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Abstract The generation of induced tissue-specific stem cells has been hampered by the lack of

well-established methods for the maintenance of pure tissue-specific stem cells like the ones we have

for embryonic stem (ES) cell cultures. Using a cocktail of cytokines and small molecules, we dem-

onstrate that primitive neural stem (NS) cells derived from mouse ES cells and rat embryos can be

maintained. Furthermore, using the same set of cytokines and small molecules, we show that

induced NS (iNS) cells can be generated from rat fibroblasts by forced expression of the transcrip-

tional factors Oct4, Sox2 and c-Myc. The generation and long-term maintenance of iNS cells could

have wide and momentous implications.
Introduction

Neural stem (NS) cells can be expanded in culture while retain-
ing the ability to differentiate into the three main cell types of
the central nervous system: neurons, astrocytes and oligoden-
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drocytes [1]. NS cells hold great promise for treating neurode-

generative diseases and spinal cord injury. If the full potential
of NS cells in cell replacement therapies is to be realized, non-
cerebrocerebellar sources of patient-specific NS cells must be

found because the brain tissue is not readily accessible.
Induced pluripotent stem (iPS) cells [2] as well as neurons [3–

6], cardiomyocytes [7–9], blood [10] andhepatocytes [11,12] have
been generated from fibroblasts through reprogramming by de-

fined transcription factors. These breakthroughs in cellular
reprogramming have provided a new avenue for generating pa-
tient-specific NS cells from readily accessible tissues such as der-

mal fibroblasts. Successful generation of induced NS cells will
require the identification of NS cell fate-inducing factors as well
as application of carefully-contrived culture conditions that can

capture the NS cell state and allow its long-term self-renewal.
Several recent studies have demonstrated the feasibility of con-
verting mouse fibroblasts directly into neural progenitors/NS
cells by forced expression of different sets of transcription
cademy of Sciences and Genetics Society of China. Production and hosting

mailto:qying@med.usc.edu
http://dx.doi.org/10.1016/j.gpb.2013.09.003
http://dx.doi.org/10.1016/j.gpb.2013.09.003
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.gpb.2013.09.003


Xi G et al / Rat Induced Neural Stem Cells 313
factors [13–16]. In the present study, we developed a culture
condition that allows long-term expansion of Sox1-positive
primitive NS cells. Using this culture condition, we efficiently

generated iNS cells from rat fibroblasts by combined expression
of the transcriptional factors Oct4, Sox2 and c-Myc.

Results

Maintenance of Sox1-GFP positive NS cells by leukemia

inhibitory factor, CHIR99021 and Y27632

Sox1 is one of the earliest specific markers of neuroectoderm

[17]. By taking advantage of the Sox1-GFP knock-in reporter
mouse embryonic stem (ES) cell line we developed [18], we gen-
erated pure Sox1-GFP positive NS cells and tested different

combinations of cytokines and small molecules for propagation
of Sox1-positive NS cells. We found that concurrent treatment
with leukemia inhibitory factor (LIF), CHIR99021 and

Y27632 (‘‘LIF/CHIR/Y’’ hereafter) allowed long-term expan-
sion of Sox1-GFP positive NS cells, even from single cells (Fig-
ure 1A). CHIR99021 and Y27632 are small molecules that

specifically inhibit glycogen synthase kinase-3 (GSK3) and
Rho-associated kinase (ROCK), respectively [19,20]. Similar
NS cell lines from rat fetal brains and human ES cells were also
derived and maintained in the presence of LIF/CHIR/Y (Fig-

ure 1B–E). As expected, Sox1-positiveNS cells failed to bemain-
tained in the presence of fibroblast growth factor 2 (FGF2) and
epidermal growth factor (EGF) (Figure 1F), the conventional

culture condition for the propagation of neural progenitors
[21,22].
Figure 1 Expansion of Sox1-positive NS cells in the presence of LIF/

A. Clonal expansion of Sox1-GFP NS cells in the presence of LIF/CH

deposited into 0.1% gelatin-coated 96-well plates at 1 cell/well and cu

bar, 50 lm. B. Phase contrast image of NS cells derived from an E11

Passage 7. Scale bar, 50 lm. C. A neurosphere generated from a

D. Immunostaining of primary rat NS cells maintained in the prese

immunostaining of NS cells derived from H9 human ES cells and mai

cells derived from 46C ES cells and maintained in the presence of FG
iNS cells derived from rat fibroblasts

Next, we investigated whether iNS cells could be generated from
fibroblasts in the presence of LIF/CHIR/Y. Initially, we trans-
duced mouse and rat embryonic fibroblasts with retroviral vec-

tors encoding the reprogramming factors Oct4, Sox2, Klf4 and
c-Myc, and cultured the cells in the LIF/CHIR/Y condition.
Three weeks after transduction, approximately 50 and 20 colo-
nies emerged from 1 · 105 plated mouse and rat fibroblasts,

respectively. Colonies formed from mouse fibroblasts showed
the appearance of iPS cells (Figure S1). Surprisingly, most of
the colonies formed from rat fibroblastsmorphologically resem-

bled the NS cells maintained in the presence of LIF/CHIR/Y
(Figure 2A). We picked 11 NS cell-like colonies and found that
all of them were expanded in the presence of LIF/CHIR/Y to

establish stable cell lines (Figure 2B andC). These cells expressed
NS cell markers (Figure 2D–H) and differentiated exclusively
into different subtypes of neurons, astrocytes and oligodendro-

cytes upon the removal of LIF/CHIR/Y, even after 60 passages
(Figure 3). Moreover, neurons derived from these rat iNS cells
exhibited typical functional membrane properties of neurons
(Figure S2). Similar iNS cells were also efficiently generated

from rat tail-tip fibroblasts using both retroviral and PiggyBac
transposon systems (Figure S3).

Regional specification of rat iNS cells derived and cultured in the

presence of LIF/CHIR/Y

Early stage NS cells possess the capability of differentiating to-

ward region-specific neuronal fates in response to patterning
CHIR/Y

IR/Y. Sox1-GFP positive NS cells derived from 46C ES cells were

ltured in N2B27 medium supplemented with LIF/CHIR/Y. Scale

.5 rat embryo and maintained in the presence of LIF/CHIR/Y at

single primary rat NS cell in the presence of LIF/CHIR/Y.

nce of LIF/CHIR/Y for 5 passages. Scale bar, 50 lm. E. Sox1

ntained in the presence of LIF/CHIR/Y. Scale bar, 50 lm. F. NS

F2/EGF for 2 passages. Scale bar, 50 lm.



Figure 2 iNS cells derived from rat fibroblasts

A. Morphology of rat iNS cell colonies 21 days after transfection of Oct4, Sox2, Klf4 and c-Myc into rat embryonic fibroblasts. Scale bar,

50 lm. B. Rat iNS cells cultured on feeders in the presence of LIF/CHIR/Y at Passage 21. C. Rat iNS cells cultured on 0.1% gelatin in the

presence of LIF/CHIR/Y at Passage 15. D–F. Immunostaining of rat iNS cells maintained in the presence of LIF/CHIR/Y. Scale bar,

50 lm. G. RT-PCR analysis of gene expression in rat embryonic fibroblasts (REF), rat ES cells, rat iNS cells and primary rat NS cells

derived from E11.5 rat fetal brain and maintained in the presence of LIF/CHIR/Y. GAPDH was used as a loading control. H. qRT-PCR

analysis of gene expression. C1, C2 and C3 were three rat iNS cell clones. NS: primary NS cells derived from E11.5 rat fetal brain. Data

are presented as mean ± standard deviation (SD) of three biological replicates.
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cues but NS cells maintained in the presence of FGF2/EGF
lose this capability [23]. Rat iNS cells generated and main-

tained in the presence of LIF/CHIR/Y expressed Pax6 and
Sox1 (Figure 2E and F), indicating an early stage NS cell
identity. To further confirm the developmental stage of these
rat iNS cells, we examined their gene expression pattern by

RT-PCR. As shown in Figure 4A and B, rat iNS cells and
E11.5 rat fetal brain tissue expressed DACH1, PLZF, LIX1



Figure 3 Neuronal and glial differentiation of rat iNS cells

A. Phase contrast image of neurons spontaneously differentiated from rat iNS cells after the removal of LIF/CHIR/Y. B. Tuj1 and GFAP

immunostaining of cells generated from rat iNS cells after exposure to EGF and FGF2 for 10 days followed by culturing in N2B27

medium plus 1% serum for another 7 days. C. Exposure to PDGF-AA and T3 (triiodothyronine) induced differentiation of rat iNS cells

toward Rip-positive oligodendrocytes. D–H. Different subtypes of neurons derived from rat iNS cells. Scale bar, 50 lm.
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and FAM70A, genes that are uniquely expressed in early stage

NS cells, whereas the expression of S100B, PMP2 and AQP4,
specific markers for FGF2/EGF NS cells [23], was not de-
tected. In contrast with rat iNS cells maintained in the presence
of LIF/CHIR/Y, NS cells maintained in the presence of

FGF2/EGF expressed S100B, PMP2 and AQP4, but not
DACH1, PLZF, LIX1 and FAM70A (Figure 4A).

Next, we analyzed the expression of regional identity mark-

ers along the anterior–posterior and dorsal–ventral axes of the
brain. The expression of telencephalic markers FoxG1, Emx1
and Nkx2.1 was not detected by RT-PCR in rat iNS cells; in-

stead, rat iNS cells highly expressed anterior hindbrain mark-
ers Gbx2, Nkx6.1 and Krox20. The posterior hindbrain
markers HoxB1 and HoxB4, however, were not expressed in
rat iNS cells (Figure 4C). Along the dorsal–ventral axis, rat

iNS cells expressed ventral hindbrain markers Irx3 and
Pax6, but not the extreme ventral markers Olig2 and Nkx2.2
or the dorsal markers Pax7 and Pax3 (Figure 4D). Taken to-

gether, these results suggest that rat iNS cells generated and
maintained in the presence of LIF/CHIR/Y represent early
stage primitive NS cells and have an anterior-ventral hindbrain

character.
Oct4, Sox2 and c-Myc are sufficient to reprogram rat fibroblasts

into a NS cell fate

Loss of function in the tumor-suppressive p53 pathway has
been shown to dramatically accelerate the reprogramming pro-
cess [24–26]. Indeed, when fibroblasts derived from p53�/� rat

embryos were subjected to reprogramming [27], iNS cell-like
colonies emerged as early as 4 days after transduction (data
not shown). To determine which of the four factors are re-

quired to generate iNS cells, we transduced rat fibroblasts with
different combinations of the four factors. The results, as sum-
marized in Figure S4, showed that Oct4/Sox2/c-Myc and

Sox2/c-Myc were sufficient to generate iNS cells from wild-
type and p53�/� rat fibroblasts, respectively. No iNS cell-like
colonies emerged in any of the combinations without either

Sox2 or c-Myc, suggesting that both Sox2 and c-Myc were re-
quired for the conversion of rat fibroblasts into iNS cells. Fi-
nally, we investigated whether the induction of iNS cells
entails a passage through the iPS cell stage. We derived fibro-

blasts from Oct4-GFP transgenic rat embryos in which the
GFP transgene was driven by the Oct4 promoter. GFP-posi-
tive cells were never observed during the reprogramming of



Figure 4 Regional identity of rat iNS cells

A. RT–PCR analysis of the expression of genes unique to rosette NS cells (DACH1, PLZF, LIX1 and FAM70A) and genes specifically

expressed in FGF2/EGF NS cells (S100B, PMP2 and AQP4). FB: E11.5 rat fetal brain. B. PLZF immunostaining of rat iNS cells. C. RT-

PCR analysis of the expression of markers along the anterior–posterior axis. D. RT-PCR analysis of the expression of markers along the

dorsal–ventral axis.
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fibroblasts to iNS cells (Figure S5), suggesting that iNS cells
were most likely converted directly from fibroblasts without

passing through an intermediate iPS state.
Discussion

Here we show that self-renewal of Sox1-positive primitive NS
cells derived from mouse, rat and human can be efficiently
maintained in serum-free N2B27 medium supplemented with

LIF/CHIR/Y. Moreover, by forced expression of Oct4/Sox2/
c-Myc, rat fibroblasts can be directly converted into self-
renewing iNS cells under the LIF/CHIR/Y condition. These

rat iNS cells have all the key characteristics of primary NS cells
including expression of the NS cell markers and the potential
to differentiate into astrocytes, oligodendrocytes, and mature

neurons with functional membrane properties. Intriguingly,
combined expression of the same factors failed to convert
mouse fibroblasts to iNS cells. We reason that additional fac-

tor(s) or different combinations of factors are required for the
generation of mouse iNS cells.
Rat iNS cells require LIF for self-renewal and predomi-
nately differentiate into neurons upon the removal of self-re-

newal factors, suggesting that they may be equivalent to
in vivo primitive NS cells [28]. Interestingly, rat iNS cells main-
tained in the presence of LIF/CHIR/Y have an anterior-ven-

tral hindbrain character, distinguishing them from mouse
iNS cells maintained in the presence of FGF2/EGF [16] or ro-
sette human NS cells [23]. Further studies will be needed to

determine whether these rat iNS cells are capable of differenti-
ation toward different region-specific neuronal fates in re-
sponse to patterning cues.

Rat iNS cells could not be generated from rat fibroblasts in

the absence of LIF and CHIR99021, further supporting the
notion that culture environments could dictate the fate of
reprogrammed cells [29]. We hypothesize that iNS cells can

also be generated from human fibroblasts using an approach
similar to that described here. Generation of patient-specific
iNS cells will not only enable us to develop new tools for the

diagnosis of neurological diseases, but also provide a pure
and renewable source of patient-specific neural cells for use
in cell replacement therapies and drug discovery.
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Materials and methods

Primitive NS cells culture

Prospective head regions from E9.5 to E11.5 rat embryos at
neural-fold stage were excised and treated with dissociation

buffer containing 1 mM EDTA and 0.25% trypsin in phos-
phate-buffered saline (PBS) for 4 min. Neuroepithelium was
detached from the underlying tissue and mechanically dis-
sected into single cells. The cells were cultured in poly-L-

lysine/laminin-coated dishes with N2B27 medium [30] contain-
ing LIF (1000 units/ml), CHIR99021 (3 lM) and Y27632
(10 lM). CHIR99021 and Y27632 were synthesized in the

Division of Signal Transduction Therapy, University of Dun-
dee, UK.

ES cell culture and differentiation

Rat ES cells were routinely maintained in the 2i condition as
described [31–33]. 46C mouse ES cells were routinely cultured

and converted to Sox1-GFP positive NS cells as described [18].
Transient selection with puromycin (0.5 lg/ml) and fluores-
cence activated cell sorting (FACS) were used to eliminate
non-neural cells and obtain homogeneous population of

Sox1-GFP positive NS cells. Sox1-GFP NS cells were then
re-plated onto 0.1% gelatin- or poly-L-lysine/laminin-coated
plates and cultured in N2B27 medium supplemented with

LIF (1000 units/ml), CHIR99021 (3 lM) and Y27632
(10 lM). For the derivation of clonal lines, individual Sox1-
GFP NS cells were deposited into 96-well plates and cultured

in the presence of LIF/CHIR/Y. The presence of one cell per
well was confirmed under microscopy 1 h after plating. Estab-
lished Sox1-GFP NS cell lines were trypsinized and expanded

every 3–4 days at a subculture ratio of 1:2–3.

Immunostaining

Immunostaining was performed according to a standard pro-

tocol. Alexa Fluor 488 and Alexa Fluor 546 were used as sec-
ondary conjugates and nuclear counterstaining was performed
with DAPI. Primary antibodies used include the following:

Nestin (1:400; Santa Cruz Biotechnology); Pax6 (1:50; DSHB,
Iowa); Sox1 (1:100; BD Biosciences); Sox2 (1:200; Santa Cruz
Biotechnology); Tuj1 (1:2000, Sigma); GFAP (1:300; Santa

Cruz Biotechnology); GABA (1:1000; Sigma); tyrosine
hydroxylase (1:1000; Sigma); Rip (1:50; DSHB, Iowa);
MAP2 (1:500; Millipore); HB9 (1:50; DSHB, Iowa); PLZF

(1:100; Calbiochem, Iowa); synapsin (1:500; Millipore); NeuN
(1:500; Millipore); Nanog (1:200; Santa Cruz Biotechnology)
and SSEA1 (1:200; Santa Cruz Biotechnology).

Differentiation of NS cells

For astrocyte differentiation, iNS cells were cultured as free-
floating neurospheres in N2B27 medium supplemented with

20 ng/ml of EGF and 20 ng/ml of FGF2 for 7–10 days.
Spheres were trypsinized into single cells and replated onto
poly-L-lysine/laminin-coated 4-well plates at 5 · 104 cells/cm2

in N2B27 medium supplemented with 1% fetal calf serum.
For oligodendrocyte differentiation, iNS cells were seeded at
5 · 104 cells/cm2 and cultured in N2B27 medium supplemented
with FGF2 (20 ng/ml), EGF (20 ng/ml) and SHH (200 ng/ml)
(all from PeproTech) for 10 days. At day 11, cells were disso-

ciated with trypsin and replated onto poly-L-lysine/laminin-
coated dishes in the presence of PDGF-AA (10 ng/ml) and
T3 (triiodothyronine, Sigma, 40 ng/ml) to promote differentia-

tion toward oligodendrocyte lineage [34]. For neuronal differ-
entiation, cells were harvested by trypsinization and
transferred to petri dishes in N2B27 medium. After 4 days,

aggregated cells were replated onto poly-L-lysine/laminin-
coated 4-well plates at a density of 3–4 · 104 cells/cm2 in
N2B27 medium and cultured for another 8–10 days. For
induction of midbrain precursors, iNS cells were cultured in

N2B27 medium supplemented with 200 ng/ml SHH, 100 ng/ml
FGF8 (PeproTech) and 160 lM ascorbic acid (Sigma–Aldrich)
for 8 days. The cells were subsequently differentiated in N2B27

medium with SHH (200 ng/ml), FGF8 (100 ng/ml) and BDNF
(20 ng/ml) for 10 days. Motor neurons were generated by
exposing iNS cells to SHH (500 ng/ml) and RA (0.05 lM)

for 7 days, followed by culturing in the presence of 20 ng/ml
BDNF and 200 ng/ml SHH in N2B27 medium.

Retrovirus packaging

The day before transfection, GP2–293 cells were seeded onto
10 cm dishes. On the next day, pMXs-based retroviral vectors
(pMXs-mOct4, pMXs-mSox2, pMXs-mKlf4 and pMXs-mc-

Myc, Addgene) and pCMV-VSVG (Addgene) were co-trans-
fected into GP2–293 cells using Lipofectamine LTX
Transfection Reagent (Invitrogen) according to the manufac-

turer’s protocols. 24 h after transfection, the medium was re-
placed and the virus-containing supernatants were collected
48 and 72 h after transfection. After centrifugation to remove

the cell debris, the viruses were filtered through a 0.45-mm
cellulose acetate filter and stored at �80 �C.

Generation of rat iNS cells

Oct4-GFP transgenic rats were obtained from the Rat Re-
source and Research Center. Timed pregnant Sprague–Dawley
(SD) rats were purchased from Harlan. Animal experiments

were performed according to the investigator’s protocols ap-
proved by the USC Institutional Animal Care and Use Com-
mittee. For rat embryonic fibroblast (REF) isolation,

embryos from E14.5 timed-pregnant rats were washed with
PBS. The head and intestinal organs were removed from iso-
lated embryos. The remaining tissue was manually dissociated

and incubated in 0.25% trypsin for 10–15 min. After trypsin-
ization was halted with serum medium and centrifugation,
the cells were plated into 10-cm tissue culture dishes with

MEF medium (GMEM containing 10% fetal bovine serum,
2 mM L-glutamine and 100 IU/ml penicillin/streptomycin).
To establish postnatal tail-tip fibroblasts (TTFs), the tails from
one-week-old p53�/�, p53�/+ and p53+/+ rat pups were

peeled, minced into 1-cm pieces, placed in 35-mm culture
dishes, and incubated in MEF medium until confluent. For
iNS reprogramming, the REFs or TTFs were seeded at

1 · 105 cells per 35-mm dish, and the four-factor viral cocktail
was added every other day in the presence of polybrene
(4 lg/ll). After the second virus infection, cells were trans-

ferred onto c-irradiated CF1-MEF feeders and cultured in
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neural reprogramming medium (mouse ES medium and N2B27
medium mixed 1:1 and supplemented with 3 lM CHIR99021 and
1000 units/ml LIF). iNS cells were generated and maintained

in N2B27 medium supplemented with LIF/CHIR/Y.

Electrophysiology analysis

Cells cultured on glass coverslips were transferred to a submer-
sion recording chamber and visualized under IR-DIC optics
(Olympus BX51 WI). The recording chamber was perfused

with artificial cerebrospinal fluid (ACSF) containing (in mM)
126 NaCl, 3 KCl, 1.25 NaH2PO4, 2 MgSO4, 26 NaHCO3, 2
CaCl2 and 10 dextrose, saturated with 95% O2/5% CO2.

Whole-cell recording electrode solution contained (in mM):
130 K-gluconate, 4 KCl, 2 NaCl, 0.2 EGTA, 0.3 GTP-Tris, 4
ATP-Mg, 10 HEPES and 14 phosphocreatine-Tris (pH 7.25;
�290 mOsm). Resting membrane potentials (RMPs) were

measured upon establishing whole cell configuration following
gigaohm seal break-ins. After current steps were injected to eli-
cit action potentials, neurons were tested with a series of volt-

age commands to record the action currents. Neurons were
then voltage clamped at RMP in the presence of TTX
(1 lM) and bicuculline (20 lM) to record miniature excitatory

postsynaptic currents (mEPSCs). The AMPA receptor antago-
nist CNQX (20 lM) was washed in at the end of experiments
to verify the mEPSCs were indeed glutamatergic. Electrical sig-
nals were amplified with a Multiclamp 700B amplifier, digi-

tized at 10 kHz with Digidata 1440A and acquired under
control of pClamp 10.2 software (all from Molecular Devices).

RT-PCR and qRT-PCR

Total RNA was extracted using Trizol reagent kit (Invitrogen)
according to the manufacture’s instruction. cDNA was synthe-

sized with 1 lg of total RNA using Cloned AMV First-Strand
cDNA Synthesis Kit. PCR reaction mixtures were prepared
with Taq DNA polymerase (Invitrogen). qRT-PCR was per-

formed with Power SYBR Green PCR Master Mix (Applied
Biosystems) according to manufacturer’s instructions. Signals
were detected with an ABI7900HT Real-Time PCR System
(Applied Biosystems). The relative expression level was deter-

mined by the 2-dCT method and normalized against GAPDH.
Primers used are listed in Tables S1 and S2.
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