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 REVIEW REVIEW

Tight Junctions and Paracellular Transport  
in the Brain and Retina

The blood-brain barrier (BBB) concept was first derived from 
experimental observations made by Ehrlich in 18851 and later by 
Goldman in 1913,2 after injecting colored dyes into the blood 
stream. The experiments conducted by Goldman showed that 
the trypan blue dye stained almost all tissues except the brain. 
When the dye was injected into the cerebrospinal fluid (CSF) 
that surrounds the brain, this organ was stained, but the rest of 
the tissues in the body were not, providing the first demonstra-
tion that there is a kind of compartmentalization between the 
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Claudins are pivotal building blocks of tight junctions that 
form the paracellular barrier in epithelia and endothelia. In 
mammals, claudins are a 27-gene family that encodes tetraspan 
membrane proteins, playing a crucial role in the formation 
and integrity of tight junctions and regulate the barrier 
function. Claudin isoforms are expressed in a tissue- and/or 
developmental stage-dependent manner. A growing body 
of evidence indicates that pathological states characterized 
by neuroinflammation, such as Alzheimer disease, multiple 
sclerosis, diabetic retinopathy and retinopathy of prematurity 
share a common feature: the barrier breakdown. This review 
aims integrating and summarizing the most relevant and 
recent work developed in the field of claudins, with particular 
attention to their role in blood-brain and blood-retinal barriers, 
as well as describing their regulation in the aforementioned 
human diseases.
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bloodstream and the CSF. Subsequent studies performed by 
Stern confirmed the presence of a special filter at the blood-brain 
interface that protects the brain, which was called blood-brain 
barrier (until then called hematoencephalic barrier).

Several decades later, morphological studies using trans-
mission electron microscopy, showed the presence of “zonula 
occludens” between retinal endothelial cells. Moreover, perme-
ability measurements, after systemic or intravitreal injection of 
fluorescein, were the basis of the concept of a blood-retinal barrier 
(BRB).3,4 Based on those and other findings, it was proposed that 
the BRB consists of two anatomical components, an inner BRB 
(iBRB) composed by tight junctions (TJ) between retinal capil-
lary endothelial cells and an outer BRB (oBRB) formed by TJ 
between retinal pigment epithelial (RPE) cells.5,6

In the brain and retina, the presence of a barrier between the 
vascular lumen and neural layers and parenchyma, respectively, 
allows the maintenance of a regulated microenvironment and the 
proper neuronal function. BBB is formed by a continuous mono-
layer of endothelial cells, separating the nervous system from cir-
culating blood.

The BBB is comprised of brain microvascular endothelial 
cells, astrocytes and smooth muscle cells, the pericytes. It has 
been claimed that astrocytes secrete soluble factors that are 
important to strengthen the barrier function in BBB.7,8 Pericytes 
have also an important role in maintaining and strengthen the 
barrier function, as demonstrated by in vitro BBB models.9

Cerebral homeostasis also results from the ability of the 
blood-cerebrospinal fluid barrier (BCSFB) at the choroid plexus 
to control the composition of the CSF and cerebral extracellular 
fluid. Unlike the capillaries that form the BBB, choroid plexus 
capillaries do not have TJ and are fenestrated and therefore do 
not form a barrier to the passage of small molecules. Instead, the 
BCSFB at the choroid plexus is formed by TJ between the epithe-
lial cells and TJ linked to the arachnoid membrane that envelops 
the brain.
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another classification of the claudin family, based on their perme-
ability attributes, dividing each member into different categories: 
sealing, channel forming (anion- or cation-selective and water-
permeable), inconsistent functionality and limited functional 
characterization.26

Claudins are 20–34 kDa proteins, containing four transmem-
brane domais, N- and C-terminal cytoplasmic domains and two 
extracellular loops (ECL) (Fig. 1). The C-terminal tail of clau-
dins is essential for their stability and intracellular transport to the 
TJ.27-29 For some claudins, this domain can be phosphorylated to 
regulate barrier function, and its phosphorylation has been linked 
to either increases or decreases in TJ assembly and function. For 
example, it has been shown that cyclic AMP induces phosphoryla-
tion of Thr-207 in claudin-5 by protein kinase A (PKA), increas-
ing the barrier function in brain endothelium.30 However, when 
the same residue of claudin-5 is phosphorylated by PKA in lung 
endothelial cells, a size selective loosening of claudin-5-based bar-
rier against small molecules was found.31 In brain endothelial 
cells, Rho/ROCK signaling leads to the phosphorylation of clau-
din-5 at Ser and Tyr residues, increasing BBB permeability.32 In 
lung endothelial cells, phosphorylation of claudin-1 at Thr-203 
by MAPK promotes barrier functions.33 In colon carcinoma cells, 
phosphorylation of claudin-4 at Tyr-208 by ephrin type-A recep-
tor 2 (EphA2) attenuates its interaction with ZO-1 and reduces 
the integration of claudin-4 into TJ, enhancing paracellular per-
meability.34 Similarly, PKA-dependent phosphorylation of clau-
din-3 at Thr-192 leads to its cytoplasmic localization and barrier 
dysfunction in ovarian cancer cells.35 In summary, claudins can 
be phosphorylated by different kinases, which controls claudin 
localization and/or function. However, since the phosphorylation 
of claudins triggers different outcomes, it is not possible to make a 
general functional conclusion since the results differ enormously.

Other posttranslational modifications of claudins, including 
palmitoylation, have been described. Palmitoylation occurs at the 
conserved di-cysteine motifs, located right after the second and 
fourth transmembrane domains.36 Palmitoylation of these motifs 
is thought to be required for incorporation of claudin-2, 4 and 
14 into the TJ, enabling their translocation to detergent-resistant 
plasma membranes (lipid rafts).36

Additionally, almost every claudin has a PDZ binding motif at 
the C-terminus that allows binding to the PDZ domain of cyto-
plasmic scaffolding proteins: ZO-1/2/3,37 PATJ38 and MUPP1.39 
Association with the scaffold proteins indirectly links claudin 
strands to the actin cytoskeleton and regulates claudins function.

The first ECL (ECL1) of the claudin family is composed by 
~50–60 amino acids being much longer than the second one, 
which is composed only by ~10–30 amino acids. ECL1 appears 
to be involved in the ionic properties of claudin strands. The role 
of ECL1 in determining the selectivity for ions was demonstrated 
using mutagenesis assays. For example, the replacement of acidic 
by basic amino acid residues in claudin-15 led to a reversal in para-
cellular charge selectivity, from a preference for cations to anions.40 
This has also been demonstrated in other claudin isoforms.40-42 
ECL1 also contains a GLWCC motif, which acts as a receptor 
for Hepatitis C virus (HCV) entry. This has been demonstrated 
for claudin-1, 6 and 9, which are widely expressed in the liver and 

The permeability barriers, as a result of the compartmental-
ization created by epithelia and endothelia with TJ, regulate the 
paracellular movement of ions and small molecules between adja-
cent cells. TJ strands are complex structures, composed of trans-
membrane and cytosolic proteins that function as a gate, which is 
sensitive to rapid changes on the microenvironment. TJ provide 
at least dual functions to the tissues, as barrier and fence, which 
are essential for the tissue development and homeostasis, as well 
as for the maintenance of cell polarity as a boundary between 
the apical and basolateral plasma membrane domains.10-12 Recent 
advances have improved our understanding about the molecular 
components, regulation and function of the TJ permeability. TJ 
are dynamic complexes in which the extracellular domains of TJ 
proteins associate with extracellular domains of proteins on adja-
cent cells. The branching network of sealing strands of proteins 
found in endothelial and epithelial TJ includes a series of trans-
membrane proteins embedded in the plasma membrane, such as 
junctional adhesion molecules (JAMS), claudins, occludin and 
tricellulin,13,14 which in turn are attached to several cytoskeleton 
and cytoplasmic scaffold proteins, including zonula occludens 
(ZO)-1/2/3, MAGI-1, MAGI-3, CASK/LIN-2, MUPP1, AF6, 
ASIP, PALS1, PATJ and cingulin.15

It is now clear that size-, charge-selectivity and permeability of 
TJ are tissue specific and depend on their essential components, 
the claudins.16-20 In this review, we will summarize recent progress 
with respect to claudins, giving particular attention to their func-
tion and regulation in the brain and retinal barriers in health and 
pathological conditions.

Claudins Family: Structure, Function  
and Distribution

TJ constitute the most apical intercellular junctional complex 
between adjacent endothelial and epithelial cells. The TJ, a mul-
tiprotein complex consisting of transmembrane and cytosolic 
proteins, control and restrict the paracellular diffusion of macro-
molecules, ions and polar solutes.21

Based on transmission electron microscopy studies, TJ were 
first described as structures in which the outer leaflets of the mem-
branes of two adjacent cells are merged into a single line or into 
a series of apparent fusions (kissing points).22 Afterward, freeze-
fracture electron microscopy showed that these fusions were com-
posed by strands of intramembranous particles, corresponding to 
TJ.23

One of the major components of the TJ strands is the clau-
din family, which comprises 27 members in mice and humans.16 
Claudins were first purified and identified by Furuse and col-
leagues in 1998.17 The name claudin derives from the latin clau-
dere which means close. Based on sequence analysis of the mouse 
claudin proteins, Krause and colleagues proposed a subdivision 
of the claudin family into classic (claudin-1–10, 14, 15, 17, 19) 
and non-classic (claudin-11–13, 16, 18, 20–24) groups for mouse 
proteins.24 Later on, it was proposed a similar division for the 
human proteins, with slight differences, considering that clau-
din-1–9, 14, 17, 19, 20 are classic claudins and claudin-10–12, 15, 
16, 18, 21–24 are non-classic claudins.25 Recently, it was proposed 
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sequence of the ECL is not the only determinant for the trans-
interaction between claudins.

Claudins form ladders of stable homomultimers in native gel 
electrophoresis with increased molecular mass, corresponding to 
hexamers, which suggests a similar strand conformation to con-
nexins in gap junctions.51,52 The formation of claudin-4 monomers 
and claudin-2 homodimers occurs via the second transmembrane 
domain (helix–helix interaction).53 Cis homo-dimerization was 
detected by fluorescence resonance energy transfer (FRET) anal-
ysis in claudin-5.54 Cis-homomeric interactions have also been 
described for claudin-1, 2 and 3, along with heteromeric inter-
actions between claudin-5 and 1, claudin-3 and 1 and claudin-3 
and 5.45,48 Interactions between claudin-4 and 8 and claudin-16 
and 19, have also been studied. Claudin-4 and claudin-8 are co-
transported from the Golgi apparatus to the TJ, cis-interacting 
with each other.55 Claudin-16 and claudin-19, like claudin-3 and 
4 share high similarity in their ECL. They show cis, but not trans-
interaction.56 The claudin-claudin interactions, in the same cell 
and between two adjacent cells, are responsible for the establish-
ment of a continuous barrier within the intercellular clefts of the 
monolayer. This should mean that the network of strands formed 
by various claudin isoforms in each tissue leads to a selective 

in peripheral blood mononuclear cells, precisely the major HCV 
replication sites.43,44

The second ECL (ECL2), due to its predicted helix-turn-helix 
motif, appears to be more important for the transcellular bind-
ing that narrows the paracellular space.45 Moreover, it has been 
demonstrated that the ECL2 of claudin-3 and 4 is a receptor for 
Clostridium perfringens enterotoxin.46,47

The ECL from different claudins can interact with each other 
between opposing cells (trans-interaction) or in the same cell (cis-
interaction).24 The cis-interaction can involve the same claudin 
subtype (homomeric interaction) or different claudin subtypes 
(heteromeric interaction). The trans-interaction can be homo-
typic or heterotypic.24,45,48

Transfection of L-fibroblasts with different claudin isoforms, 
and their co-cultivation, show that both claudin-1 and claudin-2 
can trans-interact with claudin-3 but not to each other.49 More 
recently, Piontek and colleagues have demonstrated homotypic 
trans-interactions between claudin-1, 2, 3 and 5 (but not between 
claudin-12) and heterotypic trans-interactions between claudin-1 
and 5, claudin-1 and 3 and claudin-3 and 5.48 Despite nearly iden-
tical ECL domains and cis-type interaction, claudin-3 and 4 are 
heterotypically incompatible,50 pointing out that the amino acid 

Figure 1. Schematic representation of claudin proteins. Claudins have four transmembrane spanning regions, two extracellular loops, one intracellular 
domain, with the amino and carboxyl terminus oriented toward the cytoplasm.
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These mice present morphologically normal TJ but died within 10 
h of birth. It remains unclear whether this was due to BBB defects. 
Furthermore, overexpression of claudin-5 in cultured brain micro-
vascular endothelial cells increases barrier properties.74 Moreover, 
the expression of the TJ protein claudin-1 is lost in brain tumor 
microvessels, while claudin-5 is only downregulated, suggesting a 
relationship between claudin-1 suppression and the alteration of 
TJ morphology, which is likely to be correlated with the increase 
in endothelial cell permeability.72 Similarly, the selective loss of 
claudin-3 from the TJ in pathological conditions demonstrates 
that it may be important for determining permeability and BBB 
integrity.73 Claudin-12 at the cell-cell boundaries of brain capil-
lary endothelial cells was detected in the brain of mice embryo.63 
In adult tissue, the levels of claudin-12 mRNA were relatively 
lower than those of claudin-5 at rat brain capillaries, and when 
the whole brain was analyzed, claudin-12 was shown not to be 
restricted only to capillaries.57 Possibly, claudin-12 expression in 
BBB changes during development.

The barriers that surround the central nervous system are criti-
cal for its protection and homeostasis. While the BBB has been 
investigated intensively, only recently the choroid plexus-blood 
barrier, also known as the BCSFB, has received attention. BCSFB 
is characterized by having lower TER values (150 Ω/cm2) and 
being less restrictive than the BBB. The molecular organization 
underlying that difference is probably related to the expression 
of different claudins, since those proteins play an important role 
in barrier size-selectivity and in the control of paracellular move-
ment of ions. In fact, claudins-1, 2, 3 and 11 are expressed in 
the choroid plexus epithelium (see Table 1).75,76 The expression 
of claudin-2 greatly increases the permeability of this barrier to 
both cations and water, and one cannot forget that interactions 
between different claudins can also influence paracelullar tighten-
ing. Despite low evidences showing the contribution of claudin-11 
in the BCSFB, an important role of this isoform was pointed out 
in other cell types, namely in oligodendrocytes and Sertoli cells.64 
Immunohistochemical analysis of human/rat fetal and postnatal 
brains for claudin-1, 2 and 3 demonstrated their early presence 
and localization at the apico-lateral border of the choroid plexus 
epithelial cells.76 Increased mRNA expression of claudin-6, 9, 19 
and 22 also displayed a previously undescribed choroidal selectiv-
ity, although the authors could not confirm the presence of clau-
din-6 and 22 at the TJ due to lack of appropriate antibodies.76 It 
was also detected a developmental upregulation of claudin-2, 9 
and 22 and downregulation of claudin-6, reflecting changes in 
selective blood to CSF transport functions during development, 
which may be crucial for brain protection.

In the eye, the blood-tissue barrier is divided into two regions. 
The iBRB is formed by two beds of capillary endothelia. The 
inner capillary bed lies in the ganglion cell layer and its barrier 
function is modulated by astrocytes. The outer capillary bed lies 
in the inner and outer plexiform layers, where the function of 
astrocytes is replaced by Muller cells. The oBRB is formed by the 
RPE and lies on the outer surface of the photoreceptor layer.

At the iBRB, claudin-1, 2 and 5 are the most abundant clau-
dins (see Table 1).77-79 In comparison with BBB, the iBRB might 
be more permeable to ions in general, due to the lack of claudin-3 

permeability of the solutes or compounds with different molecular 
weights or differently charged ions.

The diverse claudin subtypes are expressed in a tissue- and 
cell type-specific manner varying with the stage of development 
and differing in their barrier properties.24 They can functionally 
be divided in barrier-forming or sealing claudins (for example 
claudin-1, 3 and 5) that are found in several epithelia and endo-
thelia with a moderate to high transepithelial or endothelial 
resistance (TER), respectively.57 Additionally, they can be pore-
forming claudins; claudin-2 and a complex between claudin-16 
and claudin-19 form pores for cations,56,58 while claudin-17 forms 
an anion-selective pore.59 Claudin-2 also forms a water chan-
nel, mediating paracellular water transport in leaky epithelia.60 
Interestingly, alternative splicing of claudin-10 gene originates 
claudin-10a and b, a cation and anion-selective claudin pore-
forming, respectively.61

The function of several claudins, like for example claudin-4, 7 
or 8, are not yet fully understood, mainly because very different 
and sometimes contradictory results have been obtained, namely 
in studies where claudins are overexpressed or knockdown. 
However, this strongly depends on the cell type used, and one 
cannot discard the possibility of interactions, or lack of them, with 
other claudins or other TJ proteins endogenously expressed in a 
specific cell type.

Some physiological roles of claudins have been clarified from 
studies with transgenic and knockout mice or human diseases. 
Claudin-1 knockout mice die shortly after birth due to dermal 
water loss indicating the essential role of claudin-1 in contributing 
to the tightness of skin epithelia.20 Mutations in claudin-1 gene 
cause neonatal ichthyosis and sclerosing cholangitis in humans.62 
Deficiency in claudin-5 also causes neonatal death, due to size-
selective loosening of the BBB.63 Mice deficient in claudin-11 
show myelin defects and the male animals are sterile due to the 
breakdown of the blood-testis barrier.64 Mutations in claudin-14 
gene lead to autosomal recessive deafness in mice and humans.65 
Several mutations in claudin-16 gene are seen in patients of famil-
ial hypomagnesemia with hypercalciuria and nephrocalcinosis, an 
autosomal recessive disorder that leads to renal calcification pro-
cesses and renal failure.66,67 Mutations in claudin-19 cause renal 
hypomagnesemia with ocular involvement.68

Claudins in Blood-Brain and Blood-Retinal Barriers

The BBB is a selective interface between the blood and the brain 
that maintains ionic homeostasis within the brain microenviron-
ment.69 The lack of fenestrations, decreased pinocytotic activity 
and presence of TJ, contribute to a high TER (1500–2000 Ω/
cm2) and to the restrictive nature of the BBB. On the contrary, 
systemic capillaries present a TER of only 5–10 Ω/cm2.70,71

At the BBB, claudins-1, 3, 5 and 12 participate in the forma-
tion of TJ between brain microvascular endothelial cells (see Table 
1).18,63,72,73 Claudin-5 is the most abundant claudin at the BBB and 
is a critical regulator of brain endothelial cells permeability. In 
claudin-5 knockout mice, Nitta and colleagues demonstrated that 
the size-selectivity of the BBB was affected, allowing the diffusion 
of molecules smaller than 800 Da, but not of larger molecules. 
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RPE seem to vary considerably between species and developmental 
stage. The analysis of RPE from chick embryos demonstrates that 
claudins continue to be tightly regulated even after the barrier is 
fully functional. Claudin-1, 2, 4L2, 5, 11, 12 and 20 mRNA have 
been detected (see Table 1). For example, claudin-5 is transiently 
expressed, while claudin-1 appears in an intermediate phase and 
others, like claudin-20, appear later.80-82 These results suggest that 
from the time that functional TJ form to the time they mature, 
the selectivity and permeability of the oBRB are likely to change. 
Human RPE expresses predominantly claudin-19 mRNA and pro-
tein, also with significant amounts of claudin-3 (see Table 1).83-85 
In a monolayer of a human fetal RPE, claudin isoforms have a 
diverse localization. For instance, although claudin-19 and clau-
din-3 were uniformly expressed across the monolayer, claudin-10 
and claudin-1 were only detected in a subset of cells.83,84 Moreover, 
knockdown of claudin-19 by siRNA in the same in vitro model 
eliminated the TER, while siRNAs for other claudins had mini-
mal effects,83 supporting the assumption that this claudin has an 
important role in ocular complications.68

and more permeable still to the cation sodium, due to the presence 
of claudin-2.

The expression of claudins during the formation of the iBRB 
TJ also seems to vary. The mRNA levels of claudin-1, 2, 3, 4, 5, 12, 
22 and 23 were shown to be developmentally altered in the retinas 
of mice pups, from postnatal day 8 (P8) until P21. Claudin-22 
mRNA increased throughout this period, but the others exhibited 
transient peaks. The protein levels of claudin-1 and 5 remained 
high, even though the amount of their mRNA decreased at P21. 
On the contrary, the protein levels of claudin-2 paralleled the 
decrease in mRNA expression. Among all the claudins expressed 
in neural retina, only claudin-1, 2 and 5 were found in the blood 
vessels, which are present in the inner, outer and ganglion cell vas-
cular layers. All three claudins co-localized with occludin in the 
lateral membranes of endothelial cells.77 By contrast, claudin-3, 4, 
12 and 23 were localized in extravascular cells.

The oBRB regulates the movement of solutes between the 
fenestrated capillaries of the choroid and the photoreceptor layer 
of the retina. The formation of TJ and TJ protein expression in 

Table 1. Claudin expression changes in blood-brain and blood-retinal barriers in several neuroinflammatory diseases

Barrier Claudin Expression Alterations

Brain

BBB Claudin-1 mRNA and protein detected in mouse57 and human72 Expression suppressed in brain tumor vessels72

Claudin-3 mRNA and protein detected in mouse57 and human73 Loss of the TJ strands in a MS animal model and in brain tumor 
vessels73

Claudin-5 mRNA and protein detected in mouse18,57,63 and human72

Knockout mice have selective blood–brain barrier dysfunction 
for molecules < 800 Da;63 Decreased expression124 and subcel-

lular redistribution114 in a MS animal model

Claudin-12
High mRNA levels in mice embryos, relative low expression 

in adult tissue63 No known alteration

BCSFB Claudin-1 mRNA and protein detected in mouse,75 rat152 and human76 No known alteration

Claudin-2 mRNA and protein detected in mouse,75 rat152 and human76 No known alteration

Claudin-3 mRNA and protein detected in rat and human76 No known alteration

Claudin-11 Protein detected in mouse75 No known alteration

Retina

iBRB Claudin-1 mRNA and protein detected in mouse,77 rat79 and rabbit78 No known alteration

Claudin-2 mRNA and protein detected in mouse77 Overexpression in OIR animal model77

Claudin-5 mRNA and protein detected in mouse77 and rat79,130 Overexpression in OIR animal model;77 Reduced expression and 
subcellular redistribution in diabetes animal models79,132,136,137

oBRB Claudin-1 mRNA and protein detected in chick embryo80,81 Increased expression after ER stress induction;141 Subcellular 
redistribution after high glucose and IL-1β exposure95

Claudin-2 mRNA and protein detected in chick embryo80,82 No known alteration

Claudin-3 mRNA and protein detected in human83,84 No known alteration

Claudin-4L2 mRNA detected in chick embryo81 No known alteration

Claudin-5 mRNA and protein detected in chick embryo80,81 No known alteration

Claudin-10b mRNA and protein detected in human84 No known alteration

Claudin-11 mRNA detected in chick embryo81 No known alteration

Claudin-12 mRNA and protein detected in chick embryo80 No known alteration

Claudin-19 mRNA and protein detected in human83,84

siRNA against claudin-19 eliminates TER in vitro;83 Mutations 
in claudin-19 gene cause renal hypomagnesemia with severe 

visual impairment68

Claudin-20 mRNA detected in chick embryo81,82 No known alteration
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Multiple Sclerosis

Multiple sclerosis (MS) is characterized by microvascular inflam-
mation and demyelination of the nerves of the central nervous sys-
tem (brain and spinal cord),112 with a relapsing-remitting profile. 
In MS, increased leukocyte migration leads to a reorganization of 
the actin cytoskeleton and loss or subcellular redistribution of the 
brain endothelial TJ proteins claudin-5, occludin and ZO-1,113-115 
with a consequent disruption of both BBB and BCSFB. The BBB 
breakdown allows the infiltration of activated immune effector 
cells, including T lymphocytes, which in turn activate a complex 
cascade leading to tissue damage.116,117 Several pro-inflammatory 
cytokines (tumor necrosis factor (TNF)-α, interferon (IFN)-γ, 
interleukin (IL)-6 and IL-12)118 and activated matrix metallo-
proteinases (MMPs) target TJ proteins in brain endothelial cells, 
compromising the BBB integrity.115,119 In experimental autoim-
mune encephalomyelitis (EAE), a mouse model used for brain 
inflammation and MS, it has been suggested that the inflamma-
tory cytokines TNF-α and IL-1 are key mediators that induce 
alterations in BBB permeability.120 Moreover, it has been consis-
tently shown that TNF-α is detected upon post-mortem examina-
tion of MS brain lesions, being abnormally elevated in the CSF of 
patients. Moreover, the levels of this cytokine have been correlated 
with the progression and severity of this disease.121-123 Although 
the molecular mechanisms underlying the regulation of BBB and 
BCSFB in MS remain poorly understood, recent evidences have 
shown that Irgm-1, an immune-related GTPase, is involved in the 
regulation of those barriers. During the initiation and progression 
of EAE, Irgm-1 is upregulated in epithelial cells of the choroid 
plexus, ependymal layers and ventricular system, as well as in reac-
tive astrocytes, promoting the disruption of BBB and BCSFB via 
downregulation of claudin-5 expression on brain microvascular 
endothelial cells and upregulation of CCL-20 expression in cho-
roid plexus and ependymal cells, respectively.124 It has been also 
described a compromised endothelial barrier function (decreased 
TER) that is associated with a protein and mRNA downregula-
tion of claudin-5 and occludin and an upregulation of the matrix 
metalloproteinase MMP-9 when brain endothelial cells are incu-
bated with sera from patients in the exacerbation or remission 
phase of MS.125 The downregulation of claudin-5 and occludin, 
accompanied with an upregulation of vascular endothelial growth 
factor (VEGF)-A, correlated with the BBB breakdown in an ani-
mal model of EAE.88 In the same animal model, a specific loss of 
claudin-3 immunostaining from the brain microvessels that were 
surrounded by inflammatory infiltrates was observed,73 suggest-
ing a direct role for inflammatory cells in disrupting BBB TJ.

Diabetic Retinopathy and Retinopathy of Prematurity

The breakdown of the outer and inner BRB in patients with dia-
betic retinopathy, due to disorganization of TJ proteins, is one of 
the main factors accounting for macular edema and major vision 
complications that frequently lead to severe vision loss in patients 
with diabetes.5,126 Therefore, the BRB is a relevant target for the 
treatment of retinal diseases, as we have previously discussed.127

Role of Claudins in Human Diseases

Changes in the integrity of the brain and retinal barriers may 
affect the neurovascular unit, a functional association of neu-
rons, astrocytes and microvasculature. Findings have shown 
that blood stream derived-factors and signals from astrocytes 
and pericytes are involved in the regulation of claudins expres-
sion in endothelial cells.86-88 In several barrier dysfunction-
related diseases, the levels of claudins and occludin present in 
microvessels are altered, contributing to the barrier breakdown. 
In several pathologies of the nervous system characterized by a 
prominent neuroinflammatory component, such as Alzheimer 
disease, multiple sclerosis, diabetic retinopathy and retinopa-
thy of prematurity, it has been claimed that brain and retinal 
barriers dysfunction contributes to the pathogenesis of those 
diseases, even in the early stages.77,89-95 The increase in passive 
diffusion of blood-borne substances through TJ detected in 
several pathological conditions will be discussed below. The 
redistribution, protein levels and mRNA expression changes of 
claudin isoforms observed in those pathologies are outlined in 
Table 1.

Alzheimer Disease

Alzheimer disease (AD), the most common dementia in elderly, 
is characterized by learning and memory impairments.96 AD 
patients present cerebral amyloid angiopathy and profound 
changes in cerebral microvessels.97 It has been shown that 
β-amyloid peptide (1–42) might alter BBB integrity by affect-
ing the TJ complexes.98,99 The disruption of BBB is well docu-
mented in AD and may contribute to the progression of disease. 
Indeed, several reports have shown a positive correlation 
between increased BBB leakage in aged brains and the degree 
of AD,100-102 suggesting that BBB disruption may be an early 
event in AD progression or even an independent factor involved 
in brain aging. Increased levels of oxidative stress markers asso-
ciated with downregulation of TJ proteins and increased BBB 
permeability103 have been found in the early stages of AD.104-107

Moreover, a detailed immunohistochemistry analysis for 
claudins in AD brains revealed higher levels of claudin-2, 5 and 
11 (in neurons), claudin-2 and 11 (in astrocytes) and claudin-11 
(in oligodendrocytes), as compared with aged controls.108 The 
upregulation of these claudin isoforms in AD might be an 
endogenous protective response of the brain tissue. Neurons 
expressing claudins were identified as being mainly of pyra-
midal type, which are thought to support cognition, and are 
known to be affected in the early stage of AD,109 bearing neuro-
fibrillary tangles. In addition, changes in BBB may result from 
a deregulation of the interplay between different claudin iso-
forms, such as claudin-2, which induces a leaky strand type,110 
while claudin-5 and 11 are known to be responsible for increas-
ing the TER.111 Although the role of claudins in AD is currently 
poorly understood, the regulation of claudin expression in dif-
ferent cell types, others than endothelial cells, also suggests a 
role of claudins in cellular responses to neurodegeneration.
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staining, despite an increase in its protein levels, which is associated 
with an increase in the monolayer permeability.95 Upregulation 
of claudin-1 can induce changes in TJ function by different 
arrangements, either by altering side-to-side oligomerization that 
is essential for the formation of TJ within a cell or head-to-head 
interactions (homophilic or heterophilic) between opposing cells.

Although ARPE-19 cells are widely used and studied, one 
should be careful when interpreting data from studies regarding 
the RPE tight junctions using this cell line. Cultured RPE can 
manifest a greater heterogeneity than the one observed in vivo. In 
fact, Luo and colleagues reported that the heterogeneity of the tight 
junctions in ARPE-19 cells was manifested by a nonuniform distri-
bution of claudin-1 and 2 and that the expression of the claudins 
was very dependent on culture conditions.147 Also, transcriptome 
analysis revealed that this cell line does not express claudin-19,85 
which is, as mentioned before, one of the most important claudin 
isoform in maintaining the monolayer resistance.

One of the most suitable culture models appears to be derived 
from a primary human fetal RPE cell culture, as it mimics the 
normal physiology, function and structure of native fetal and adult 
RPE, preserving the function of tight junctions and retaining bar-
rier function.148 In human fetal RPE, a mixture of inflammatory 
cytokines including IL-1β, TNF-α and IFN-γ, or IFN-γ alone, 
decreased TER after 24 h with an increase in net epithelial fluid 
absorption.149,150 With longer incubation periods (two days) only 
TNF-α alone significantly decreased TER, although this decrease 
was not correlated with changes in claudin-2, claudin-3 or clau-
din-19 expression.151 Moreover, the authors did not detect any 
alterations in TER when exposing the human fetal RPE cells to 
IL-1β,151 contrarily to what was observed in the ARPE-19 cells.146

Conclusion and Perspectives

Claudins are key components of TJ that regulate the paracellu-
lar permeability. Although it is well established that claudins can 
polymerize into TJ strands in heteromeric and heterotypic claudin-
claudin interactions, the mechanisms underlying claudin assembly 
are not yet well understood, as well as whether and how this het-
erogeneity contributes to barrier properties and tissue homeosta-
sis. Disturbances in the content, distribution and postranslational 
modifications of claudins have been detected in several brain and 
retinal diseases characterized by barrier breakdown. Although the 
elucidation of the molecular mechanisms involved in TJ deregula-
tion are pivotal to find a potential common denominator in many 
disease states, a better understanding of claudin biology may facili-
tate the development of novel claudin-targeted therapies.
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The increase in BRB permeability has been described to be asso-
ciated with changes in the expression, protein levels, phosphoryla-
tion, ubiquitination and subcellular distribution of TJ proteins in 
retinal endothelial cells.128-131 Several studies have shown that the 
levels of pro-inflammatory cytokines, namely IL-1β and TNF-α, 
and adhesion molecules, are increased in the retina, vitreous and 
serum of diabetic patients and rats, being key mediators of TJ pro-
teins disorganization and consequently BRB breakdown.94,132-135 
Moreover, alterations in claudin-5 in retinal vessels have been asso-
ciated with increased vessel leakage in the early stages of diabe-
tes.79,132,136,137 In addition to pro-inflammatory cytokines, growth 
factors like VEGF, also mediate the increase in BRB permeability 
and contribute to the pathophysiology of diabetic retinopathy. In 
vitro studies demonstrate that VEGF treatment disrupts cell bor-
der staining of claudin-1138 and 5 and contributes to clathrin-medi-
ated endocytosis of claudin-5.139 Recent reports have also shown 
that claudin-5 may be downregulated in retinal endothelial cells 
due to endoplasmic reticulum (ER) stress, which has been involved 
in vascular impairment in diabetic retinopathy.140 In contrast, in a 
RPE cell line, ER stress promotes the increase in both protein and 
mRNA claudin-1 expression, which is accompanied by an increase 
in TER.141

Retinopathy of prematurity (ROP), the major cause of vision 
loss in children, is associated with younger gestational age and 
lower birth weight as risk factors.142 The key pathological change, 
namely retinal neovascularization, is associated with local ischemia 
followed by subsequent neovascularization. In more severe forms of 
the disease, the abnormal vascular changes may progress to retinal 
detachment, and once retinal detachment occurs the prognosis for 
recovery of good visual acuity is very low.143 The oxygen-induced 
retinopathy (OIR) model is widely used for studies of retinal neo-
vascular diseases such as ROP and proliferative diabetic retinopa-
thy.144 Normally, in the OIR model, there is neovascularization 
in the retina and increased vascular permeability,145 being also 
detected an overexpression of claudin-2 and 5 (mRNA and pro-
tein), while the levels of occludin and claudin-1 were unaffected.77 
Moreover, each claudin was also mislocalized to the cytosolic com-
partment or distributed to nonjunctional regions of the plasma 
membrane, suggesting a break in tight junctional strands of each 
cell thus contributing to the formation of new leaky vessels.77

While the breakdown of the iBRB has been investigated exten-
sively, the involvement of the breakdown of the oBRB (RPE bar-
rier) in the progression of certain retinal diseases has not been 
widely addressed. The leakage through the RPE barrier causes 
excessive water influx to the retina, and so the breakdown of this 
barrier is likely to play a causative role in the development of some 
forms of diabetic macular edema, a major cause of vision loss in 
diabetic retinopathy, being also involved in the development of 
age-related macular degeneration.

As mentioned above, inflammation underlies many alterations 
detected in these retinal pathologies. In ARPE-19 cells, a spontane-
ously transformed cell line of human adult RPE, the pro-inflam-
matory cytokine IL-1β promotes a decrease in the TER, while 
stimulating the expression of claudin-1, although the expression of 
claudin-11 and 12 remains constant.146 In the same cell line, expo-
sure to high glucose and IL-1β leads to the disruption of claudin-1 
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