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Gene-based analysis of multiple single nucleotide polymorphisms (SNPs) in a gene region is an alternative to single SNP analysis.
The multi-bin linear combination test (MLC) proposed in previous studies utilizes the correlation among SNPs within a gene
to construct a gene-based global test. SNPs are partitioned into clusters of highly correlated SNPs, and the MLC test statistic
quadratically combines linear combination statistics constructed for each cluster. The test has degrees of freedom equal to the
number of clusters and can be more powerful than a fully quadratic or fully linear test statistic. In this study, we develop a new
SNP clustering algorithm designed to find cliques, which are complete subnetworks of SNPs with all pairwise correlations above
a threshold. We evaluate the performance of the MLC test using the clique-based CLQ algorithm versus using the tag-SNP-based
LDSelect algorithm. In our numerical power calculations we observed that the two clustering algorithms produce identical clusters
about 40∼60% of the time, yielding similar power on average. However, because the CLQ algorithm tends to produce smaller
clusters with stronger positive correlation, the MLC test is less likely to be affected by the occurrence of opposing signs in the
individual SNP effect coefficients.

1. Introduction

Current genetic association studies aim to identify genetic
variants responsible for a disease by investigating associations
between single nucleotide polymorphisms (SNPs) and a trait
of interest. In a single-SNP approach, each SNP is analyzed
individually for the marginal association with the trait. In a
multi-SNP approach, a group of SNPs is analyzed together
for polygenic model analysis or gene-based analysis to obtain
a global statistic for the combined effect of a set of SNPs [1–8].
When the gene is the unit of interest in the association analy-
sis, gene-based analyses can be performed with multimarker
methods using multi-SNP genotypes or haplotypes [6, 8–
10]. These methods have the potential benefits of reducing
genome-wide type I error burden and boosting the power of
the study [9].

Most popularmultimarkermethods have been developed
for the analysis of genotypes. In some methods, the marginal
effects of individual SNPs are combined to form a global
statistic [5, 11]. In others, SNP genotypes are analyzed in
a multiple regression model and global statistics are con-
structed to represent the joint effects of multiple SNPs in a
gene [3, 8, 12, 13]. Some multimarker tests such as C-alpha
[14], SKAT [11], and CMC tests [15] specifically target rare
variants with minor allele frequency (MAF) less than 1%. On
the other hand, multimarker tests such as SKAT-C [16] and
the test by Curtis [10] can be applied to a combined set of rare
(MAF < 1%), low frequency (1% ≤MAF < 5%), and common
(MAF ≥ 5%) variants.

Multimarker methods can be roughly divided into two
types: linear and quadratic tests [17]. Linear tests are con-
structed by combining the individual SNP effects in a linear
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combinationwith certainweights [2, 4, 18]. Linear tests can be
powerful if the individual SNP effects have the same direction
but can lose substantial power if this condition is not met
[2, 5, 8, 17]. Since the direction of an effect can be reversed by
recoding the genotype, some researchers developed methods
to recode the risk and base alleles considering magnitude
and direction of pairwise correlations between SNPs [2, 5].
Quadratic tests are constructed as a quadratic form of an
effect vector with corresponding weight matrix [5, 11, 16].
Quadratic tests aremore robust to the occurrence of effects in
opposing directions, but the degrees of freedom can be high
if many neutral SNPs are included in the analysis [13].

Yoo et al. [8, 13] proposed the multi-bin linear combina-
tion test (MLC), which is a hybrid of linear and quadratic
tests, and evaluated its performance for common SNPs [13]
and for combinations of common and low frequency SNPs
[8]. For the MLC test, SNPs are partitioned into bins or
clusters of highly correlated SNPs according to the pairwise
linkage disequilibrium (LD) measure 𝑟. Then percluster lin-
ear combinations of individual SNP effects are combined in a
quadratic form [8, 13]. Because of the quadratic component,
the MLC test is more robust than linear tests and can have
better power than a quadratic test such as the generalized
Wald test under realistic causal model scenarios [8, 13].

For SNP clustering, Yoo et al. [8, 13] previously applied
an algorithm incorporated in the LDSelect program [19].
LDSelect is designed to select tag SNPs and the cluster
partitioning of a gene proceeds by identifying SNPs that
capture the effects of other SNPs through LD. Because its
greedy algorithm begins with a SNP in LD with the largest
number of other SNPs, it tends to first construct one large
cluster. However, for the MLC test, clusters with fewer SNPs
are less likely to include causal effects in opposing directions
andmay therefore be more robust. Yoo et al. also showed that
the power of theMLC test is betterwhen correlations between
SNPs within a cluster are large and positive [13].

In this study, we develop a new clustering algorithm
called CLQ that identifies cliques in the network of SNPs. By
definition, all pairwise correlations between SNPs in a clique
are above a prespecified threshold value. We also incorporate
the coding correction algorithm of Wang and Elston [2, 5]
into CLQ so that, after recoding, the cliques consist only of
positively correlated SNPs. We compare the performance of
MLC tests using the previous clustering algorithm, LDSelect,
with that using the new CLQ algorithm in terms of power
and robustness. For power calculations, we use genotype data
from the HapMap Asian population to provide 1000 different
realistic LD structures. For one causal and two causal SNP
scenarios, we consider all possible causal SNP choices within
each gene. Through extensive numerical power calculations
for the MLC test under various causal-gene SNP-trait model
scenarios, we show that the CLQ algorithm is highly suitable
for incorporation into the MLC test.

2. Methods and Materials

2.1. Multi-Bin Linear Combination Test. Suppose𝑚 SNPs in a
gene are jointly analyzed in a multiple regression. We denote

the genotypes of 𝑚 SNPs as 𝑋
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2
, . . . , 𝑋
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. The genotypes

can be coded differently depending on the genetic model. For
the rest of the paper, we assume an additive genetic model
such that 𝑋

𝑖
is the count of minor alleles for 𝑖th SNP; that is,
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of gene-based association, we construct a test using the
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Suppose𝑚 SNPs are partitioned into several bins or clus-
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where 𝑃

𝑖
and 𝑃

𝑗
are the MAF values of the 𝑖th and 𝑗th SNP

and 𝑃

𝑖𝑗
is the frequency of the haplotype consisting of the two

minor alleles. If phase information of genotypes to identify
haplotypes is not available, 𝑃

𝑖𝑗
is estimated using maximum

likelihood methods, which is the same as computing the
Pearson correlation coefficient 𝑟 between additive genotypes
𝑋

𝑖
and 𝑋

𝑗
. If 𝑚 SNPs are partitioned into 𝑙 clusters, we

construct a 𝑚 × 𝑙 matrix 𝐽 to denote SNP assignments such
that 𝐽
𝑖𝑗
= 1 if the 𝑖th SNP belongs to the 𝑗th cluster and 𝐽

𝑖𝑗
= 0

if not.
Using the assignmentmatrix 𝐽, we construct an 𝑙 𝑑𝑓MLC

test statistic such that
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where𝑊 = (Σ
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−1 [8, 13].
If only one SNP is assigned to each cluster (singleton),𝐺

𝑀

is the same as the generalized Wald test statistic

𝐺
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Moreover, if all SNPs are assigned to one cluster,𝐺
𝑀
is a linear

combination (LC) test [1]. The asymptotic null distribution
of the Wald test statistic is an 𝑚 𝑑𝑓 chi-square distribution,
assuming no linear dependencies among SNP genotypes,
whereas the MLC test statistic follows an 𝑙 𝑑𝑓 chi-square
distribution. The asymptotic null distribution of the LC test
statistic is 1 𝑑𝑓 chi-square.

2.2. Allele Recoding Algorithm. As shown in Yoo et al. [13],
power of the LC and theMLC tests benefits fromhigh positive
correlation between causal and neutral SNPs or between
causal SNPs.The sign of the correlation 𝑟

𝑖𝑗
between two SNPs

changes if we switch the risk and base alleles for one of the
two SNPs. For example, if we replace𝑋
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and 𝑋
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for 𝑖 ̸= 𝑗. This coding change will also
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change the sign of beta estimates ̂

𝛽

𝑖
if ̂

𝛽

𝑖
̸= 0. To make most

pairwise correlations positive for SNPs in the joint analysis,
we apply the Wang and Elston’s SNP recoding algorithm [2],
which is as follows.

Step 1. Count the number of negatively correlated SNPs for
each SNP 𝑖 and denote it as 𝑛

𝑖
for 𝑖 = 1, 2, . . . , 𝑚; that is, 𝑛

𝑖
=

∑

𝑚

𝑗=1,𝑗 ̸=𝑖
𝐼 (𝑟

𝑖𝑗
< 0), where 𝐼 is an indicator function.

Step 2. Select the SNP with the max{𝑛
𝑖
}; then switch the risk

and base allele for the genotype of that SNP.

Step 3. Iterate Steps 1-2 with updated correlations from the
updated genotypes until max{𝑛

𝑖
} < 𝑚/2.

For the MLC test based on the LDSelect algorithm, we
applied recoding for each cluster separately after clustering.
With the CLQ algorithm, we incorporate recoding within the
clustering algorithm.

2.3. SNP Clustering Using the LDSelect Algorithm. The LDS-
elect algorithm [19] is as follows.

Step 1. Set a threshold value 𝑐 for correlation 𝑟 between two
SNPs. Suppose the 𝑚 SNPs in a gene are indexed with 𝑉
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1
.
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1
, iterate the selection of the 𝑘th cluster 𝐵

𝑘
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We call the SNPs that meet this criteria the neighbors of SNP
𝑖. Proceed to Step 5 if 𝑡

𝑖
is at most equal to 0 for all 𝑖 ∈ 𝑉
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not, proceed to the next step.

Step 3. First, select one SNP (say 𝑗) with 𝑡
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maximum number of neighbors, randomly select one SNP
from among them.
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condition to proceed to Step 5 is met or all SNPs are assigned
into a cluster.

Step 5. If the maximum 𝑡

𝑖
for all 𝑖 ∈ 𝑉

󸀠 is at most 0, the
SNPs in 𝑉

󸀠 will be partitioned into singleton clusters (each
with only one SNP).

End. In this way all the SNPs are assigned into clusters
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2.4. SNP Clustering Using CLQ Algorithm. Let 𝐺 = (𝑉, 𝐸) be
a graph with a vertex set 𝑉 and an edge set 𝐸 of 𝑉, the set of
some pairs of vertices in𝑉. If an edge between two vertices is
included in𝐸, we call these two adjacent. A clique is defined as
a subset𝐶 of𝑉 such that all pairs of vertices in𝐶 are adjacent.
A maximal clique in 𝐺 is a clique whose vertices are not a
subset of the vertices of a larger clique, and the maximum
cliques in 𝐺 are the largest among all cliques in a graph. A
subgraph of 𝐺 is a graph with a vertex set𝑉󸀠 ⊆ 𝑉 and an edge
set𝐸󸀠 ⊆ 𝐸. A subgraph𝐺
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󸀠
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by a vertex set 𝑉󸀠 ⊆ 𝑉 when an edge is in 𝐸

󸀠 if and only if the
edge is in𝐸.The subgraph induced by a clique is complete (all
possible edges between vertices in clique are included in the
edge set).

The CLQ algorithm is as follows.

Step 1. For a threshold value 𝑐, construct a graph 𝐺

1
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1
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1
, iterate the selection of the 𝑘th cluster 𝐵

𝑘

in Steps 2 to 4.

Step 2. For each vertex in 𝐺

󸀠, find the maximal cliques that
contain the vertex using the Bron-Kerbosch algorithm [20]
implemented in igraph package [21] and select the largest
clique of maximal cliques found for all vertices. Proceed to
Step 5 if there is nomaximum cliquewith at least two vertices.
Otherwise, proceed to the next step.

Step 3. Apply the recoding algorithm to the maximum
cliques chosen in Step 2. If all pairwise correlations between
SNPs in the clique can be recoded to be positive, then take
the SNPs corresponding the chosen clique as the cluster 𝐵

𝑘
.

If negatively correlated SNPs still exist after the recoding
algorithm has been applied to this clique, discard the chosen
clique and select the next largest one. If there are multiple
cliques in 𝐺

󸀠 with the largest size and all SNPs can be
recoded to be positively correlated, choose the one with the
largest sum of absolute correlation. Repeat application of the
recoding algorithm until 𝐵

𝑘
is determined. If there is no

clique with at least two vertices that can be recoded to have
all positive correlations, proceed to Step 5.
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𝑘
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the condition to proceed to Step 5 is met or all SNPs are
assigned into a cluster.

Step 5. If there is no maximum clique with at least two
vertices in 𝐺

󸀠, the SNPs in 𝑉

󸀠 will be partitioned into
singleton clusters.

End. In this way all the SNPs are assigned into clusters
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2.5. Comparison of Clustering Results. To compare the clus-
ters produced for a gene by the two different clustering
methods, we used the 𝑆 criterion of Rand [22] and the 𝑆

󸀠

criterion that is adjusted for chance agreement [23]. Suppose
in one clustering method, 𝑚, that SNPs are partitioned into
𝐵

1
, . . . , 𝐵

𝑙
and, using another method, they are partitioned

into 𝐶

1
, . . . , 𝐶

ℎ
. The similarity between two clustering results

is defined as
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𝑘
󸀠 , and 𝑎
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= 0 otherwise. A higher value of 𝑆 corresponds

to more similar performance of two clustering methods for
the given data. When a pair of clustering results are exactly
identical, then 𝑆 = 1, whereas if 𝑆 = 0 there is no similarity.
The adjusted agreement measure 𝑆󸀠 is defined as

𝑆
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where𝑚
𝑖𝑗
denotes the number of common SNPs that belong

to clusters 𝐵
𝑖
and 𝐶

𝑗
, and𝑚

𝑖⋅
and𝑚

⋅𝑗
are the number of SNPs

in clusters 𝐵
𝑖
and 𝐶

𝑗
, respectively [23].

2.6. Numerical Power Analysis Based on HapMap Data.
Based on 1000 gene structures obtained from HapMap phase
III Asian data, we computed MLC test power using LDSelect
clustering (MLC-LD) and CLQ clustering (MLC-CL) for
several alternative trait models with one or two causal SNPs.
The HapMap gene panels were obtained by random selection
from the 8883 genes that had 4∼30 SNPs, excluding SNPs
with MAF < 0.01 or any pairwise LD value |𝑟| > 0.99. Two
sets of 1000 genes were randomly selected, allowing overlap:
one for the analysis of Models A, B, and C and another for
validation analysis. For each set of 1000 genes, two panels of
SNPs with MAF ≥ 0.05 and MAF ≥ 0.01, respectively, were
used in comparisons of clustering results, and one panel with
MAF≥ 0.01was used for power analysis.We evaluated a range
of clustering threshold values for 𝑐 equal to 0.3 through 0.9 for
LDSelect and CLQ.

For trait models, we considered models with one to
four causal SNPs within a gene and a linear model for the
quantitative phenotype 𝑌:

𝑌 =

𝑡

∑

𝑖=1

𝑏

𝑖
𝐺

𝑖
+ 𝜀, (8)

where 𝑡 is the number of causal SNPs, 𝑏
𝑖
is the effect of 𝑖th

causal SNP,𝐺
𝑖
is the number of causal alleles for the 𝑖th causal

SNP, and 𝜀 is the error term assumed to follow a normal
distribution with mean 0 and variance 𝜎2 (Table 1).

Initially we considered three types of trait models: one
with one causal SNP in a gene with effect 𝑏

1
= 1 (Model A),

Table 1: Quantitative trait models used for power comparisons of
MLC-LD and MLC-CL.

Model name Description Trait model parameters∗

Model A One causal SNP
within a gene 𝑏

1
= 1

Model B
Two causal
SNPs, both
deleterious

𝑏

1
= 1, 𝑏

2
= 1

Model C
Two causal
SNPs, one

deleterious and
one protective

𝑏

1
= 1, 𝑏

2
= −1

Model D

1∼4 causal SNPs,
random

assignment of
the direction of

effects

|𝑏

𝑖
| is randomly selected

from the
𝑈(0.01 × SD, 0.05 × SD)

where SD is the expected
standard deviation of 𝑌

∗The trait model is𝑌 = ∑𝐶
𝑖=1
𝑏𝑖𝐺𝑖 + 𝜀where 𝜀 ∼ 𝑁(0, 𝜎

2
),𝐶 is the number of

causal SNPs, 𝑏𝑖 is the effect of 𝑖th causal SNP, and 𝐺𝑖 is the number of causal
alleles for the 𝑖th causal SNP. The variance 𝜎2 is adjusted to make the power
of Wald test 60% for each set of causal SNPs for Models A, B, and C and set
to 1 for Model D.

another with two causal SNPs in a gene with effects 𝑏
1
= 1,

𝑏

2
= 1 (Model B), and a third with two causal SNPs in a

gene with effects 𝑏

1
= 1, 𝑏

2
= −1 (Model C). Since power

in a linear model depends on the ratio of signal to noise,
that is, (𝑏

𝑖
/𝜎), we selected the variance 𝜎

2 to correspond to
reasonable power for a given gene structure and choice of
causal SNPs for Models A, B, and C. To clearly see relative
performance of the MLC tests compared to the generalized
Wald test, we adjusted 𝜎

2 such that the Wald test power is
60% for each trait model. ForModel A, in each gene we chose
each of the SNPs in turn to be the causal SNP, resulting in
over 11,000 trait model settings in total over 1000 genes. For
Models B and C, in each gene we chose each of all possible
SNP pairs in turn to be the causal SNP pair, resulting in nearly
80,000 trait model settings in total for main and validation
sets.

In a fourth traitmodel (ModelD), we also obtained power
over mixed types of causal models with variable effect sizes.
The number of causal SNPs was chosen randomly between
1 and 4, with the deleterious and protective causal SNPs
randomly assigned. For each causal SNP, |𝑏

𝑖
| was randomly

selected from the uniformdistribution𝑈(0.01×SD, 0.05×SD)

where SD is the expected standard deviation of 𝑌 following
the effect size estimates for SNPs associated with lipid levels
presented inWiller et al. [24].Then the error variance 𝜎2 was
fixed as 1.

For power analysis using Models A to D, the genotype
data were randomly generated from the haplotype panel of
HapMap data for 𝑛 = 5, 000 subjects. Power was calculated
numerically for each gene assuming asymptotic chi-square
distributions under the null and alternative trait models.
With a given significance level 𝛼 and number of clusters 𝑙,
the critical value 𝑐

𝑙,𝛼
is obtained from the 𝑙 𝑑𝑓 chi-square

distribution such that 𝑃{𝜒2
𝑙
> 𝑐

𝑙,𝛼
} = 𝛼. Power is computed as

𝑃{𝜒

2

𝑙,𝜆
> 𝑐

𝑙,𝛼
} with 𝑙 𝑑𝑓 and noncentrality 𝜆 parameter equal
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Table 2: Mean and standard deviation over 1000 genes of agreement measure 𝑆 and 𝑆

󸀠 for two clustering methods (LDSelect and CLQ) and
number of genes with identical clustering.

Allele frequency cut 𝑐

𝑆 𝑆

󸀠

Cases of perfect agreement
Mean SD Mean SD

.05

.3 .676 0.203 .325 0.342 180

.4 .769 0.191 .510 0.336 283

.5 .847 0.168 .665 0.303 388

.6 .909 0.123 .781 0.242 483

.7 .936 0.101 .832 0.210 541

.8 .959 0.086 .884 0.178 648

.9 .974 0.069 .918 0.156 736

.01

.3 .689 0.196 .395 0.376 155

.4 .789 0.177 .559 0.379 254

.5 .863 0.151 .687 0.338 361

.6 .923 0.105 .794 0.267 468

.7 .948 0.084 .843 0.230 536

.8 .968 0.068 .892 0.201 644

.9 .981 0.053 .922 0.172 744
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Figure 1: Clustering of gene ARHGAP29 by LDSelect and CLQ for a threshold value 0.7.

to the expectedMLC statistic value under the trait model (see
Appendix in [13]).

3. Results

3.1. Comparison of SNP Clustering by LDSelect and CLQ.
In Figure 1, we illustrate LDSelect and CLQ clustering for
12 SNPs in ARHGAP29 at a threshold value 0.7. By LDSelect,
the largest cluster includes SNPs 1, 2, 3, and 7 since SNP 1 tags
SNPs 2, 3, and 7. However with CLQ, these four SNPs do not
form a clique because the pairwise correlations between SNPs
2 and 3 and between SNPs 3 and 7 are below the threshold
value. By CLQ, SNPs 2, 7, and 9 are clustered as a clique and
SNPs 1 and 3 are clustered as another clique. Here, SNP 1 is
recoded so that the correlation within the clique is positive.

We compared LDSelect and CLQ clustering for each of
the 1000 HapMap genes across a range of threshold values.
For a given threshold, the clustering methods often produce
identical gene clusters, particularly at higher threshold values
(Table 2). For example, at the threshold value 0.7, 54% of
the clustering results are the same. With increased threshold

values, the averages of the agreement measures 𝑆 and 𝑆

󸀠 also
increase. At threshold values greater than 0.5, the average
agreement measure 𝑆

󸀠 is greater than 78% overall. Compar-
ison of average 𝑆 and 𝑆

󸀠 under stratification by five gene-size
groups (≤10, 11∼15, 16∼20, 21∼25, >25 SNPs per gene) showed
that the agreement slightly weakens with increased number
of SNPs (results not shown).

On average, the number of clusters obtained by LDSelect
is usually smaller than that by CLQ for a given threshold
value (Table 3). Cluster sizes are smaller and less variable in
CLQ than in LDSelect, averaged over all gene sizes (Table 3).
Figure 2(a) shows the average over 1000 genes of the ratio
of the number of clusters to the number of SNPs per gene
used for clustering by LDSelect and CLQ given a threshold
value 𝑐. Restricting the SNPs to have higher minor allele
frequency (MAF ≥ 0.05 versus MAF ≥ 0.01) reduces the
ratio similarly for both clustering methods. At the same
threshold value, CLQ produces a larger number of clusters
compared to LDSelect, mainly because CLQ has a stricter
within-cluster LD requirement, but this difference decreases
as the threshold value increases. It follows that the average
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Table 3:The average over 1000 genes of the number of clusters per gene, themean size of the clusters within a gene, and the standard deviation
of the cluster sizes within a gene for two clustering methods (LDSelect and CLQ).

Allele frequency cut 𝑐

# of clusters∗ Mean size of clusters∗ SD size of clusters∗

LDSelect CLQ LDSelect CLQ LDSelect CLQ

.05

.3 1.84 2.94 6.39 3.70 2.55 2.60

.4 2.43 3.27 4.82 3.40 2.82 2.33

.5 3.02 3.67 3.85 3.06 2.49 2.02

.6 3.65 4.19 3.13 2.67 2.13 1.75

.7 4.36 4.79 2.61 2.32 1.75 1.46

.8 5.18 5.52 2.18 2.01 1.38 1.19

.9 6.29 6.57 1.76 1.65 1.00 0.89

.01

.3 2.40 3.53 5.25 3.28 3.33 2.53

.4 3.02 3.91 4.08 3.00 3.02 2.25

.5 3.66 4.36 3.32 2.71 2.52 1.96

.6 4.35 4.90 2.75 2.40 2.07 1.67

.7 5.10 5.57 2.34 2.10 1.66 1.40

.8 5.99 6.32 1.98 1.85 1.31 1.15

.9 7.17 7.42 1.64 1.56 0.94 0.85
∗The differences of the obtained characteristics within genes are compared by paired 𝑡-test and all results were significant with 𝑃 values <1𝑒−10 except the italic
pairs (𝑃 = 0.61).

size of the largest cluster in each gene is greater for LDSelect
than for CLQ (Figure 2(b)), with greater differences at lower
threshold values. Conversely, CLQ usually produces more
singleton clusters than LDSelect (Figure 2(c)). We conclude
that at the same threshold value, CLQ tends to produce more
clusters of smaller size than LDSelect.

To compare maximum cluster size when the number of
clusters per gene is the same, rather than at a fixed threshold
value, we applied the clustering methods across a range of
threshold values and for each gene matched the LDselect and
CLQ clustering results according to the number of clusters
(Figure 3(a)). At nearly all cluster numbers, the average size
of the largest cluster is again smaller for CLQ. Out of all
clustering results with different numbers of clusters, 69% had
the same maximum cluster size by LDSelect and CLQ, 23%
had a larger maximum cluster by LDSelect, and only 8% had
a smaller maximum cluster size by LDSelect, based on SNPs
with MAF ≥ 0.05. For the SNPs with MAF ≥ 0.01, these
percentages were 65%, 28%, and 7%. For a fixed number of
clusters, the number of singleton clusters was slightly smaller
for CLQ than LDSelect (Figure 3(b)). Out of all clustering
results, 70% had the same number of singleton clusters by
LDSelect and CLQ, 21% had a larger number by LDSelect,
and only 9% had a smaller number of singleton clusters by
LDSelect than CLQ, based on SNPs with MAF ≥ 0.05. For
the SNPs withMAF ≥ 0.01, these percentages were 67%, 25%,
and 8%. We conclude that when the two clustering methods
produce the same number of clusters for a gene, the CLQ
clusters will tend to be less variable in size than the LDSelect
clusters. We draw similar conclusions from the analysis of
validation set (results not shown).

3.2. Comparison of MLC-LD and MLC-CL Test Power. For
the power calculations, the variance of the error term was

set such that Wald test power is 60% for Models A, B, and
C. For Model D, the variance was fixed as 1 and variation in
the regression coefficient determined power. In Table 4, the
average MLC test power values for trait model types A, B, C,
and D using two clustering methods (MLC-LD and MLC-
CL) vary across values of the clustering threshold 𝑐. When
averaged over all sets of genes and causal SNP choices, MLC-
LD power and MLC-CL power were both higher than Wald
test power (which was 60% for Models A–C and roughly 35–
38% for Model D). Average power was usually maximized at
𝑐 = 0.6 or 0.7 for LDSelect and at 𝑐 = 0.4 or 0.5 for CLQ.
At threshold values less than 0.7, MLC-CL power was higher
than MLC-LD for all models. At threshold values higher
than 0.6, however, MLC-CL power was less than MLC-LD
for Models A, B, and D. For Model C, MLC-CL power was
higher thanMLC-LD for all threshold values. For eachmodel,
the highest average power was achieved by MLC-CL (bolded
entries in Table 4). Comparison of averageMLCpower values
under stratification by five gene-size groups (≤10, 11∼15,
16∼20, 21∼25, >25 SNPs per gene) generally yielded similar
results (results not shown).

We also compared the proportion of gene-causal-SNP
cases in which MLC-LD power or MLC-CL power was less
than Wald test power (Table 4). The proportion with lower
MLC-CL power was smaller, suggesting improved robust-
ness. At lower threshold values particularly, the proportion
with power less than the Wald test for LDSelect was much
higher, up to 40∼54% for some models, but was less than
25% for CLQ. Plots of gene-specific power obtained for the
cases in which the LDSelect andCLQ clusters differ show that
the MLC test using CLQ is less likely than MLC test using
LDselect to have substantially reduced power relative to the
Wald test (Figure 4). Similar conclusions about relative power
were obtained from the analysis of validation set (results not
shown).
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Figure 2: Averages of (a) the ratio of number of clusters to number of SNPs, (b) the size of the largest cluster, and (c) the number of singleton
clusters in each of 1000 genes for LDSelect and CLQ clustering given a threshold value 𝑐.
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Table 4: Average MLC test power over all gene-causal-SNP combinations for LDSelect (MLC-LD) and CLQ (MLC-CL) clustering methods
and the proportion of genes where MLC-LD power and MLC-CL power are less than Wald test power.

Model 𝑐

All possible causal SNPs and all genes All possible causal SNPs for the genes where LDSelect
and CLQ clusters are different

𝑁

Average†,∗ % Power <Wald∗
𝑁

Average†,∗ % Power <Wald∗

LDS CLQ LDS CLQ LDS CLQ LDS CLQ

A

0.3 11,117 0.627 0.757 36.6 6.2 9,765 0.614 0.759 40.0 5.8
0.4 11,117 0.670 0.758 26.4 3.9 8,867 0.656 0.762 30.5 3.3
0.5 11,117 0.716 0.754 14.6 2.2 8,069 0.714 0.759 17.2 1.8
0.6 11,117 0.735 0.745 6.7 1.0 7,381 0.742 0.753 8.1 0.7
0.7 11,117 0.733 0.730 2.7 0.6 6,234 0.751 0.744 3.4 0.2
0.8 11,117 0.719 0.712 1.1 0.6 5,138 0.746 0.731 0.8 0.0
0.9 11,117 0.691 0.685 1.4 1.3 3,512 0.726 0.707 0.3 0.0

B

0.3 79,650 0.645 0.771 33.7 5.6 74,715 0.640 0.774 35.0 5.2
0.4 79,650 0.682 0.773 25.5 3.6 70,384 0.674 0.775 27.3 3.0
0.5 79,650 0.727 0.769 14.5 2.1 66,788 0.723 0.770 15.8 1.7
0.6 79,650 0.750 0.760 6.4 1.2 63,848 0.752 0.764 7.0 0.9
0.7 79,650 0.748 0.745 3.0 0.6 57,300 0.756 0.752 3.5 0.5
0.8 79,650 0.733 0.724 0.9 0.4 48,577 0.752 0.737 0.7 0.2
0.9 79,650 0.701 0.692 0.9 0.5 33,403 0.724 0.706 0.8 0.1

C

0.3 79,650 0.499 0.649 54.3 23.7 74,710 0.505 0.663 54.2 21.9
0.4 79,650 0.551 0.657 44.1 21.1 70,409 0.557 0.675 44.0 18.6
0.5 79,650 0.603 0.662 32.8 18.4 66,772 0.615 0.683 32.0 15.5
0.6 79,650 0.637 0.664 23.7 16.4 63,910 0.651 0.682 22.8 14.1
0.7 79,650 0.652 0.662 18.1 14.1 57,409 0.669 0.682 17.4 12.2
0.8 79,650 0.654 0.657 14.1 11.7 48,669 0.675 0.678 13.8 10.3
0.9 79,650 0.645 0.646 10.3 8.8 33,625 0.661 0.662 11.6 8.3

D∗∗

0.3 8,883 0.388 0.444 36.5 12.1 7,054 0.372 0.441 39.7 9.9
0.4 8,883 0.408 0.447 28.3 9.7 6,140 0.389 0.440 32.5 7.3
0.5 8,883 0.426 0.447 18.8 7.4 5,119 0.404 0.433 22.1 5.0
0.6 8,883 0.439 0.445 10.8 5.5 4,420 0.425 0.435 12.5 3.5
0.7 8,883 0.439 0.440 6.5 4.2 3,625 0.416 0.414 7.4 3.0
0.8 8,883 0.435 0.433 4.4 3.3 2,827 0.419 0.412 4.1 1.7
0.9 8,883 0.425 0.423 3.6 3.3 2,103 0.406 0.396 2.7 1.7

∗The differences of power between two clustering algorithm and the proportions of cases with MLC test power less than the power of Wald test within genes
are compared by paired 𝑡-test and McNemar test, respectively, and all results are significant with 𝑃 values <0.05 except the italic pairs.
∗∗The power of Wald test for Models A, B, and C were fixed as 0.6, whereas the average power of Wald test for Model D was 0.388 in average over all genes
(left) and 0.377, 0.373, 0.365, 0.368, 0.354, 0.356, and 0.351 for 𝑐 = 0.3∼0.9, respectively, for genes with clustering results are different (right).
†Bolded numbers are the maximum average power of MLC over different threshold values within each clustering method, trait model, and the set of genes (all
or the ones with different clustering results by LDSelect and CLQ).

4. Discussion

In previous studies, we reported that power of the MLC
test depends on the correlation structure among SNPs and
we postulated that clusters of strongly correlated SNPs with
positive correlations benefit the test [13]. Therefore, the CLQ
algorithm designed to construct such clusters, in which all
pairwise correlations in the cluster are positive and strong,
should work well forMLC tests. LDSelect and CLQ produced
exactly identical clusters for about 38∼54% of the genes
at threshold values 𝑐 = 0.5∼0.7. This implies that many of
the clusters found by LDSelect using a SNP that tags other

SNPs are actually cliques; that is, the pairwise correlations
between SNPs in the cluster other than the SNP with most
neighbors are also above the threshold, even though the
LDSelect algorithm does not consider that information.

The LDSelect algorithm was originally developed for tag
SNP selection so that indirect associations could be efficiently
captured by genotyping and analyzing only tag SNPs. We
observed that the LDSelect algorithm also works reasonably
well for MLC tests where power depends on formation of
the clusters with large positive correlations. Because the
algorithms produce identical clusters for a substantial portion
of the cases, the average MLC test power values were not
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Figure 4: Power of MLC test based on LDSelect clustering (MLC-LD: blue) and CLQ clustering (MLC-CL: red) with threshold 𝑐 = 0.7 for
the cases where LDSelect and CLQ clusters are different. Each point represents one case of all possible causal SNP assignments within a gene.
The variance of the error term was adjusted for each of 1000 genes such that the Wald test power is exactly 0.6 (Grey) for Models A, B, and C
and fixed as 1 for Model D.

dramatically different over the genes we tested. However,
robustness as measured by the proportion of gene-causal-
SNP cases with lower power than the Wald test was better
with CLQ thanwith LDSelect.The plot of entire power values
for all trait-causal SNPmodels over 1000 genes also indicated
that the MLC test using CLQ is less likely than LDSelect to

have substantially reduced power relative to the Wald test.
Because the CLQ algorithm produces slightly more clusters
than LDSelect for a given threshold, the degrees of freedom
tends to be higher for theMLC test using CLQ than LDSelect,
and in that matter CLQ has a disadvantage compared to
LDSelect. However, the smaller sized clusters constructed
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by CLQ may be advantageous because SNPs with opposing
effects are less likely to occur in the same cluster.

For power comparisons using different threshold values,
we found that CLQ with threshold values 𝑐 = 0.4∼0.5
usually produces the best average power among all clustering
algorithm-threshold value combinations. In previous studies
[8, 13], we suggested the threshold value 0.3∼0.5 for 𝑟2 (0.5∼
0.7 for |𝑟| ≤ 𝑐) to achieve optimum power using LDSelect
algorithm, which has been validated by the results of this
study. We suggest the threshold value of 𝑐 = 0.4∼0.5 to be
used for CLQ algorithm based on the results of this study.
However, a dynamically determined threshold value after
evaluating the LD structure might be more appropriate for
MLC tests, and being able to choose nonarbitrary threshold
values is more attractive to researchers applying the method.

We applied the CLQ algorithm to a prespecified gene unit
for gene-based analysis, but it could be applied similarly to
intergenic regions, exomes, and promoter regions, that is,
any regional units exhibiting some linkage disequilibrium
between SNPs. If these regions include too many SNPs (e.g.,
more than 100), it is unreasonable to apply MLC tests based
on joint regressionmodels unless the sample size is extremely
large. In that case, it may be desirable to break up the region
into several LD blocks. Another approach would be to apply
variable selection techniques such as penalized regressions
[25, 26] and construct a MLC-type test with the resulting
models.

5. Conclusions

In summary, we observed that CLQ and LDSelect produce
identical clusters about half the time, and in the remaining
cases, CLQ usually producesmore clusters of smaller size. On
average, MLC test power using CLQ is similar to that using
LDSelect. The MLC test using CLQ shows better robustness
to the detrimental effects of opposing SNP associations
within the same cluster. Therefore, the CLQ algorithm is a
promising approach for preanalysis clustering of SNPs for
multimarker methods such as the MLC test.
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