (PDR) or extended spectrum drug resistant (XDR)
Acinetobacter spp., drug-resistant Campylobacter spp., fluconazole-resistant Candida spp., extended
spectrum β-lactamase-producing Enterobacteriaceae (ESBLs), vancomycin-resistant Enterococci
(VRE), multidrug-resistant Pseudomonas aeruginosa, drug-resistant Non-typhoidal Salmonella spp.,
drug-resistant Salmonella, methicillin-resistant Staphylococcus aureus (MRSA), drug-resistant
Streptococcus pneumoniae, total drug-resistant Mycobacterium tuberculosis, etc. The threat associated with
these selected microorganisms was described by Senekal [76] as being important in the emerging order
of AR. They are therefore further described in Table 2 based on the report of other researchers.

Table 2. Some reported AMR classified as having serious threat.

Bacteria Threat Level Examples of Reported Antibiotics/Antibiotic Groups
to Which Resistance Occurred

Countries Where This
Has Been Reported References

Pan drug resistant
(PDR)/Extended spectrum
drug resistant (XDR)
Acinetobacter spp.

Resistant to at least 3 classes + Carbapenems,
polymyxins, tigecycline or fluoroquinolones

Greece, US, India, South Africa,
Iran, Greece [77–82]

Drug resistant
Campylobacter spp.

Range of 45% to 94.7% resistant to Erythromycin,
azithromycin, clindamycin, telithromycin, ciprofloxacin,

US; Finland; Poland; Philippines;
China; Nigeria [83–87]

Fluconazole-resistant
Candida spp.

8.0%–98.8% resistant to Itraconazole, voriconazole,
caspofungin, echinocandin, amphotericin B
deoxycholate, fluconazole

US, UK, Argentina, Spain, China,
South Africa [88–92]

Extended spectrum
β-lactamase producing
Enterobacteriaceae (ESBLs)

23% to 85.1% resistant to cephalosporins, gentamicin,
kanamycin, streptomycin, nalidixic acid, ciprofloxacin,
tetracycline, chloramphen-icol, sulfamethoxazole

US, Switzerland, Netherland, Saudi
Arabia, France, Germany, Czech
Republic, Sweden

[93–102]

Vancomycin-resistant
Enterococcus (VRE)

≤90% ampicillin, chloramphen-icol, clindamycin,
ciproflo-xin, erythromycin, neomycin, penicillin,
rifampicin, tetracycline and vancomycin

US, Spain, Portugal Sweden, UK,
Australia, Iran, Ethiopia [103–106]

Multidrug-resistant
Pseudomonas aeruginosa

20% to 85.7% Cefepime, piperacillin-tazobactam,
piperacillin, amikacin, levofloxacin, ciprofloxacin,
Ofloxacin, meropenem, etc.

US, India, Germany South African,
Nigeria, Greece [107–112]

Drug-resistant Non-typhoidal
Salmonella spp.

≤100% resistant to nalidixic acid, tetracycline,
streptomycin, ciprofloxacin, azithromycin
and cefotaxime

US, Iran, Egypt, Ethiopia, UK,
China, Congo Republic, Saudi
Arabia, Greece

[113–120]

Drug-resistant Salmonella Resistant to ceftriaxone, cefuroxime, amoxicillin,
ampicillin, ciprofloxacin and augmentin

US, Nigeria, India, Southern Asia
and Kenya [121–125]

Methicillin-resistant
Staphylococcus aureus (MRSA)

Usually resistant to wide range of beta lactam
antibiotics to ≤100%

US, Nigeria, South Africa, Tanzania,
several countries in Europe [126–131]

Drug-resistant
Streptococcus pneumoniae

e.g., 37% were resistant to erythromycin, 29.6% to
cefotaxime, 7.4% to levofloxacin, and 14.8% were
identified as multidrug resistant

US, Spain, India, Austria Belgium,
France, Germany, Italy, Portugal,
Spain and Switzerland

[132–138]

Total Drug-resistant
Mycobacterium tuberculosis

>30 cases of TDR-TB reported. 32% of patients with
MDR-TB exhibited resistance to a fluoroquinolone India, Iran, Italy and South Africa [139–143]
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These organisms are able to effectively develop resistance in clinical settings. In the environment
individuals may for example be exposed to them through aerosols from hospital effluents treated
in WWTPs. This unfortunately is worsened by the presence of antibiotics in sub-inhibitory
concentrations [142]. Chromobacterium violaceum ATCC 12472 was reported by Liu et al. [144] to
form antibiotic-induced quorum sensing and biofilm formation which lead to exchange of genetic
information and acquisition of resistance in aquatic and terrestrial habitat. Quorum sensing (QS)
occurs following the production, detection and cells’ response to small diffusible signal molecules
called auto-inducers. The molecules determine the type of quorum formed. The possible quorum
sensing can be:

a LuxI/LuxR–type quorum sensing: The signal molecules utilized here are the acyl-homoserine
lactones (AHL) and they are found in Gram-negative bacteria, for example the complex QS
machinery in Acinetobacter is mediated by LuxI/LuxR system peculiar to Gram-negative bacteria.
This cell signalling system is made up of AHL [145].

b Oligopeptide-bicomponental quorum sensing: This utilizes small peptides as signal molecules
and are found in Gram-positive bacteria.

Therefore, whichever molecule would be produced viz-a-viz the quorum formed depends on
the bacterial types as well as the inducing factor (s), but they all affect the biofilm production and the
accessibility of the organism to the antibiotics. The procedure for the formation of biofilm is the same
in both clinic and the environment.

Meanwhile, the mechanisms associated with biofilm for antibiotic resistance is both innate and
induced [146,147]. This leads to reduction in the concentration of antibiotics that reach the bacterial
cells and their environment [148]. Certain antibiotics like ampicillin penetrate only selected biofilms
like those formed by Klebsiella pneumoniae with no potential for β-lactamase production, but not
stable enough to the enzyme to penetrate those formed by wild type with ability to produce the
hydrolase [149], so large populations of cells are harboured in biofilms where they undergo genetic
exchange leading to antibiotic resistance [150]. Even in human body fluid, bacteria produce biofilms to
shield themselves from antibiotics, selective pressure, as well as from opsonin-phagocytosis [151–153].
This is mediated by accessory gene regulator (agr)-mediated quorum sensing in Staphylococci [152].
Beside biofilms, Table 3 further states some other associated attributes and mechanisms that contribute
to the emergence of resistance in the bacterial reservoirs.

Table 3. Bacterial attributes besides selection for ARGs that facilitates AMR.

Attributes/Mechanism Application/Example (s) Reference (s)

Quorum sensing Mediated by accessory gene regulator (agr) [154]

Biofilm formation

Increased interaction of high population densities and close distant cells
in biofilms for genetic exchange among mixed microbial communities
converting biofilms to hotspots for antibiotic resistance
GacS-GacA system is associated with the production of small-colony
variants that affect motility, biofilm formation, and antibiotic resistance

[150,155,156]

Enzyme production
Beta lactamases, extended spectrum beta lactamase, metallo beta
lactamase, etc. induced by exposure to imipenem and piperacillin in
P. aeruginosa biofilms

[157]

Mutation
The evolution of AMR under the sub-MIC arises progressively as
low-cost mutations (e.g., duplications and amplifications) in high
frequency (Canton and Morosini, 2011)

[155]

Small colony variant (SMV)
Down-regulation of the bacterial electron transport and/or
dihydrofolate reductase (DHFR) pathway sulfamethoxazole resistance,
bringing about small colonial form GacS-GacA system

[156–158]

Target change C1 metabolism e.g., Trimethoprim, Sulfamethoxazole, Daptomycin,
Colistin, Gentamicin, streptomycin, spectinomycin etc. [159]
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The importance of mutations cannot be overemphasized. Recovery from exposure to
sub-inhibitory or sub-lethal concentration of antibiotics may lead to adaptation via mutation.
The evolution of AMR under the sub-MIC arises progressively as low-cost mutations (e.g., duplications
and amplifications) in high frequencies [155]. This continues in each reservoir where bacteria are
exposed to sub-inhibitory concentration of the indicated antibiotics. The trend may be worsened,
if the organism(s) is conveyed from one reservoir to another, exposing them to wider range of
antibiotics. This is why coordinated efforts in all compartments of the environment are imperative
in checkmating the emergence of AMR. Figure 2 clearly depicts the links in various compartment
of human environment and how the RAbs, emerging AMR bacteria already getting exposed to
RAbs, ARGs, etc. are conveyed in cycles. This long interrelated cycle of exposure and emergence
of AMR probably begat the present level of threat and should be addressed at each stage, but in
a coordinated manner.
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6. Coordinated Approaches towards Addressing the Emergence and Spread of AMR

Coordinated multi-locational approaches across various segment of the environment should be
embraced towards preventing the emergence or spread of AMR and its uprising threat. The global
action plan against antimicrobial resistance suggested the outright prevention of any infection or
those caused by multiple antibiotic resistant bacteria (MARB) appears as the most likely pathway
to follow. This can be achieved directly by personal and general hygiene. There is also an indirect
pathway to prevent community (environmentally)-acquired infections by ensuring proper treatment
of wastewater. This reduces the associated risks of infection to the user of the effluents and the
residents around the receiving water environment. It should be noted that pathogens and RAbs
in improperly treated wastewater effluents for reuse in irrigation are reportedly deposited on the
surfaces or internalized in fruits and vegetables [33]. Consumption of MARB in uncooked foods
like salads poses the greatest risks to the consumers [160,161]. This also applies to the reuse of the
improperly treated sludge as organic fertilizer, exposing the farmers and crop consumers to the risks of
MARB and difficult-to-treat infections [33]. The spread of MARB through wastewater treatment plants
(WWTPs) or sludge deposition to other segments of the environment needs to be controlled and proper
treatment applied. The compliance to this is however low, especially in developing economies. It is
a settled fact that very low (sub-inhibitory) concentration of antibiotics reaches the river catchments.
This may sustain continued development of resistance to antibiotics via exposure. WWTPs have
also been identified as potential control points in an early warning system [15,47], especially those
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receiving wastewater from hospitals, which will be hotspot for MARB [1,51]. The two main concerns
in integrated human health risk assessment associated with the development and transfer of antibiotic
resistance in the environment (i.e., RAbs and ARGs) should therefore be considered in remodelling
the WWTPs [162]. Technologies to remove RAbs, ARGs and MARB from wastewater may include
membrane filtration, activated carbon, photo-driven nano-technologies and ozonation [163].

It is also imperative to channel more research towards in-depth understanding of the molecular,
evolutionary and ecological mechanisms of AMR. Advocatory, legislation and enforcement on the
control of drug abuse, restricting the use of antibiotics in agriculture exclusively to therapeutics and
enforcing hospitals as well as pharmaceutical companies to own their specially configured WWTPs
are pertinent steps. Relatively, the development of more antibiotic regimens in one daily dose (OD)
e.g., using gastrointestinal float delivery technology as in Zanocin OD, a brand of ofloxacin [164] will
improve patient compliance and reduce the emergence of AMR.

It is the right time to promote more intensive screening for new antimicrobial drug producing
bacteria, development of new antibiotics and antibiotic targets as well as developing new diagnostics.
Adegoke (unpublished data) discovered a strain of Streptomyces sp. Anthony DS-7A (http://www.
uniprot.org/taxonomy/1827503) with far outstanding antimicrobial activity than erythromycin.
Similarly, Ling et al. [165] detected a new antibiotic that kills pathogens without detectable resistance.
Some of the potential sources of antimicrobial drugs remain unutilized. Palonbo [166] also remarked
that despite several reports of high antimicrobial activity against MARB exhibited by plant extracts,
very negligible numbers have been promoted to clinical stages. Novel antibiotics targeting the virulent
factors and AMR inducing factors like quorum quenching to interfere with quorum sensing and
biofilm formation have been solicited [167,168]. Such potent antibiotics should be able to hack into the
bacterial biofilm [169], break its edges and ensure penetration of inhibitory concentration of its active
ingredients to attack shielded bacteria.

7. Conclusions

Coordinated approaches to reduce integrated human health risks in the environment as well as
careful compliance with the WHO guidelines [170] on surveillance, rational antibiotic prescribing,
standard treatment guidelines for both community- and hospital-acquired infections will lead
appreciably towards reducing the ever-rising threat of antibiotic resistance. Strategic steps related to
assessment and management in various environmental reservoirs and niches will assert collective
reduction in the threat and prevent the emergence of more aggressive superbugs.
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