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ABSTRACT: With the further development of the concept of green chemistry, the new generation of energetic materials tends to
exhibit detonation properties such as higher insensitivity, higher density, and higher energy. Therefore, the precise molecular design
and green and efficient synthesis of energetic materials will be one of the serious challenges. For the purpose of accurate prediction of
detonation performance of energetic materials, an ensemble modeling strategy based on the combination of Monte Carlo (MC) and
variable importance measurement (VIM) improved random forest (RF) and quantitative structure−property relationship (QSPR) is
proposed, which was successfully used for density prediction of energetic materials. First, the structure of 162 energetic compounds
was optimized by Gaussian software, and the molecular descriptor data were calculated by CODESSA software based on the
optimized molecular structure. Then, the MCVIMRF_Med ensemble model was constructed on the basis of the above molecular
descriptor data and the corresponding energetic compound density index. The joint X−Y distance algorithm (SPXY) is used to
partition the data set. And then, MC is used to further divide the calibration set data into multiple subsets for the construction of the
ensemble model. The subset size and the number of iterations of the MCVIMRF_Med ensemble model were optimized through
MC cross validation. The final output strategy of the ensemble model is optimized based on the optimized parameters, and an
output optimization method based on median screening is proposed and successfully applied for the prediction performance
optimization of the MCVIMRF_Med ensemble model. To further investigate the performance of the MCVIMRF_Med ensemble
model, the performance of it was compared with partial least squares, RF, VIMRF, and MCVIMRF calibration models. It shows that
the MCVIMRF_Med ensemble model can achieve a better prediction result for the density of energetic materials, with R2

CV of
0.9596, RMSECV of 0.0437 g/cm3, R2

P of 0.9768, RMSEP of 0.0578 g/cm3, and relative analysis deviation of prediction set of 3.951.
Therefore, the MCVIMRF_Med ensemble modeling strategy combined with QSPR is an effective approach for the density
prediction of energetic materials. This work is expected to provide new research ideas and technical support for accurate prediction
of detonation performance of energetic materials.

1. INTRODUCTION
High energy density materials (HEDM),1,2 also known as
energetic materials, is a general term for a class of nitrogen
(fluorine) compounds with higher insensitivity, higher density,
and higher energy. Energetic materials can be divided into
propellant, explosive, pyrotechnic agent, initiating explosive,
and so forth. The upgrading of HEDM can remarkably
improve the strike performance of weaponry and the
effectiveness of space propulsion system and has become a
significant indicator of the national core military level and
military technology commanding heights.3 In recent years,

with the continuous promotion of the concept of green
chemistry, the concepts of resource utilization optimization,
ecological environment friendliness, and sustainable economic
and social development have also been paid more attention in
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the research field of energetic materials, and thus, the
requirements for detonation performance of new HEDM will
be further improved.4,5 Therefore, how to achieve precise
molecular design, synthesis, assembly, and detection is one of
the core issues in the development of new generation energetic
materials.

Traditional molecular design methods usually require
synthetic chemists to have a deeper understanding of the
research materials and can be completed through a large
number of structural design, synthesis route optimization,
synthesis process condition optimization, product separation
method research, product detection and analysis, and other
processes, which is a very time-consuming and labor-intensive
work. In addition, energetic compounds usually have high
energy, so there will be greater experimental risk in their
synthesis. Therefore, a more reasonable method for molecular
design of energetic materials is urgently needed. In recent
years, artificial intelligence has been used in the chemical field
for related research, such as chemical literature retrieval and
learning, intelligent laboratory robots, chemical process
optimization, and so forth. Mark Waller’s team successfully
planned a new chemical synthesis route using a deep neural
network and Monte Carlo (MC) tree algorithm.6 Burger et al.
designed and developed a more intelligent robot chemist to
achieve automation of researchers rather than instrument
automation.7 Quantitative structure−activity/property rela-
tionship (QSAR)/(QSPR)8,9 simulates the physical, chemical,
biological, and other characteristics of organic molecules with
the help of physical and chemical properties, structural
parameters and other indicators, combined with mathematical,
statistical, and other methods, which has been utilized
extensively in the development and design of new drugs,
environmental factor analysis, biological molecule action
analysis, chemical agent toxicological characteristics research
and other fields. Burello and Worth reviewed the application of
QSAR in the research field of nanomaterials in recent years.10

Ambure et al.11 developed an ensemble software for QSAR
modeling. Pontiki and Hadjipavlou-Litina12 conducted rele-
vant research on lipoxygenase inhibitors by QSAR. There are
few reports on QSAR in the molecular design of energetic
materials. In the previous research of our group, a method for
quantitative analysis of explosive heat of energetic materials
was reported based on QSPR and RF algorithm, and its
prediction set determination coefficient (R2

P) and average
relative error (MREP) were 0.8801 and 10.52%, respectively.13

This study preliminarily confirmed the feasibility of QSAR
combined with machine learning method in predicting
detonation performance of energetic compounds.

Based on theoretical calculation and molecular simulation,
QSAR can calculate various descriptors of molecules to be
studied, including topology, composition, electrostatics,
geometry, quantum chemistry, WHIM, 3D Weiner, and
other descriptor information, which will generate a lot of
data. Therefore, QSAR data processing and model con-
struction are one of the focuses of its research.14 Common
QSAR modeling methods include multiple linear regression
(MLR),15,16 partial least squares (PLS),17,18 artificial neural
network (ANN),19,20 and support vector machine (SVM).21,22

MLR and PLS are usually used to solve linear regression
problems, so the performance of QSAR data modeling is
generally mediocre. ANN and SVM often show good
prediction performance in QSAR modeling, but due to the
limitations of model parameters and structure, they often show

low modeling efficiency in high-dimensional data processing.
In recent years, the ensemble model strategy has attracted
more and more attention in the construction of multiple
regression models. Wang et al.23 proposed a dual ensemble
strategy of MC−LASSO−PLS for near-infrared spectral data
modeling. Liu et al.24 proposed a multi-dimensional ensemble
method based on deep learning for short-term runoff
prediction. It can be seen from previous studies that the
ensemble model usually performs better than a single model in
small sample data. The most popular resampling technologies
include bagging, subagging, boosting, and stacking.25,26 RF
algorithm is a tree-based ensemble method with excellent
performance, which is often used to solve regression and
classification problems.27 In the process of RF modeling, the
bagging method is used for random sampling in place to build
multiple regression trees (decision trees). At the node of each
tree, a certain number of variables are selected and pruning
operations are performed. When the data set contains too
many secondary or redundant variables, the prediction
performance of this tree will be degraded. If there are many
such trees in the RF model, the performance of the ensemble
model will be degraded. This is because the final result of the
RF model comes from the simple average of the results of
these regression trees.28 Therefore, how to ensure that the
contribution of variables to the RF model in an acceptable
range is a key point worth considering when building a QSAR
model based on RF.29

The subset generation method and the ensemble strategy of
subset model prediction results are the focus of research in the
modeling process of ensemble model construction.30,31

However, in the QSAR/QSPR modeling task, the sample
size is usually small, which will have serious effects on the
prediction performance of the ensemble model, because it will
restrict the diversity of subsets of the ensemble model.32 MC is
a method based on random sampling, which can be used to
generate a group of random numbers, and can be combined
with the task to be analyzed to generate a new sample and
combination.33 In recent years, MC has been employed for the
construction of multiple regression models, including cross
validation,34,35 subset generation,36 feature variable screen-
ing,37,38 and so forth. MC is used to generate multiple groups
of different subsets for the construction of the RF model, and a
certain ensemble strategy is used to further integrate the
output, which can effectively improve the stability of the
prediction performance of the RF model, especially in small
sample analysis tasks such as QSPR data.

To solve the mentioned problems and obtain a QSPR
quantitative analysis model of detonation performance of
energetic materials with more excellent prediction perform-
ance, an ensemble modeling strategy of MC-variable
importance measurement (VIM)-random forest (RF)
(MCVIMRF_Med) was proposed in this work. First,
molecular descriptors and density indexes of 162 energetic
compounds were obtained, and the QSPR descriptors were
divided into calibration set and prediction set by the SPXY
method. Then, the MC method is used to generate a subset of
the ensemble model; the MCVIMRF_Med ensemble model
will be constructed based on these subsets. To further optimize
prediction performance of the MCVIMRF_Med ensemble
model, the subset size of the MCVIMRF_Med ensemble
model and the number of model iterations are optimized based
on MC cross validation. The final output strategy of the
ensemble model is optimized based on the optimized model
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parameters, and an output optimization method based on
median screening is proposed and applied for the prediction
performance optimization of MCVIMRF_Med ensemble
model. Finally, the MCVIMRF_Med ensemble model was
built under optimized conditions to predict the density of
energetic materials.

2. EXPERIMENT AND METHODS
2.1. Energetic Material Data. At present, the research of

new high-energy and low-insensitive HEDM still focuses on
the synthesis and preparation of C, H, O, and N energetic
compounds, mainly nitrogen rich compounds. In recent years,
common energetic compounds can be divided into aromatic,
nitroform, nitramine, nitrate, furazan, azide, fluorine, nitrogen
heterocyclic, and clathrate, according to their main skeletons.
Therefore, 162 energetic compounds are involved in this study,
including the mentioned nine types of nitrogenous com-
pounds. Before calculating the molecular descriptors of
energetic compounds, Gaussian software (Version 09) was
utilized to optimize the molecular structures of the above
energetic compounds to be analyzed at the B3LYP/6-31+G*
level, and then, the molecular descriptor data were calculated
based on the optimized molecular structure. The molecular
descriptors of energetic materials in this study were calculated
via CODESSA software (Version 3.2), mainly including the
composition of nitrogen compounds, topological index,
geometric configuration, electrostatic coefficient, and quanti-
tative descriptors, the details of which can be seen in our
previous research work.13 There are 239 molecular structure
descriptor data for each nitrogenous compound. The density
indexes of the above energetic materials are provided by Xi’an
Institute of Modern Chemistry, which is listed in Table S1 of
the Supporting Information.
2.2. Chemometrics Method. 2.2.1. MC Random

Sampling Method. The MC method, which started in the
1940s, is a random simulation (or statistical simulation)
method. In MC, the task to be analyzed is combined with a
random probability events based on the theoretical system of
statistics and probability to conduct random sampling so as to
obtain approximate results of the problem. In chemometrics,

the MC method has been successfully applied to variable
selection, ensemble modeling subset generation, and cross
validation of model performance. In this work, MC is used to
generate subset samples in the iterative process. First, the MC
method is used to generate a group of random sequences, and
then, the calibration set samples are divided according to the
above sequences, one for modeling and the other for model
performance verification. Repeat the cycle until the iteration is
terminated. Finally, according to a certain strategy, the models
constructed from the above different subsets were ensemble
(simple average, weighted average, etc.), and then, the
ensemble model was applied to simulate the prediction set
samples.

2.2.2. Random Forest. RF is an ensemble modeling method
based on the integration of a sub model called tree, which is
often used to solve classification discrimination or quantitative
analysis tasks. In the regression problem, the bagging method
in the RF modeling process is used to sample the samples with
return, and some variables are randomly selected on each
regression tree for splitting. Finally, the output of the RF
model is a simple average of the outputs of all basic trees. The
remarkable feature of RF model can generate multiple
regression trees or decision trees with different variables.
Thanks to this, RF models usually have good analysis
performance, are not easy to over fit, and can be used for
discrete data processing. When modeling a RF model, the
Bootstrap strategy is used for resampling with placement. In
this process, the selected samples are called In-bag samples,
which are used to build trees in the RF, and the unselected
samples are called out of bag (OOB) samples. The prediction
error of OOB samples is called OOB error. The idea of RF
model construction is shown in Figure 1.

VIM is a feature variable extraction method developed with
RF algorithm. During RF modeling, input variables will be
sorted according to their contribution to the RF model.
Generally, variables with higher contribution will have a higher
value of variable importance. On the contrary, variables with
lower contribution will have a lower value of variable
importance, even zero. VIM reserves the variables below the
threshold for optimization model construction by setting a

Figure 1. Schematic diagram of RF model construction.

Figure 2. Schematic diagram of the MCVIMRF_Med ensemble model.
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certain threshold, which are called feature variables. The other
part of the variables with lower variable importance values are
usually deleted as interference variables. The accuracy and
modeling efficiency of the RF model can be effectively
improved by optimizing the input variables of the RF model
through VIM.39

2.2.3. MCVIMRF_Med Method. As RF stipulated in the
modeling process that it was unnecessary to prune the tree, the
prediction performance of the RF model would be interfered
by some irrelevant variables or noise information. In this paper,
a MCVIMRF_Med ensemble modeling method is proposed
on the basis of MC and RF algorithm to predict detonation
performance of energetic materials. The construction process
of the MCVIMRF_Med ensemble model is shown in Figure 2.
The MCVIMRF_Med ensemble modeling process is as
follows.
(1) SPXY method was used to divide the obtained data

set.40 In this study, descriptors of 162 nitrogen-
containing compounds are divided into a calibration
set (130 samples) and prediction set (32 samples).

(2) MC is utilized to randomly sample the training data,
among which the selected samples are used for the
model construction and others are for the model
performance verification.41

(3) A RF calibration model is established on the basis of the
selected variable subset to gain the variable importance
value of the subset variable, and then, the input variables
of the RF model were screened based on VIM method.
In this study, due to the high cost of ensemble process
operation, when screening subset feature variables, the
threshold of VIM is set to 0 for feature variable
screening.

(4) The number of iterations and subset variables of the
MCVIMRF_Med ensemble modeling process are
optimized based on MC cross validation, respectively.

(5) The output results of all subset construction models are
calculated as the median, and those models whose
prediction results are lower than the median are
considered as invalid models and deleted. The output
results of the remaining models are given the same

weight value and averaged as the final output of
MCVIMRF_Med ensemble modeling.

In the above process, the evaluation indicators of model
performance mainly include the determination coefficient (R2),
root mean square error (RMSE), and relative analysis deviation
of prediction set (RPD). When the R2 is between 0.66 and
0.80, the model is generally considered to have a certain
prediction effect. When R2 is between 0.81 and 0.90, the model
is considered to have good prediction performance. When R2 is
greater than 0.90, the model performance is considered
excellent. The smaller the RMSE value, the better the
performance of the prediction model. In the above two
indicators, if they are used for cross validation, the
corresponding calculation results are R2

CV, RMSECV. If it is
used for internal self verification of the model, the
corresponding calculation result is R2

C, RMSEC. If it is used
for model prediction results, the corresponding calculation
results are R2

P and RMSEP. RPD can be obtained by the ratio
of the standard deviation of the sample to be analyzed to the
RMSE of prediction set. Generally, when the RPD is less than
2.5, the model is considered unable to be used for prediction
tasks. When the RPD is between 2.5 and 3, the model is
considered to have certain prediction performance, but the
prediction results are not necessarily reliable. When the RPD is
greater than 3, it is considered that the model could achieve
good performance and be used for the prediction of other
samples. All data calculation processes in this study were
completed under the environment of MATLAB (Version
2016a).

3. RESULTS AND DISCUSSION
3.1. Model Subset Size Optimization. The sample

diversity of the subset model is one of the critical factors to
ensure the performance of ensemble modeling. Therefore,
during the construction of the ensemble model, the input
subset variables of its sub model are often optimized through
certain strategies to ensure the diversity of the model as much
as possible. In this study, the MC method is used to generate
the sample subset, that is, each time, randomly select some
samples from the calibration set as a new subset to construct

Table 1. Prediction Performance of the MCVIMRF_Med Ensemble Model based on Different Subset Sizes

subset sizes iterations R2
CV RMSECV (g/cm3) R2

C RMSEC (g/cm3) R2
P RMSEP (g/cm3) RPD

5 500 0.6455 0.1475 0.9653 0.0785 0.7517 0.1858 1.227
10 500 0.7936 0.1183 0.9792 0.0587 0.8829 0.1467 1.582
15 500 0.8384 0.1046 0.9832 0.0502 0.9201 0.1259 1.871
20 500 0.8632 0.0948 0.9854 0.0441 0.9377 0.1086 2.157
25 500 0.8760 0.0897 0.9866 0.0406 0.9449 0.1011 2.314
30 500 0.8879 0.0848 0.9871 0.0383 0.9526 0.0925 2.526
35 500 0.8946 0.0812 0.9881 0.0362 0.9584 0.0871 2.692
40 500 0.9058 0.0776 0.9881 0.0349 0.9614 0.0830 2.817
45 500 0.9080 0.0754 0.9885 0.0338 0.9642 0.0788 2.949
50 500 0.9173 0.0721 0.9890 0.0326 0.9670 0.0752 3.080
55 500 0.9231 0.0691 0.9891 0.0320 0.9696 0.0718 3.227
60 500 0.9266 0.0670 0.9893 0.0312 0.9708 0.0692 3.348
65 500 0.9278 0.0662 0.9896 0.0304 0.9714 0.0679 3.411
70 500 0.9312 0.0640 0.9899 0.0297 0.9729 0.0657 3.524
75 500 0.9386 0.0605 0.9901 0.0293 0.9744 0.0630 3.645
80 500 0.9417 0.0583 0.9902 0.0287 0.9749 0.0617 3.724
85 500 0.9469 0.0556 0.9903 0.0283 0.9755 0.0605 3.788
90 500 0.9578 0.0491 0.9906 0.0278 0.9765 0.0587 3.882
95 500 0.9577 0.0442 0.9909 0.0272 0.9767 0.0578 3.947
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the sub model of the ensemble model. To fully utilize the
modeling sample data set and ensure the diversity of the model
subset, it is particularly important to optimize the subset size of
the MC method, which is because the size of the model subset
will affect the modeling speed and robustness of the ensemble
model. The size of the modeling subset usually accounts for 0
to 100 of the model calibration set. Among them, 0 means that
no variable is selected, and 100 means that all samples are
selected (the diversity of the sub model cannot be guaranteed
in the case of 100). Neither of these two conditions are
meaningful in the actual modeling process. Therefore, this
study mainly focuses on the prediction performance of
MCVIMRF_Med ensemble modeling with a subset size of
5−95 (the number of iterations is set to 500). Table 1 shows
the performance of the MCVIMRF_Med ensemble model
built with a subset size of 5−95 (the interval is 5). As shown in
Table 1 that with the increasing scale of the modeling subset,
the prediction performance of the MCVIMRF_Med ensemble
model is also improving. Compared with the model when the
subset proportion is 5, the prediction performance of
MCVIMRF_Med ensemble modeling has been greatly
improved when the subset proportion is 95, with R2

CV
increasing from 0.6455 to 0.9577, RMSECV decreasing from
0.1475 to 0.0442 g/cm3, R2

C was raised from 0.9653 to 0.9909,
and RMSEC was reduced from 0.0785 to 0.0272 g/cm3. From
the analysis results, when the subset proportion of
MCVIMRF_Med ensemble modeling is 95, better prediction
performance can be obtained. Therefore, the subset size of
MCVIMRF_Med ensemble modeling is set to 95 in the
subsequent model optimization process.
3.2. Iteration Number Optimization. The number of

iterations is another key parameter of the proposed ensemble
model. Proper selection of the number of iterations will
improve the modeling speed and prediction accuracy of the
ensemble model. However, if the number of iterations is too
large, good prediction results can also be obtained, but in terms
of modeling time consumption, it will generate a huge amount
of computation. In contrast, when the number of iterations in
modeling is too small, the modeling time is shortened, but the
models built usually show some deficiencies in prediction
accuracy and stability. Therefore, optimizing the appropriate
number of modeling iterations is a key step in building an
ensemble model. In this study, the number of iterations of the
model will be further optimized on the premise of the subset
size optimized in the previous step. Considering the size of the

sample data set, the range of iteration number optimization is
0−1000 (the interval is 10). Figure 3 shows the prediction
performance based on different iterations of MCVIMRF_Med
ensemble modeling (R2

CV and RMSECV). Figure 3 shows that
the prediction performance of the MCVIMRF_Med ensemble
model has improved to a certain extent with the increasing
number of iterations both for R2

CV and RMSECV. From the
perspective of the stability of the model prediction perform-
ance, the stability has improved significantly with the increase
of the number of iterations. As shown in Figure 3, the
performance of the ensemble model basically shows a
documented trend when the number of iterations is around
400. Although R2

CV tends to be stable when the number of
iterations is around 700 with the further increase of the
number of iterations, RMSECV shows a certain fluctuation
when the number of iterations is around 700. As the number of
modeling iterations increases, the diversity of sub models is
also constantly improved. Therefore, it can be seen that when
the number of model iterations approaches 400, the
MCVIMRF_Med ensemble model achieved good prediction
performance. When the number of iterations increases further,
the modeling and calculation consumption increases continu-
ously, which has little effect on the improvement of model
performance. Therefore, considering the modeling speed and
prediction accuracy when building the MCVIMRF_Med
ensemble model, the number of iterations is 410. At this
time, R2

CV is 0.9596, RMSECV is 0.0437 g/cm3, R2
C is 0.9909,

and RMSEC is 0.0273 g/cm3. The MCVIMRF_Med ensemble
model is built based on the optimized iterations (VIM
thresholds are all set to 0). After 410 iterations, almost every
descriptor numbered 16−21 and 127−138 has been deleted,
which indicates that these variables are meaningless in the
process of model construction. In addition, a few other
variables are eliminated, which will help prediction perform-
ance optimization of the MCVIMRF_Med ensemble model.
3.3. Ensemble Strategy Optimization. The output of

the ensemble model usually combines the prediction results of
all sub models with a certain strategy. Generally, when building
an ensemble model, the final output results will be obtained by
simple average or weighted average. During the construction of
the ensemble model, a large number of sub models will be
constructed, which increases the stability of the ensemble
model to a certain extent. However, considering that the final
result of the ensemble model comes from the joint output of all
sub model, if there are some outputs with poor results in the

Figure 3. Prediction performance of MCVIMRF_Med ensemble modeling based on different iterations.
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sub model, the performance of the ensemble model will
become worse. Thus, it is an essential assignment to filter the
sub models to a certain extent. In this study, the RMSECV
value is used as a reference. First, the output results of all sub
models are sorted to obtain the median, and the sub model
below the median is rounded off. The remaining sub models
are ensemble based on a simple averaging method, which is the
final output of the MCVIMRF_Med ensemble model. As
shown in Figure 4, the performance of the MCVIMRF

ensemble model is based on different ensemble strategies [the
MCVIMRF ensemble model using the direct simple average
(MCVIMRF) and the ensemble idea proposed in this work
(MCVIMRF_Med)]. Figure 4 shows that compared with the
ensemble model based on direct simple average, the
MCVIMRF_Med ensemble model can achieve more excellent
performance, of which the R2

CV increases from 0.9042 to
0.9596, and RMSECV decreases from 0.0792 to 0.0437 g/cm3.
R2

C was raised from 0.9888 to 0.9909, and RMSEC was
reduced from 0.0318 to 0.0273 g/cm3. Therefore, the
ensemble idea based on median screening proposed in this
work is an efficacious approach to further enhance the
estimation performance of the MCVIMRF ensemble model.
3.4. Model Performance Comparison. Due to the

randomness of subset selection, the performance of the
ensemble model will have some deviation, so the stability of
the MCVIMRF_Med model is one of its performance
evaluation indicators. Figure 5 shows the performance of the
MCVIMRF_Med ensemble model, in which the deviation of
the model performance obtained by repeated experiments (50
times) is highlighted. As shown in Figure 5 that the
performance of the MCVIMRF_Med ensemble model is
very stable, the error bar of all evaluation index is relatively
small. Thus, it can therefore draw a conclusion that the
MCVIMRF_Med ensemble model has excellent stability and
robustness.

To further verify the prediction performance of the
MCVIMRF_Med ensemble model for the density of energetic
materials, it is compared with that of many other calibration
models, including PLS, RF, VIMRF, and MCVIMRF ensemble
models based on simple direct average. When building a PLS
model, the latent variables are optimized to 10. When
constructing the RF calibration model, the RF default

parameters are selected, that is, the ntree is 500 and mtry is P/
3 (P is the number of molecular descriptors of energetic
compounds). When building the VIMRF model, the threshold
is set to 0. When building the MCVIMRF ensemble model, the
model subset size is 50 and the number of iterations is set to
500. Table 2 shows the prediction performance of the above
different calibration models for the density index of energetic
materials. As shown in Table 2 that although the RF model
shows better prediction results in the prediction set, its cross
validation and self prediction of the calibration set are poor, so
it is considered that the RF model has an over fitting
phenomenon. Compared with other calibration models
mentioned above, the MCVIMRF_Med ensemble model
proposed in this study achieves better prediction performance
at three levels of model cross validation results, internal self
prediction and prediction set, with R2

CV of 0.9596, RMSECV
of 0.0437 g/cm3, R2

C of 0.9909, RMSEC of 0.0273 g/cm3, R2
P

of 0.9768, RMSEP of 0.0578 g/cm3, and RPD of 3.951. This
result shows that the MCVIMRF_Med ensemble model can
effectively improve the performance of the single RF
calibration model for the density prediction of energetic
materials.

4. CONCLUSIONS
In this study, a MCVIMRF_Med ensemble modeling strategy
combined with QSPR is proposed to successfully predict the
density index of energetic materials. First, the structure of 162
energetic compounds was optimized by Gaussian software, and
the molecular descriptor data were calculated by CODESSA
software based on the optimized molecular structure. Then,
based on the above molecular descriptor data and the
corresponding energetic compound density index, the
MCVIMRF_Med ensemble model was constructed. When
modeling, the SPXY method is first used to divide the data set,
and then, MC is used to further divide the calibration set data
into multiple subset data sets for the construction of the
ensemble model. The subset size and the number of iterations
of the MCVIMRF_Med ensemble model are optimized based
on MC cross validation (the optimized subset size is 95 and
the number of iterations is 410). Then, the final output
strategy of the ensemble model is optimized, and an output
optimization method based on median screening is proposed
and successfully applied to optimize of the MCVIMRF_Med
ensemble model. To further investigate the performance of the

Figure 4. Prediction performance of MCVIMRF ensemble model via
different ensemble strategies.

Figure 5. Prediction performance of MCVIMRF_Med ensemble
model.
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MCVIMRF_Med ensemble model, the performance of it was
compared with PLS, RF, VIMRF, and MCVIMRF calibration
models. The results show that the MCVIMRF_Med ensemble
model can gain a better result for the density prediction of
energetic materials, with an R2

CV of 0.9596, RMSECV of
0.0437 g/cm3, R2

C of 0.9909, RMSEC of 0.0273 g/cm3, R2
P of

0.9768, RMSEP of 0.0578 g/cm3, and RPD of 3.951.
Therefore, the MCVIMRF_Med ensemble modeling strategy
combined with QSPR proposed in this work is an effective
prediction method for density of energetic materials.
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