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Parsimonious description for 
predicting high-dimensional 
dynamics
Yoshito Hirata1,2,3, Tomoya Takeuchi1, Shunsuke Horai1, Hideyuki Suzuki2,3 & 
Kazuyuki Aihara1,2,3

When we observe a system, we often cannot observe all its variables and may have some of its 
limited measurements. Under such a circumstance, delay coordinates, vectors made of successive 
measurements, are useful to reconstruct the states of the whole system. Although the method of 
delay coordinates is theoretically supported for high-dimensional dynamical systems, practically 
there is a limitation because the calculation for higher-dimensional delay coordinates becomes 
more expensive. Here, we propose a parsimonious description of virtually infinite-dimensional delay 
coordinates by evaluating their distances with exponentially decaying weights. This description 
enables us to predict the future values of the measurements faster because we can reuse the 
calculated distances, and more accurately because the description naturally reduces the bias of the 
classical delay coordinates toward the stable directions. We demonstrate the proposed method with 
toy models of the atmosphere and real datasets related to renewable energy.

Nonlinear time series analysis1–3, or time series analysis based on dynamical systems theory4–6, has been 
developed intensively in the last 35 years. The most important result is the method of delay coordi-
nates7–9: Suppose that we can observe a scalar time series ( ) = , , …{s t t 1 2 } from a target system whose 
dimension is m. If we construct d-dimensional vectors ( ( ), ( − ), …, ( − + ))s t s t 1 s t d 1 , called delay 
coordinates, by using successive scalar measurements, then it is generally true that if d > 2m, the states 
x(t− d+ 1) for the underlying dynamical system and the vectors with delay coordinates 
( ( ), ( − ), …, ( − + ))s t s t 1 s t d 1 , are one-to-one on the attractor, or a set of states the trajectory of the 
underlying dynamical system is attracted after the transient. Although this statement is supported how 
large the dimension m for the underlying dynamics is, practically the method of delay coordinates can-
not be used for high-dimensional dynamics partly because the delay coordinates are distorted toward the 
stable directions on the attractor10, and partly because the calculation of delay coordinates becomes 
expensive.

The core part of the proposed method came from the idea of weighted delay coordinates4. In the 
weighted delay coordinates, the distortion of high-dimensional delay coordinates toward the stable direc-
tions is avoided by reducing weights of the past observations exponentially. If we denote the decay rate 
by λ  (0 <  λ  ≤  1), the weighted delay coordinates can be written as λ( ( ), λ ( − ), …, ( − + ))−ss t t 1 s t d 1d 1 . 
Berry et al.10 uses the weighted delay coordinates for dimension reduction.

Our idea is to virtually use infinite-dimensional weighted delay coordinates, namely 
λ( ) = ( ( ), λ ( − ), ( − ),…)

s st s t t 1 s t 22 , where we extend the time axis toward the minus infinity and 
assume s(t) =  0 for t ≤  0 for simplicity. As we will show in the Methods section, the distance between 
( )
s t1  and ( )s t 2  in L1 norm is calculated efficiently and successively. To make the distance converge, we 
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just need to set 0 <  λ  <  1. Thus, by combining with the Lorenz’s method of analogues11,2, we construct a 
method of time series prediction (see the details in the Methods section).

First, we tested the proposed time series prediction on Lorenz’96 I model12,13, which is the mini-
mum model of the atmosphere (see Supplementary Information for the details of the numerical exper-
iment). When we compared the performance of the proposed method with that of the conventional 
10-dimensional delay coordinates, we found that the proposed method tended to achieve the higher 
correlation coefficient (see Supplementary Information for the definition) between the prediction and 
the corresponding actual values up to 5 steps ahead (Fig. 1(a,c)). The proposed method was significantly 
better than the persistent prediction, where we let the current values be the prediction for the future 
values. For one of the 100 tested time series, we compared the speed of calculations. The proposed 
method only consumed 0.72 seconds, while the conventional 10-dimensional delay coordinates con-
sumed 14.66 seconds. We used a laptop computer with Intel Core i7 CPU(3GHz) with 16.0GB memory. 
The programs were implemented in MATLAB. We did not use the recursive formula of equation (4) in 
Methods here. Thus, the proposed method is faster and more accurate in prediction than the conven-
tional delay coordinates.

Second, we tested the proposed time series prediction on Lorenz’96 II model12,13. In the Lorenz’96 II 
model, there are two types of variables: the slow variables correspond to the upper-layer of the atmos-
phere and the fast variables correspond to the layer close to the surface of the earth (see Supplementary 
Information for the details of this numerical experiment). We found that the proposed method tended 
to have the greater correlation coefficient than the conventional 10-dimensional delay coordinates up to 
10 steps ahead (Fig. 1(b,d)). In one of the 100 tested time series, the computational time required for the 
proposed method was 0.80 seconds with the laptop computer, while that required for the conventional 
delay coordinates was 20.16 seconds; we did not use the recursive formula of equation (4) here too.

Third, we applied the proposed time series prediction to the sunshine duration at a single point of 
Fuchu, Japan (see Supplementary Information for the details of the numerical experiment). The result 
presented in Fig.  2 shows that the proposed method achieved the higher correlation coefficient than 

Figure 1.  Prediction results on Lorenz’96 I model and Lorenz’96 II model. (a,c,e) correspond to the 
Lorenz’96 I model, while (b,d,f) correspond to the Lorenz’96 II model. (a) and (b) show examples of 5 steps 
ahead prediction, (c,d) show the correlation coefficients between the prediction and the actual value given a 
prediction step, and (e,f) show the root mean square errors given a prediction step. In panels (a,b), the blue 
solid line corresponds to the prediction by the proposed infinite-dimensional weighted delay coordinates, 
the green dashed line corresponds to the one by the 10-dimensional delay coordinates, and the red dash-
dotted line, the actual values. In panels (c–f), the blue solid line and the green dashed line correspond to the 
proposed method and the conventional 10-dimensional delay coordinates, respectively, and the red dash-
dotted line, the persistence prediction. The error bars show the standard deviations.
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the persistent prediction and the prediction using 1 day periodicity when the prediction steps were 
greater than or equal to 1.2 hours. To make the prediction for the 10 minutes dataset spanning 5 years of 
2008–2012, it only took 3.8 hours with a desktop computer with 2.7 GHz 12-Core Intel Xenon E5 with 
64 GB memory. Therefore, the proposed method can run in the real time.

We also applied the proposed time series prediction to the wind speed data at Fuchu, Japan (See the 
Supplementary Information for the details of this numerical experiment). We found that the proposed 
method achieved the greater correlation coefficient than the persistent prediction and the prediction 
using 1 day periodicity when the prediction steps were between 4 and 15.8 hours (Fig. S1). In addition, 
we needed 3.8 hours with the desktop computer to complete the prediction for the dataset between 2008 
and 2012. Thus, for this wind speed dataset, the prediction can also be done in the real time.

By using the proposed method, we can circumvent problems of the current standard practice for 
obtaining delay coordinates2, which is, for example, to decide the delay by the first minimum of mutual 
information14 and the embedding dimension by false nearest neighbors15. Instead of choosing these two 
parameters, we need to choose the decay rate λ , by which the proposed method shows the robust per-
formance as demonstrated in Fig.  3 and S2. Thus, the proposed method will make it easier to apply 
nonlinear time series prediction. We can even remove the choice of λ  by combing the proposed method 
with the expert advice algorithm16–18 (see Supplementary Information for the details). Thus, the proposed 
method is suitable for automating some time series prediction tasks.

6am 0pm 6pm 0am 6am 0pm 6pm 0am 6am 0pm 6pm 0am 6am
0

5

10

Time (hours)

S
un

sh
in

e 
du

ra
tio

n 
(m

in
)

(a) 6 hours ahead prediction

0 3 6 9 12 15 18 21 24
0.4

0.6

0.8

1

Prediction steps (hours)
C

or
re

la
tio

n 
co

ef
fic

ie
nt

(b) Prediction performance vs prediction steps

0 3 6 9 12 15 18 21 24
0

2

4

6

8

Prediction steps (hours)R
oo

t m
ea

n 
sq

ua
re

 e
rr

or
 (

m
in

)
(c) Prediction performance vs prediction steps

Proposed method
Persistence prediction
Prediction using 1 day periodicity

Figure 2.  The prediction result on sunshine duration within 10 minutes at Fuchu, Japan. Panel (a) shows 
6 hours ahead prediction (blue solid line), prediction using 1 day periodicity (black dotted line), and the 
actual values (red dash-dotted line). Panel (b) shows the correlation coefficients between the prediction 
and the actual observations. Panel (c) shows the root mean square errors between the prediction and 
actual observation. In panels (b,c), the blue solid line, the red dash-dotted line, and the black dotted line 
correspond to the proposed method, the persistence prediction, and the prediction using 1 day periodicity.

Figure 3.  Dependence of the prediction performance on the parameter λ of the proposed method for 
Lorenz’96 I model. Panels (a–c) correspond to 2, 4, and 6 steps ahead predictions. In each panel, the blue 
solid line corresponds to the proposed method and the green dashed line corresponds to the conventional 
10-dimensional delay coordinates, which do not depend on the choice of the parameter λ . Each error bar 
shows the standard deviation of the correlation coefficient between the prediction and the actual values.
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The proposed method is robust against the observational noise. Even if we increase the noise level 
up to 10% of the standard deviation of the original time series, the correlation coefficient between the 
prediction using the proposed method and the actual values was significantly higher than that between 
the prediction using the conventional delay coordinates and the actual values (See Fig. 4). The proposed 
method naturally filters out observational noise when it is included in the measurements. Moreover, even 
if we evaluate the prediction with the root mean square errors, the proposed method is superior to the 
conventional delay coordinates for short-term predictions (Fig. 1(e,f)). Thus, our results could have the 
robustness to some extent in terms of ways for evaluating the prediction.

If we increased the size of database, then the prediction performance became better (Fig. S3). In 
addition, even if we used different numbers of neighbors for making the prediction, the performance 
was robust and did not change much (Fig. S4).

The lower the minimal Lyapunov exponent σ1 for the underlying dynamics is, the higher the optimal 
λ  is (Fig. S5). But, judging from the values of the optimal λ  for the prediction, the reconstructed space 
was not reduced to the most stable direction because λ σ− > −log2 1

10. Therefore, the list of distances 
contained the information of more than the one-dimensional space. From this viewpoint, the proposed 
method provides a convenient description for the high-dimensional dynamics.

It is easy to further extend the proposed infinite-dimensional weighted delay coordinates to multivar-
iate time series19–24 or point processes25–29. Let W be a set of states. If we define the state at time t by 
∈w Wt  and a distance function on these states by ∪× → +RD: W W {0} , then the distance ∼D between 
= ≤∼w w t t{ }t t 11

 and = ≤∼w w t t{ }t t 22
 on such infinite dimensional weighted delay coordinates can be 

defined as

( ) ∑ λ, = ( , ).
( )

∼ ∼∼

=

∞

− −D w w D w w
1t t

d

d
t d t d

0
1 2 1 2

This distance, called the Fréchet product metric30, satisfies the three conditions for the metric: (i) 
( , ) ≥∼ ∼∼D w w 0t t1 2

 and ( , ) =∼ ∼∼D w w 0t t1 2
 if and only if =∼ ∼w wt t1 2

; (ii) ( , ) = ( , )∼ ∼ ∼ ∼∼ ∼D w w D w wt t t t1 2 2 1
; (iii) 

( , ) ≤ ( , ) + ( , )∼ ∼ ∼ ∼ ∼ ∼∼ ∼ ∼D w w D w w D w wt t t t t t1 2 1 3 3 2
. Therefore, if a given time series is multidimensional, we may 

choose the Euclidean distance between times −t d1  and −t d2  as D to obtain ∼D. We will discuss this 
extension in our future communication.

The proposed description might also be useful in inferring a network structure. This is an open ques-
tion and we are also interested in developing the method in this direction.

Comparing with the traditional delay coordinates, the proposed infinite-dimensional weighted delay 
coordinates can produce more accurate time series prediction faster. As there is an increasing demand 
for real-time prediction for a big dataset especially in the field of renewable energy such as photovoltaic 
and wind powers, we hope that the proposed method helps to introduce more renewable energy into the 
power grids so that we can reduce CO2 emissions.

Methods
Suppose that a scalar time series ( ) = , , …{s t t 1 2 } is given successively. Denote by N the size of the 
database. Let λ λ( ) = ( ( ), ( − ), ( − ), …)

s t s t s t s t1 22  be the infinite-dimensional weighted delay 
coordinates, where λ  is a decay rate. We define a distance ( ) − ( )

 s t s t l1 2
1
 between ( )s t1  and ( )s t 2  as
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Figure 4.  Dependence of the prediction performance on the level of the observational noise for 
Lorenz’96 I model. The blue solid line and the green dashed line correspond to the proposed method and 
the conventional 10 dimensional delay coordinates, respectively. The error bars show the standard deviations 
for the correlation coefficients between the prediction and the actual values.
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We use λ  =  0.5 if not mentioned.
This distance is convenient because we can reuse the previous calculations of distances to obtain 

distances for a pair of its future infinite-dimensional weighted delay coordinates. Namely, observe the 
following relation:
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When we use the conventional d-dimensional delay coordinates (λ  =  1), the similar recursive logic may 
be applied to simplify the calculation of distances as follows:

( ) − ( ) = ( ) − ( ) − ( − ) − ( − ) + ( − ) − ( − ) . ( )
   s t s t s t s t s t d s t d s t s t1 1 4l l1 2 1 2 1 2 1 2

1 1

We combine the relation of equation (3) with Lorenz’s method of analogues2,11. In the Lorenz’s method 
of analogues, we find close matches in the past and average their following points as prediction for the 
future. Let us construct prediction of up to P steps ahead. Suppose that the current time is at time t and 
we have the following datasets: a list of distances ∆ = ( − ) − ( − − )

 s t s t i1 1i
t

l1
 ( = , …, )i 1 N  and 

a list of the corresponding observed values = ( − )S s t ii
t  ( = , …, )i 1 N . First, we find the set 

( , ) = , …,t p i iT { }K1  of indices for the K smallest distances among ∆ ( ≤ ≤ )P i Ni
t , and provide the p 

steps ahead prediction for each p ( < ≤ )0 p P  by ∑ ∈ ( , ) − +S
K i T t p i p

t1
1. We used K =  10 if not mentioned. 
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We also update the list of the corresponding values by

= ( )+
+S S 6i

t
i
t

1
1

for 1 ≤  i <  N and

= ( ). ( )+S s t 7t
1

1

Therefore, to run the proposed method, each time we obtain a measurement, we only need to store 2N 
floating numbers, compare N floating numbers, conduct N additions, N subtractions, and N multiplica-
tions. Compare these numbers with the case using the traditional d-dimensional delay coordinates: If we 
do not use the recursive formula of equation (4), we need dN comparisons for comparing element-wisely 
N pairs of d dimensional delay coordinates, dN subtractions, and (d− 1)N additions (The computation 
for finding nearest neighbors is in the same order).
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