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Sllmm~AFy 
The T helper type 2 (Th2) cell product interleukin 10 (IL-10) inhibits the proliferation and function 
of Thl  lymphocytes and macrophages (Mr The nonobese diabetic mouse strain (NOD/Shi) 
develops a Me and T cell-dependent autoimmune diabetes that closely resembles human insulin- 
dependent diabetes mellitus (IDDM). The objective of the present study was to explore the 
consequences of localized production of IL-10 on diabetes development in NOD/Shi mice. 
Surprisingly, local production of IL-10 accelerated the onset and increased the prevalence of diabetes, 
since diabetes developed at 5-10 wk of age in 92% of IL-IO positive I-A/3g 7/g7, I-E- mice in 
first (N2) and second (N3) generation backcrosses between IL-10 transgenic BALB/c mice and 
(NOD/Shi) mice. None of the IL-10 negative major histocompatibility complex-identical littermates 
were diabetic at this age. Furthermore, diabetes developed in 33% of I-A/3g TM, I-E + N3 mice 
in the presence of IL-10 before the mice were 10 wk old. Our findings support the notion that 
IL-10 should not simply be regarded as an immunoinhibitory cytokine, since it possesses powerful, 
immunostimulatory properties as well. Furthermore, our observations suggest that/3 cell destruction 
in NOD mice may be a Th2-mediated event. 

I n mice, IL-10 is produced by the Th2 subset of CD4 § T 
, helper lymphocytes, Lyl + B lymphocytes and macro- 

phages (Me) (1, 2). It inhibits proliferation of Thl  lympho- 
cytes and production of cytokines by blocking costimulatory 
functions of accessory cells (3-6). IL-10 is also a potent in- 
hibitor of monocyte/Mr function and cytotoxicity (7-9). 
However, 1I,-10 is not a general inhibitor of immune responses. 
It potentiates IL-2-induced proliferation and differentiation 
of CD8 + T cells (10), and stimulates expression of the high- 
affinity IgG Fc receptor type 1 (FeaR1) on monocytes, thereby 
stimulating monocyte-mediated antibody-dependent cellular 
toxicity (11). 

Transgenic expression of IL-10 in pancreatic/3 cells of 
BALB/c mice (Ins-IL-10) leads to peri-islet inflammation (12). 
Characteristically, this lesion does not progress to insulitis 
and the mice never become diabetic. However, aside from 
attracting leukocytes, IL-10 may affect the functional special- 
ization of lymphocytes within the inflammatory foci, pro- 
moting development of a Th2 cytokine response. Because a 
shift in the balance between Thl  and Th2 lymphocytes may 
change the outcome of immunological reactions (13, 14), the 
objective of this study was to explore the consequences of 
localized production of IL-10 on the development of insulin- 
dependent diabetes mellitus (IDDM) in nonobese diabetic 
(NOD/Shi) mice. To obtain islet-specific production of IL- 
10 on a diabetes susceptible genetic background, we back- 

crossed mice from two well-characterized, independent, Ins- 
IL-10 transgenic lines to NOD/Shi mice and examined the 
N2 and N3 progeny. Mice were examined for diabetes, and 
typed by the PCR for the MHC I-A/3 a (BALB/c) and the 
presence of a functional I-E (I-E +). 

Materials and Methods 
Animals. The two Ins-IL-10 transgenic BALB/c lines used for 

the breeding are described elsewhere (12), The NOD/Shi mice were 
part of a colony at The Scripps Research Institute; the original 
mice were donated by E. Leiter (The Jackson Laboratory, Bar 
Harbor, ME). Diabetes in the parental NOD/Shi mice develops 
when the mice are 13 wk old. In females, the prevalence of diabetes 
is m50% at 16 wk and 75% at 36 wk of age. In males the preva- 
lence is m20% at 36 wk of age. NOD/Shi mice were outcrossed 
to the Ins-Ibl0 strain and the progeny (F1) was backcrossed twice 
to obtain a N2 and N3 generation, which carry 75 and 87.5% 
of the NOD/Shi genes, respectively. Mice were maintained in 
microisolator cages under pathogen-free conditions. The animal 
care was in accordance with the institutional guidelines and recom- 
mendations from The National Institutes of Health. 

The blood glucose concentration (BG) was determined in un- 
anesthetized mice in a drop of tail blood using Chemstrip bG and 
an AccuChek II monitor (Boehringer Mannheim Diagnostics, In- 
dianapolis, IN). As preliminary experiments strongly indicated that 
the presence of Ibl0 accelerated the onset of diabetes in mice of 
both gender, BG levels were determined once a week beginning 
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when the mice were 4 wk old. Mice were killed at the onset of 
diabetes, defined as a BG level >300 mg/dl, or at 10 wk of age 
(some II-10 negative mice were killed on the same day that a trans- 
genic littermate developed diabetes). A normal BG concentration 
was defined as a BG level less than 120 mg/dl. 

Histology. Upon death all the pancreata were divided in two 
parts. The part of the pancreas used for evaluation ofperi-isht inflam- 
mation and insulitis was fixed in Bouin's fixative overnight, fol- 
lowed by paraffin embedding and hematoxylin and eosin staining 
(H&E). Islets were counted in three discontinuous layers of pan- 
creatic tissue, and scored for morphological abnormalities according 
to the following system: 0, normal islets; 1, peri-islet inflamma- 
tion, only few cells are seen in the islets; 2, severe insulitis with 
evidence of/3 cell necrosis. The part for immunohistochemistry 
was snap-frozen in Tissue-Tek (Miles Laboratories Inc., Elkhart, 
IN), sectioned and stained with Mac-1 (Boehringer Mannheim Bio- 
chemicals), Ly5 (CDR45/B220), L3T4, and Ly2 for detection of 
macrophages, B lymphocytes, CD4 + lymphocytes, and CD8 § 
lymphocytes, respectively (PharMingen, San Diego, CA) (all anti- 
bodies were used at a concentration of 5 #g/ml). After incubation 
with biotin-labeled anti-rat IgG antibodies (Vector Laboratories, 
Inc., Burlingame, CA), sections were exposed to horseradish per- 
oxidase (HRP)-labeled avidin-biotin complex (ABC-kit; Vector 
Laboratories, Inc.). HRP was visualized using 3,3' diaminobenzi- 
dine as chromogene. 

In Situ Hybridization. Deparaffufized, Bouin-fixed sections were 
prehybridized for 2-3 h at 42~ in a buffer composed of 50% for- 
mamide, 0.3 M NaC1, 20 mM tris, pH 8.0, 5 mM EDTA, lx  
Denhardt's sohtion, 10% dextran sulfate, and 10 ram dithiothrei- 
tol. Hybridization with 750,000 cpm/section of 3sS-labeled sense 
or antisense RNA probe was done for 16 h at 42~ in a humidified 
chamber. This was followed by washing, dehydration, and drying. 
Sections were covered with Kodak NTB2 emulsion, and were de- 
veloped after 3 wk. RNA probes were prepared by in vitro tran- 
scription of linearized plasmid containing I1-10 or IFN-3~ cDNA. 

Adoptive Transf~ Adoptive transfer was performed as described 
by Wicker et al. (15). Splenocytes were isolated from diabetic N2 
(n = 7) and N3 donors (n = 1); all donors were I-AB gT/gT, I-E-. 
7-wk-old NOD/Shi recipients were treated with 775 rad whole- 
body radiation from a cesium source. The mice were then given 
an intravenous injection containing 1-2 x 107 donor splenocytes. 
BG levels were measured weekly. Mice were killed at the onset 
of clinical diabetes or 6 wk after the transfer. Adoptive transfer 

from a diabetic NOD/Shi mouse to two 7-wk-old irradiated 
NOD/Shi mice was used as positive control. These mice became 
diabetic 2-3 wk after transfer. Untreated, age- and sex-matched 
NOD/Shi mice served as negative controls. We found no differ- 
ences in pancreatic morphology between irradiated NOD/SIft mice 
left untreated for 6 wk (n = 2) and the untreated mice used as 
controls. 

Genetic Analysis. The presence of the I1,10 transgene, I-A/J d 
and I-Eoe a were determined by PCR on tail DNA. I-ABd-spedfic 
primers were: 5' GATACATCTACAACCGC~AGGAG 3' and 
5' CTGTTCCAGTACTCGGCGTCTG 3' (16). The presence of 
I-Aft a was confirmed by immunohistochemical staining of thymic 
or splenic tissue from randomly selected mice; anti-mouse Ia mono- 
clonal antibody M4/114, which does not react with I-/543 gT, was 
used. The presence of I-Eo~ d was shown by using primers com- 
plementary to the signal peptide exon: 5' ATGAGCTCCCAG- 
AAGTCATGGG 3' and 5' GGAGAGACAGCAGCTCTCAGC 3' 
(17). The 5' end primer covers the SacI restriction site in the signal 
exon, which is deleted in mice not expressing I-E, such as the NOD 
strain (17). In each PCR reaction, we included DNA from NOD/Shi 
and RALB/c mice as controls. 

Results and Discussion 

Prevalence of Diabetes and Islet Inflammation in FI, N2, and 
N3 Backcross Animals. Diabetes did not develop in any of 
the F1 mice tested. At 8-12 wk of age, BG levels in IL-10 
positive (n -- 9) and IL-10 negative (n = 14) F1 mice were 
<120 mg/dl. Staining with H&E showed no evidence of leu- 
kocyte infiltration in pancreata from IL-10 negative F1 mice 
(n = 4). Pancreata from IL-IO positive F1 mice (n = 2) had 
peri-islet inflammation similar to that seen in the parental 
Ins-IL-10 lines (12). 

The prevalence and time of onset of diabetes were deter- 
mined in 47 mice of both genders from the first backcross 
(N2) (Table 1). Among mice that were I-A~g 7/g7, I -E- ,  16 
of 17 IL-10 positive mice were diabetic by 4-10 wk of age; 
none of their MHC-identical, nontransgenic littermates 
(n = 6) were diabetic at this age (Table 1). The BG level 
in the IL-10 negative mice was normal at time of death. 
Diabetes did not develop in IL-10 positive mice that were 

Table 1. Prevalence of Spontaneous Diabetes in Male and Female Mice in First (N2) and Second (N3) Backcrosses in Relation to MHC Type 

MHC genotype: MHC genotype: MHC genotype: MHC genotype: 
N2 I-A/3s7/sr I-E- I-A~ gr I-E + N3 I-AB87/s7, I-E- I_A~87/a, I.E + 
(n = 47) (n = 23) (n =- 24) (n = 33) (n = 16) (n = 17) 

diabetes incidence (%) 
IL-10 positive 16/17 (94) 0/11 (0) IL-10 positive 

(n = 28) (n = 13) 

IL-IO negative 0/6 (0) 0/13 (0) IL-10 negative 
(n = 19) (n = 20) 

p value p <0.002 ND p value 

diabetes incidence (%) 
6/7 (86) 2/6 (33) 

0 / 9  (0) 0 /11  (0) 

p <0.01 p <0.05 

Fisher's exact test was used for the statistical calculations. 
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Table 2. Histopathological Analysis of Islets from Female and Male Mice from the First (N2) and Second (N3) Generation Backcrosses in 
Relation to MHC Type 

MHC genotype: I-A/~ g7/sT, I-E- 

Normal islets 

MHC genotype: I-A/3 sT/d, I-E + 

Islets showing Islets showing Islets showing Islets showing 
peri-islet severe peri-islet severe 

inflammation insulitis Normal islets inflammation insulitis 

N2 
IL-10 positive 10% 38% 52% 5.5% 82% 12.5% 
IL-10 negative 97.5% 2.5% 0% 99.6% 0.4% 0% 
p values p <0.001 p <0.001 p <0.001 p <0.001 p <0.001 p <0.001 

N3 
IL-10 positive 4.8% 45.2% 50% 3.3% 59.3% 37.4% 
IL-10 negative 75% 22.7% 2.3% 92% 7.1% 0.9% 
p values p <0.001 p <0.001 p <0.001 p <0.001 p <0.001 F <0.001 

The following number of mice and islets (n) were tested for evaluation of histology. N2 generation: Mice expressing I-Afls7/s 7, I-E- : 12 IL-10 posi- 
tive (n = 145) and 5 IL-10 negative mice (n m 157); mice expressing I-Aflsr I-E+: 7 IL-10 positive (n ~ 168) and 10 IL-10 negative mice (n 
= 244). N3 generation: Mice expressing I-AflgT/s 7, I-E-: 5 IL-10 positive (n - 42), 6 IL-10 negative mice (n ~ 172); mice expressing I-Aflg TM, 
I-E+: 4 IL-10 positive (n = 91), and 9 IL-10 negative mice (n = 222). Fisher's exact test was used for statistical calculations. 

I-A/3s 7/d, I-E + (n = 11) (Table 1). In addition, all of the 
IL-10 negative N2 mice obtained by backcrossing nontrans- 
genic Ins-IL-10 littermates with NOD/Shi mice had normal 
BG levels at 10-13 wk of age. Diabetes in IL-10 positive 
I-A/~g 7/g7, I-E-, N2 mice was accompanied by pronounced 
insulitis (Table 2). This is in sharp contrast to the sdective 
peri-insulitis in the parental Ins-IL-10 transgenic strain (12). 
Thus, localized production of IL-10 does not protect the islets 
of Langerhans against infiltration by inflammatory cells in 
the presence of diabetes susceptibility genes. Surprisingly, in 

I-A/~87/d, I-E + mice, IL-10 induces infiltration of  the islets 
of  Langerhans, as no islets wi th  insulitis were detected in 
MHC-identical  IL-10 negative mice (Table 2). 

The  prevalence and t ime of onset of  diabetes were also de- 
termined in 33 mice from the second backeross (N3). Among  
mice that were I-A/3g7/g 7, I -E - ,  six of  seven IL-10 positive 
mice of both  genders were diabetic by 4-10 w k  of age; none 
of the MHC-identical,  IL-10 negative littermates of  these 
progeny were diabetic at this age (n = 9) (Table 1). As in 
the N2, the early onset of  diabetes in I-A~g7/g 7, I -E - ,  IL- 
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sulitis (--*). The pancreas was isolated from 
a diabetic, 5-wk-old, II.,10 transgenic N3 
male expressing I-A~g TM, I-E +. 



10 positive mice was accompanied by an increase in the number 
of islets showing insulitis (Table 2). Among mice that were 
I-Aflg TM, I-E + two of six mice that were IL-10 positive were 
diabetic at 5 and 6 wk of age (Table 1) (Fig. 1); none of their 
MHC-identical, IL-10 negative littermates were diabetic at 
10 wk of age (n = 11). Parallel to the development of clinical 
diabetes in I-AflsT/a and I-E + mice that were IL-10 positive, 
the number of islets showing insulitis increased significantly 
from N2 (12.5%) to N3 (37.4%) (p <0.001) (Table 2). In- 
troduction of more diabetes susceptibility genes from N2 to 
N3 is indicated by the increased presence of peri-islet inflam- 
mation in IL-10 negative mice that were I-Aflgr 7, I-E- or 
I-Afl~ TM, I-E + (Table 2) (both p <0.001). 

Because the accelerated onset and the high prevalence of 

diabetes in the N2 and N3 generations were accompanied 
by leukocytic infiltration of the islets of Langerhans, IL-10- 
induced diabetes in the NOD mice is most likely a conse- 
quence of an accelerated immune reaction. 

C~racterization of Leukocyte Subsets in Inflammatory Foci and 
1I.-10 and IFN-y Expression. Pancreatic tissue from IL-10 
positive N2 mice with diabetes (n = 5, all I-Af187/g7, I-E-), 
IL-10 positive N3 mice with or without diabetes (I-Aflg 7/g7, 
I-E- [n -- 3], and I-Aflg TM, I-E + [n -- 3]), and from 
NOD/Shi mice (n = 2) were selected for characterization 
of leukocyte subsets. The presence of IL-10 changed the subset 
of attracted leukocytes in both backcross progeny compared 
with the parental NOD/Shi mice. Characteristically, in 10 
of 11 nondiabetic and diabetic IL-10 positive N2 and N3 mice, 

Figure 2. In situ hybridization demon- 
strafing lymphocytic expression of IL-10 (,4) 
(-~) and IFN-7 (B) (--~) in II-10 transgenic 
BALB/c mice. No significant signals were 
seen using sense probes. 
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early as well as late lesions were dominated by Me, CD4 + 
T lymphocytes, and B lymphocytes, whereas only few 
CD8 § cytotoxic T cells were present (data not shown). This 
subset distribution of attracted leukocytes is similar to that 
seen in the parental Ins-IL-10 lines (12). In contrast, in adult 
NOD mice, lesions were dominated by CD4 + and CD8 + 
T cells and B lymphocytes, whereas very few Me were seen 
(n = 2) (data not shown). In the parental Ins-IL-10 strain, 
islet expression of IL-10 led to a Th2-1ike infiltration, as cells 
expressing IL-10 were frequently found in the inflammatory 
loci, as determined by in situ hybridization (Fig. 2 A), al- 
though occasionally cells expressing I F N ~  were also observed 
(Fig. 2 B). IL-10 containing cells were demonstrated in the 
inflammatory loci of N2 and N3 mice by immunohisto- 
chemistry (data not shown). 

Splenocytes fram Diabetic N2 and N3 Mice Infrequently Transfer 
Diabetes. The complete separation ofperi-insulitis from in- 
sulitis and diabetes in the parental Ins-IL-10 mice suggests 
that immune sensitization to ~ cells does not occur in these 
mice (12). Sensitization to fl cells after introduction of a limited 
number of diabetes susceptibility genes may explain the IL- 
100induced insnlitis and diabetes we observed. Therefore, we 
determined if splenocytes from diabetic N2 and N3 mice trans- 
ferred disease to irradiated, 7-wk-old NOD/Shi recipients 
(n = 15). Only one recipient became diabetic after 3 wk 
(p >0.05). At sacrifice, the BG levels in the recipients that 
did not become diabetic (n = 14) were similar to the BG 
levels in the negative control group (n = 8). In addition, 
the number of islets showing peri-islet inflammation or in- 
sulitis did not differ between the two groups (p >0.05, Fisher's 
Exact test) (data not shown). The failure to transfer diabetes 
has several explanations. First, N2 and N3 mice still lack 25 
and 12.5%, respectively, of the NOD genes and thus may 
lack some possible diabetes susceptibility genes important for 
development of antigen-specific autoimmunity, although one 
recipient did become diabetic. Second, IL-100induced acceler- 
ation of insulitis and diabetes may be due to antigen-non- 
specific immune reactions, which depend on the presence of 
IL-10 in the islets. Third, although donor splenocytes were 
I-A~sT/gT, graft-vs.-host disease due to differences between 
minor antigens is possible, and this could prevent transfer 
of disease. 

IL-IO Induces Diabetes in NOD Mice in the Presence of a Nor- 

maUy Protective MHC Haplotype. At least three to five genes 
(Idd-l-Idd-5) confer susceptibility to IDDM in NOD mice 
(18). Idd-1 is located in the MHC region on chromosome 
17 and determines both development of insulitis and onset 
of diabetes. Two unusual features of the NOD MHC are the 
lack of I-E transcription, which is due to a deletion in the 
promoter region of the I-Eoc chain gene (17, 19) and the pres- 
ence of unique I-A/3 molecules (I-Aft87) (16). Previous 
studies have suggested that the MHC contribution to IDDM 
is recessive, because coexpression of protective and diabeto- 
genic I-A genes or expression of functionally active I-E in- 
hibits development of diabetes and reduces insulitis (20~ 
However, findings in breeding studies and in other studies 
with transgenic mice suggest that I-A~g 7 is dominant with 
reduced penetrance in heterozygous form (26-29). Further- 
more, I-E + MHC heterozygous NOD mice (I-AB87/"bl) 
have insulitis at 10 mo of age (30), and diabetes develops in 
very few I-A~g ~/b or I-ABg 7/k mice at 10015 mo of age 
(31). Our results show that IL-10 can overcome the (par- 
tially) protective effect of I-E + and NOD MHC heterozy- 
gosity (I-ABg TM) on diabetes in N3 backcrosses before 10 wk 
of age. 

In summary, we have shown that transgenic expression 
of IL-10 accelerates the prevalence and onset of diabetes 
in I-A~gT/s ~, I-E- N2 and N3 NOD mice and in some 
I-ABs TM, I-E + N3 mice. The effect of IL-10 is more than 
an acceleration since the cytokine can overcome genetic bar- 
tiers imposed by less than complete set of genes from the 
NOD background. Furthermore, we have shown that trans- 
genic expression of IL-10 promotes a Th2-1ike lymphokine 
pattern, at least as determined by the level of IL-10 expres- 
sion of infiltrating cells. That IL-10 affects the balance be- 
tween Thl and Th2 lymphocytes in vivo is supported by re- 
cent observations obtained from IL-100deficient mice (32). 

Autoimmunity is usually attributed to Thl  cells, whereas 
Th2 responses are regarded as protective (13), although cer- 
tain autoimmune diseases appear to be mediated by Th2 cells 
(33). However, recent observations indicate that the inflam- 
matory loci in NOD mice are dominated by a Th2 cytokine 
response (34). Our observations support the notion that the 
autoimmune destruction of/~ cells in NOD mice is medi- 
ated by Th2 cells, and furthermore, that a Th2-mediated re- 
sponse is more harmful than generally believed. 
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