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Abstract

The ideal Intracranial pressure (ICP) estimation method should be accurate, reliable, cost-

effective, compact, and associated with minimal morbidity/mortality. To this end several

described non-invasive methods in ICP estimation have yielded promising results, however

the reliability of these techniques have yet to supersede invasive methods of ICP measure-

ment. Over several publications, we described a novel imaging method of Modified Photo-

plethysmography in the evaluation of the retinal vascular pulse parameters decomposed in

the Fourier domain, which enables computationally efficient information filtering of the

retinal vascular pulse wave. We applied this method in a population of 21 subjects undergo-

ing lumbar puncture manometry. A regression model was derived by applying an Extreme

Gradient Boost (XGB) machine learning algorithm using retinal vascular pulse harmonic

regression waveform amplitude (HRWa), first and second harmonic cosine and sine coeffi-

cients (an1,2, bn1,2) among other features. Gain and SHapley Additive exPlanation (SHAP)

values ranked feature importance in the model. Agreement between the predicted ICP

mean, median and peak density with measured ICP was assessed using Bland-Altman bias

±standard error. Feature gain of intraocular pressure (IOPi) (arterial = 0.6092, venous =

0.5476), and of the Fourier coefficients, an1 (arterial = 0.1000, venous = 0.1024) ranked

highest in the XGB model for both vascular systems. The arterial model SHAP values dem-

onstrated the importance of the laterality of the tested eye (1.2477), which was less promi-

nent in the venous model (0.8710). External validation was achieved using seven hold-out

test cases, where the median venous predicted ICP showed better agreement with mea-

sured ICP. Although the Bland-Altman bias from the venous model (0.034±1.8013 cm water

(p<0.99)) was lower compared to that of the arterial model (0.139±1.6545 cm water

(p<0.94)), the arterial model provided a potential avenue for internal validation of the predic-

tion. This approach can potentially be integrated into a neurological clinical decision algo-

rithm to evaluate the indication for lumbar puncture.
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Introduction

Investigation of the physiological properties of the human cerebrospinal fluid was first

described in 1891 when Quinke published his studies on the diagnostic and therapeutic appli-

cations of lumbar puncture. He standardized the technique of intracranial pressure (ICP) mea-

surement by connecting the lumbar puncture needle with a fine glass pipette in which

cerebrospinal fluid was allowed to rise, a method still currently applied [1]. Whereas data from

a recent large international, multi-center study on lumbar puncture feasibility that included

3,868 patients confirmed the procedures’ safety [2], complications from lumbar puncture

including iatrogenic meningitis, hemorrhage, post-lumbar puncture headache are well recog-

nized [3–6]. In addition to the risks stated above, continuous ICP monitoring includes ventric-

ular catheter-related problems such as cerebral infections, catheter occlusion, or malposition.

[7–9]. Financial costs incurred at a single tertiary care institution due to hospitalization for

post-lumbar puncture complications were estimated at $20,000 USD/year [10]. To mitigate

these risks, various modalities of non-invasive ICP estimation have been described. Of these

studies ophthalmodynamometry provided the earliest attempts at non-invasive ICP estima-

tion, they were based on earlier observations by Deyl in 1898 who postulated that papilledema

was due to central retinal vein compression where it emerged from the optic nerve into the

subarachnoid space in the optic nerve’s dural sheath [11]. To further prove this mechanism,

Cushing and Borley experimentally induced papilledema and described the loss of spontane-

ous venous pulsation due to collapse of the central retinal vein when ICP was raised [12].

Their findings were supported by a canine model, in which the temporal succession of events

demonstrated that loss of spontaneous venous pulsation and venous dilation preceded optic

disc enlargement was demonstrated [13]. In 1927 Baurmann provided the first evidence of a

strong linear correlation between ICP and retinal venous pulse pressure measured by ophthal-

modynamometry [14]. His results were replicated by other investigators in a series of animal

studies [15–19]. These findings were also reported in human studies by Firsching [20, 21],

Motschmann [22] and co-workers. To improve ICP predictive accuracy, Querfurth et al. com-

bined ophthalmodynamometry with simultaneous color doppler of the central retinal and

ophthalmic arterial flow velocities. Although the linear correlation between retinal venous

pulse pressure and ICP was strong. The combination of ophthalmodynamometry and color

doppler parameters was shown to improve the correlation compared to either parameter alone

[23]. Intuitively, a strong linear correlation would imply strong predictive accuracy, yet para-

doxically these linear models did not achieve a strong predictive power expected from the lin-

ear correlation and none of these methods have superseded invasive methods of ICP

measurement to date [24–26].

The technique and instrumentation for ophthalmodynamometry was developed by

Bajardi around 1906 for the indirect estimation of ocular perfusion [27]. Although this

device and its several iterations was superseded by carotid doppler, we have over a series of

publications [28–34] described a novel imaging method of Modified Photoplethysmography

where a combination of ophthalmodynamometry as a means of generating a range of

induced intraocular pressures and slit-lamp imaging of the optic nerve enables modelling of

the retinal venous and arterial pulse amplitude and timing characteristics. The physiological

basis for the choice of a harmonic regression model in image analysis is to emulate the

photoplethysmography wave periodic and non-periodic components [35]. The model con-

sists of a linear spline, which represents the mean of the signal and adjusts for inter-frame

image displacement. The first two harmonics of the Fourier series are fitted to the periodic

component and a first-order autoregressive error component accounts for the error process.

Frequency domain decomposition is performed using custom software, where heat maps of
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the retinal vascular pulse amplitude distribution are generated and Fourier coefficients of

the first two harmonics are extracted. Additional to modelling the retinal arterial and venous

systems separately using this method, uniquely, frequency domain analysis allows computa-

tionally efficient information filtering and comparative processing of the retinal vascular

pulse characteristics [30, 36]. The trade-off in signal resolution between the temporal (Δt)

and frequency (Δf) domains is defined by the Heisenberg-Gabor uncertainty principle. It is

mathematically expressed as an inequality equation (Δf � Δt� C), where (C) is a constant

with a value dependent on how the frequency is measured and conveys the general concept

that a non-zero function and its Fourier decomposition cannot be localised to arbitrary pre-

cision [37]. Although information between these domains is conserved, unique hemody-

namic phenomena can exist solely as a property of the frequency domain such as dispersion

(frequency dependent velocity of a wave), impedance (frequency dependent resistance), and

the harmonic amplitude distribution. Modified photoplethysmography requires imaging at

a slit-lamp, therefore is best applied in an ophthalmology outpatient setting, this excludes

the applicability of the method for critically ill patients in the emergency or intensive care

setting. A sophisticated handheld system is currently under development by our group,

which may make future iterations of the clinical system more versatile for ICP measurement.

Although it is possible to perform the test by a single operator, we have used an observer to

vocalize the force readings from the ophthalmodynamometer, this allows editing the videos

as further detailed in the materials and methods section. Moreover, the technique requires

patient cooperation to maintain fixation and remain seated as is required for slit-lamp oph-

thalmoscopy, this excludes patients with cognitive impairment. A reduced model of the pul-

sation event is possible from the output of Modified Photoplethysmography it cannot

provide information on the hemodynamic pressure-flow wave and although it provides heat

maps of the pulse amplitude and timing characteristics, further work is required to analyze

vascular geometry specific changes of the pulse characteristics in the Fourier domain. The

interaction between ICP, IOP, and the retinal vascular pulse may share characteristics of

chaotic systems. In general, systems with at least two of the following properties are consid-

ered to be chaotic: bifurcation and period doubling, period three, transitivity and dense

orbit, sensitive dependence to initial conditions, and expansivity [38]. Even though Modified

Photoplethysmography, unlike other non-invasive methods of ophthalmic ICP estimation,

provides continuous vascular observations to potentially resolve this question. The limita-

tion in our work is date is due to the lack of concurrent continuous ICP and IOP measure-

ments during retinal imaging, which particularly the latter, may not be possible out of an

experimental / physical model setting. In a recently published study, we described the inter-

action of the harmonic regression amplitude (HRWa) distribution in the retinal vascular sys-

tem with intraocular and intracranial pressure using a linear mixed effects model. This

approach enabled the computation of the variance estimated by these variables in linear

space. It was demonstrated that linear interactions of IOP, ICP and the retinal vascular pulse

accounted for less than 10% of the variance. This poor explanatory power of a linear model

precludes it as a predictor of ICP. This was due to a non-constant variance of the error term

of the predictors (heteroscedasticity), which indicated that the correlation was linear within

individuals but non-linear between individuals [28]. Therefore, addressing this non-linear

component is crucial to achieving high ICP predictive accuracy. In this study, we applied an

Extreme Gradient Boost (XGB) supervised machine learning decision tree algorithm in non-

invasive ICP estimation from features extracted from the retinal arteries and veins sepa-

rately. This approach addresses the non-linear component in the data structure and model

fit was adjusted through tuning of the hyperparameters. Additionally, parallelization and

distributed computing allowed for rapid data computation run times. We hypothesize that
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the combination of Fourier-domain decomposition of the retinal vascular pulse wave param-

eters and a regression model derived from a decision tree machine learning algorithm could

provide an avenue to non-invasive ICP prediction.

Materials and methods

Subject recruitment

Twenty-eight participants were recruited prospectively from the Lions Eye Institute over five

years (2015–2020) from referrals made to the clinic for ophthalmic assessment before lumbar

puncture for suspicion of idiopathic intracranial hypertension. Study approval was obtained

from the University of Western Australia Human Ethics Committee adhering to the tenets of

the Declaration of Helsinki. Participants were required to have clear ocular media, no prior

history of co-existing retina or optic nerve disease, and were needed to be able to cooperate

with the imaging protocol. Written consent was obtained from each of the participants. Lum-

bar puncture was performed in the lateral decubitus position and measured in centimeter

(cm) water. The ophthalmic examination consisted of measurement of visual acuity, Gold-

mann tonometry, slit-lamp examination, color fundus photography, and modified photo-

plethysmography. The latter test consists of contact lens ophthalmodynamometry, the purpose

was to vary induced intraocular pressure (IOPi), with concomitant video imaging of the optic

disc.

An ICP of 25 cm water was considered the upper normal limit [39], this threshold classified

the twenty-one patients in the training and test study groups into ten cases in the high intra-

cranial pressure group (ICPh>25cm water) and eight in the normal intracranial pressure

group (ICPn�25cm water). Three cases overlapped both groups as a result of interchanging

between the ICPn to the ICPh groups over the observation period (Fig 1). A total of 129,600

data points were sampled from the images, 56,932 arterial and 72,668 venous data points (Fig

2). Three eyes were excluded from the analysis due to poor image quality. Additionally, seven

subjects were recruited for model validation. data from these cases were not subjected to the

training or testing phases of the analysis.

Image acquisition

Data capture was performed by an operator and an observer in an outpatient setting. While

the operator concentrated on the imaging task, the observer vocalized the ophthalmodynamo-

metric force, this was required to create the splice points for video editing. The test requires

patient cooperation to sit upright, remain stationary and fixate on a target as required for slit-

lamp ophthalmoscopy. Details for the image acquisition workflow is published in earlier work

[30]. The optic nerve was imaged under a dynamic range of intraocular pressures using a Med-

itron ophthalmodynamometer (Meditron GmbH, Poststrasse, Völklingen, Germany). This

device consists of a sensor ring, which measures the compression force on the eye. The sensor

surrounds a central Goldmann three-mirror fundus contact lens. The ophthalmodynamo-

metric force (ODF) displayed as Meditron units (mu), which were then converted to induced

intraocular pressure (IOPi) as described by Morgan et al. [40] using the following formula:

IOPi ¼ 0:89 � ODF þ IOPb ð1Þ

Where IOPb is the baseline intraocular pressure (IOP) in millimeters mercury (mmHg). Video

of the optic nerve was captured with an imaging slit-lamp (Carl Zeiss, Germany) with a

mounted digital camera (Canon 5D Mark III, Japan). Several sequences of at least three cardiac

cycles in length were taken, each at a rate of 25 frames/second. When possible recordings were
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Fig 1. Classification of the study population. Training and test groups study groups, patients with normal intracranial pressure ICPn

(ICP�25cm water) and high intracranial pressure ICPh (ICP>25cm water).

https://doi.org/10.1371/journal.pone.0275417.g001
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taken from both eyes. A range of induced intraocular pressure values was between 7–73

mmHg were obtained from each subject. Videos showing motion artifact, reflection from opti-

cal media, or decentration of the optic nerve in the image sequence for less than three consecu-

tive cardiac cycles were rejected from the analysis. A pulse oximeter (Nellcor N65, Covidien,

Mansfield, MA) was applied to the right index finger; the audio signal from the pulse oximeter

was recorded with the video sequence of the optic nerve. This allowed synchronization of the

retinal vascular pulse with the cardiac cycle. Timing of the cardiac cycle was generated from

the audio signal from the subject’s pulse oximetry recorded on the audio trace of the video seg-

ment, which in turn enabled the mathematical analysis of the periodic component from green

channel transmittance. A Single high-quality three-cardiac cycle length video recording was

extracted from each recording session.

Image analysis

Image processing was done in Adobe Photoshop CS6, Individual image frames were extracted

from each video sequence and saved as Tagged Image File Format (TIFF) files. Each of these

Fig 2. Data points from training and test study groups. The data points are sub-classified into arterial and venous points, in patients with normal

intracranial pressure ICPn (ICP�25cm water) and high intracranial pressure ICPh (ICP>25cm water).

https://doi.org/10.1371/journal.pone.0275417.g002
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images was cropped to an array of pixels. All images from three cardiac cycles were analyzed

in R statistical package using custom software [41]. Each data point was represented by the

mean of the green channel intensity at time measured as a fraction of the cardiac cycle, rather

than in seconds. The periodic trend component was modelled separately for the arteries and

veins as a harmonic regression waveform expansion:

Fðf ðtÞpÞ ¼ a0 þ
X1

n¼1

an � cosðnptÞ þ bn � sinðnptÞ þ � ð2Þ

f(t)p = The periodic component of the time series.

a0 = Coefficient representing the mean of f(t)p.

an = Coefficient of the cosine function of f(t)p.

bn = Coefficient of the sine function of f(t)p.

n = Integer 0,1,2. . . etc representing the harmonic component.

� = error term

Higher harmonic frequency model comparisons were conducted using Akaike Information

Criterion (AIC). In most eyes AIC preferred models with first and second-order frequencies,

therefore the final analysis was limited to the first and second harmonics. A harmonic regres-

sion model was fitted to each pixel in the time series and used to quantify the retinal vascular

pulse wave parameters including the harmonic regression wave amplitude (HRWa). The

model includes a Fourier series representation using the first and second harmonics, linear

spline non-periodic component, and a first-order autoregressive error component. Timing

attributes captured by the custom software include the cardiac cycle time and time to the mini-

mum point of the harmonic regression wave (time to trough) measured in fractions of the car-

diac cycle as indicated from the audio pulse oximetry signal. Image analysis and model fit are

detailed in previous publications [30, 33, 36].

Machine learning algorithm-Extreme Gradient Boost (XGB)

Extreme gradient boost algorithm is an ensemble machine learning regression method based

on decision trees that use the gradient descent architecture to boost weak learners [42]. Boost-

ing builds decision trees sequentially such that each subsequent tree aims to reduce the errors

of the previous tree and the residual errors are then updated. R statistical package [41] was

used to generate the model for each vascular system independently. Bayesian optimization was

used to tune seven of the model hyperparameters aimed at regulating the model fit. Five-fold

cross-validation with ten early stopping rounds was applied in this step. Tuned hyperpara-

meters included lambda (λ) L2 regularization term on weights (analogous to Ridge regression),

this parameter reduces the influence of outliers by factoring in the denominator of the similar-

ity score (defined as the ratio of the sum of the residuals squared and the number of the residu-

als). Gamma (γ) is the minimum loss reduction required to make a further partition on a leaf

node of the tree. The larger gamma is, the more conservative the algorithm. Eta (η), the learn-

ing rate, is a scalar that determines step size in gradient descent and shrinks the weights on

each step. Alpha (α) L1 regularization term on weights (analogous to Lasso regression). The

maximum depth of the tree (max_depth) is the maximum number of nodes allowed from the

root to the farthest leaf of a decision tree, deeper trees can model more complex relationships

by adding more nodes. Minimum child weight (min_child_weight) is the minimum number

of samples required to create a new node in the tree. Subsample corresponds to the fraction of

observations (the rows) to subsample at each step, and nrounds the number of model itera-

tions [42, 43]. Hyperparameters values for each model are listed in Table 1. If parameters are

not set, default values are chosen by the XGB algorithm.
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In our study the training data consisted of nine numerical features (IOPi, HRWa, the cosine

and sine coefficients of the first and second harmonic waves (an1,2), bn1,2), hemiretinal location

of the vessel (superior or inferior retina), and laterality (right or left eye)). The training labels

which were the ICP measured by lumbar puncture in the lateral decubitus position in centime-

ter (cm) water, were ultimately used to generate the ICP predictions. The training set consisted

of 80% of randomly selected vascular pulsation points, the test set consisted of the remaining

20% of the data points. Model parameters were assessed using feature importance, which is a

ranking score representing the contribution from the selected feature to the model prediction.

It is calculated for a single decision tree by the amount that each attribute split point improves

the performance measure, weighted by the number of observations for which the node is

responsible. There are three methods for measuring feature importance in XGB, frequency

(weight), which is the number of times a feature is used to split the data across all trees. Cover

is the number of times a feature is used to split the data across all trees weighted by the number

of training data points that go through those splits, and gain is the average training loss gained

when using a particular feature at a branching point. Gain, therefore, represents the refine-

ment in accuracy brought by a feature to the branches of the decision tree. XGB divides feature

importance by default into two clusters, cluster one contains features of the highest importance

to the model, and other features are aggregated in cluster two. To identify the main features

driving model prediction, SHAP (SHapley Additive exPlanations) values were calculated, this

is an additive feature attribution method that provides a quantitative evaluation of the tree

ensemble’s overall impact in the form of particular feature contributions [44, 45]. External vali-

dation was achieved using seven hold-out test cases, which were evaluated in a blinded man-

ner. From the hold-out test set mean, median and peak density (defined as the maximum

point generated from the distribution of predicted ICPs from each model) of the predicted

ICP were compared to the measured ICP. Both Bland-Altman plots and the t-test were used to

measure the mean difference between predicted and measured ICP for both the arteries and

the veins separately. A flow chart of image processing, analysis, and XGB model application is

summarised in Fig 3.

Statistical analysis

The distribution of the HRWa and the majority of the Fourier coefficients was non-normal,

therefore the median was used as a measure of central tendency and the interquartile range

Table 1. Bayesian optimised Extreme Gradient Boost hyperparameters.

Hyperparameter Arterial Model Venous Model

Alpha (α) 1 0

Lambda (λ) 1 1

Gamma (γ) 0 0

Eta (η) 1 0.4856858

max_depth 10 10

min_child_weight 21.21737 25

subsample 1 0.5725238

nrounds 35 151

Alpha = L1 regularization term on weights, lambda = L2 regularization term on weights, gamma, controls branch

depth via the gain, eta the learning rate, max_depth = maximum depth of the decision tree, min_child_

weight = minimum sum of instance weight (hessian) needed in a child, subsample = the ratio of the training

instances, nrounds = the number of model iterations.

https://doi.org/10.1371/journal.pone.0275417.t001
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Fig 3. Flow chart of image processing, analysis, and XGB model application. 1) Alignment and segmentation of

image frames from a video sequence spanning three consecutive cardiac cycles captured from 21 subjects using

Modified Photoplethysmography. 2) Image analysis was performed by fitting a harmonic regression model to each

pixel cluster. The periodic component was represented by the first two harmonics of a Fourier series. 3) The Fourier

coefficients, harmonic regression amplitude, together with the distance along the vessel, induced intraocular pressure
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(IQR) was used to assess the dispersion of this measure. Where appropriate the mean and stan-

dard deviation were reported. The range, minimum, and maximum of these parameters were

also computed. When the Levene test was applied to assess the multifactorial homogeneity of

variance of the predictors, heteroscedasticity was demonstrated as the assumption of homoge-

neity of variance was violated (p<0.0001). The Kruskal-Wallis test was used in the hypothesis

test of the differences in the medians, and the paired Wilcoxon test with Bonferroni–Holm

correction was used for posthoc analysis. Model fit was assessed using R2 square, which is a

comparison of the residual sum of squares with the total sum of squares. Model Prediction

accuracy was estimated by calculating the Mean Squared Error (MSE), defined as the square of

the difference between the predicted and actual values of the test set, it assigns more weight to

larger errors. Root mean square error (RMSE), which is the standard deviation of the residuals

(prediction errors), the higher the number the greater the standard deviation σ of the distribu-

tion of errors. MSE and RMSE are used to evaluate the influence of outliers on predictions.

The mean absolute error (MAE) calculated by the magnitude average difference between the

predicted and actual values of the test set was also reported.

Results

Descriptive statistics

There were a total of twenty females (95.2%) and one male (4.8%) in the study population. The

age demonstrated a bimodal distribution with a mean of 32 years (sd 8.32, range 17–47 years).

In the ICPn group median ICP was 18.50 cm water (range 9.50 to 24, IQR = 6), the corre-

sponding values in ICPh group were 31 cm water (range 25.50 to 68, IQR = 10). Table 2 dem-

onstrates the Fourier wave amplitude descriptive parameters in both study groups. Hypothesis

tests within ICP group differences were contrasted by vessel type, statistical significance

(p<0.0001) was achieved for all Fourier parameters except the bn2 coefficient in the ICPh

group, which demonstrated no statistically significant difference between the retinal arteries

and the retinal veins. Both venous and arterial Fourier wave amplitude descriptive parameters

stratified by ICP (between-group differences) demonstrated statistical significance (p<0.001)

for all parameters except the retinal venous bn1, and arterial an2 coefficients. The ICPh group

showed a lower median retinal venous (4.743 vs 5.314) and a higher arterial HRWa (4.559 vs

4.139) compared to the ICPn group (Fig 4).

Machine learning model

Model fit and feature importance. The model fit was was comparable for the arterial and

venous data as indicated by an R2=0.89 and R2=0.91 respectively. Other accuracy parameters

were similar for the arterial (MSE = 10.99, MAE = 2.03, RSME = 3.32) and the venous model

(MSE = 11.85, MAE = 2.11, RSME = 3.44). The venous decision tree was more complex than

the arterial, whereas the venous model was composed of a total of 451 nodes, 450 edges, and

35,589 leaves, the arterial model consisted of a total of 137 nodes, 136 edges, and 7,951 leaves.

Model complexity and fit of the arterial and venous models are demonstrated in (Figs 5 and 6).

The weighted cover in the figures represents the distribution of the average weighted number

of residuals clustered in leaves at a certain depth of the decision tree.

(IOPi), ocular laterality (right/left), and hemiretinal locus of the blood vessel (superior/inferior) constituted the model

features. 4) Separate retinal arterial (XGBA) and venous (XGBV) Extreme gradient Boost models were constructed,

where an 80/20% split was chosen for the training/test set for each vascular model. 5) Seven hold-out test cases were

used for external model validation and intracranial pressure (ICP) prediction.

https://doi.org/10.1371/journal.pone.0275417.g003
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Global feature importance ranks the nine features of each vascular model by the feature

gain, cover and frequency used in the prediction of ICP (Figs 7 and 8). For the arterial model

these were IOPi (0.6092), an1 (0.1000) and HRWa (0.0804), similarly for the venous model

IOPi (0.5476) and an1 (0.1024), dominated the feature importance, however unlike the arterial

model HRWa (0.124) showed higher importance compared to an1 coefficient. When feature

frequencies of the arterial and venous models were compared IOPi (0.2547 vs 0.2028), an1

(0.1357 vs 0.1362) and HRWa (0.1228 vs 0.1291), accounted for approximately 51–47% of each

model’s feature importance respectively (Table 3).

Model SHAP values. The SHAP summary plot (Figs 9 and 10) combines feature impor-

tance with feature effects, therefore it allows to explore interactions between features for the

predicted variable. It is important to consider that SHAP values do not identify causality [45,

46]. Four properties can be derived from the SHAP summary plot:

1. Feature importance: features are ranked on the y-axis in descending order according to

their importance in the prediction of ICP from each vascular model.

2. Impact: SHAP measures the impact of variables taking into account the interaction with

other variables of the model. The horizontal location shows whether the effect of that value

is associated with a higher or lower prediction. This is accomplished by calculating the

importance of a feature by comparing what a model predicts with and without the feature

Table 2. Summary descriptive statistics for the high intracranial pressure (ICPh) and normal intracranial pressure (ICPn) groups.

Parameter Site Median IQR Min Max Range

ICPh

HRWa Vein 4.743 3.872 0.62 11.983 11.363

bn1 Vein -1.418b 1.268 -5.6 5.081 10.681

an1 Vein 1.079 2.507 -5.519 5.755 11.274

bn2 Vein 0.114w 0.594 -3.723 2.525 6.249

an2 Vein -0.132 0.684 -2.703 2.881 5.585

HRWa Artery 4.559 2.958 0.665 9.983 9.317

bn1 Artery -1.385 1.047 -4.659 4.096 8.755

an1 Artery 0.896 2.381 -4.568 4.485 9.054

bn2 Artery 0.111w 0.655 -2.572 2.606 5.178

an2 Artery -0.110b 0.691 -2.169 2.217 4.386

ICPn

HRWa Vein 5.314 4.218 0.695 14.434 13.739

bn1 Vein -1.646b 1.511 -6.988 5.148 12.137

an1 Vein 1.087 2.675 -5.162 6.727 11.89

bn2 Vein 0.15 0.598 -3.741 3.417 7.158

an2 Vein -0.173 0.735 -3.07 2.702 5.772

HRWa Artery 4.139 2.712 0.75 9.233 8.483

bn1 Artery -1.276 1.048 -4.432 3.843 8.275

an1 Artery 0.64 2.148 -3.924 4.103 8.027

bn2 Artery 0.093 0.545 -2.291 2.248 4.539

an2 Artery -0.086b 0.663 -2.172 2.133 4.305

HRWa=harmonic regression wave amplitude. an1,2=first and second Fourier cosine coefficient, bn1,2=first and second Fourier sine coefficients. Min = minimum,

Max = maximum. Superscripts denote that hypothesis tests did not achieve statistical significance for within(xw) groups ie, between the vascular systems of a single ICP

group, and between (xb) groups ie, between the same vascular systems of both ICP groups. Descriptive statistics are summarised graphically in Fig 4.

https://doi.org/10.1371/journal.pone.0275417.t002
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in every possible combination. The x-axis measures the SHAP value, which indicates the

change in model output in log-odds.

3. Value: The color scale indicates whether that variable is high (blue) or low (yellow) for that

observation where every point represents a row from the original dataset. Overlapping

points are jittered in the x-axis direction. It should be noted that categorical variables were

numerically encoded for the analysis (left/inferior = 0, right/superior = 1) for the laterality

and hemiretinal location respectively giving a binary nature to the color scale.

4. Correlation: Indicated by the relation between impact and color scale, a positive correlation

occurs when high values of the feature have a positive predictive impact.

From both plots, it can be observed that the impact of IOPi on the model prediction was

dependent on the value and showed a positive correlation, low IOPi values had a low predictive

impact, and higher IOPi values had a positive impact on prediction, particularly for the venous

model. This feature also showed higher dispersion than any of the tested features. The hemiret-

inal location of the tested vessel showed the lowest impact on model predictability. Laterality

and distance of the data point along the vessel measured from the center of the optic disc

Fig 4. Violin plots of the harmonic regression waveform amplitude (HRWa). The central marker in the violin plots indicate the median and interquartile

range. Noted are the reduction of the difference in maximum and median retinal vascular pulsation amplitudes within the ICP groups as a consequence of a

reduction of the venous and increase in the arterial pulsation amplitudes within the ICPh group. Between group differences indicate a ICPh and ICPn

groups.

https://doi.org/10.1371/journal.pone.0275417.g004
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attained more significance compared to the feature importance without variable interactions

(Table 3), particularly for the arterial model, where there was a correlation with laterality, right

eyes had negative and left eyes a positive impact on prediction, the venous model did not dem-

onstrate this effect. Pulsation values obtained from vascular points in proximity to the optic

disc had a less predictive impact and pulsation values from more peripheral locations in the

vessel had a higher impact on model prediction (positive correlation).

The arterial model showed no correlation with HRWa values, furthermore, this feature was

less significant when interactions were considered. In contrast, the venous model

Fig 5. Retinal arterial model fit. The arterial model consisted of a total of 137 nodes, 136 edges, and 7,951 leaves. The model had an R2 of 0.89, and other

accuracy parameters were: MSE = 10.99, MAE = 2.03, RSME = 3.32.

https://doi.org/10.1371/journal.pone.0275417.g005
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demonstrated a negative correlation, and it retained its significance both with and without var-

iable interactions (Table 3).

The an1 Fourier coefficient had the highest feature importance of all coefficients in both

models, and other coefficients had a low rank. The correlation of the coefficients was different

for each model. Whereas the arterial model demonstrated that the an1,2, and bn1,2 showed low

positive correlation on model predictability, the venous model on the other hand showed that

an1,2 and bn1,2 had opposite correlation on predictability, where an1, bn1,2 values had a negative

correlation and an2 had a positive correlation.

Fig 6. Retinal venous model fit. The venous model was composed of a total of 451 nodes, 450 edges, and 35,589 leaves. The model had a higher R2 of 0.91,

other accuracy parameters were: MSE = 11.85, MAE = 2.11, RSME = 3.44.

https://doi.org/10.1371/journal.pone.0275417.g006
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Mean SHAP values are listed in Table 4, where IOPi demonstrates the highest mean SHAP

values in both vascular models (arterial = 5.3884 and venous = 5.6375), this was approximately

four times the mean value of an1 (arterial = 1.4689 and venous = 1.3856) and the others among

the three most significant features (arterial laterality = 1.2477, venous HRWa=1.7024).

Fig 7. Importance plot retinal arterial model. IOPi, an1 and HRWa were the most important features in this model. IOPi = Induced intraocular pressure,

HRWa=Harmonic regression wave amplitude, an1,2 = the cosine coefficient of the first and second harmonics, bn1,2 = the sine coefficient of the first and

second harmonics, laterality = left / right eye, Distance = distance along the retinal vessel measured in mm, hemiretina = superior / inferior retina.

https://doi.org/10.1371/journal.pone.0275417.g007
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Model external validation

A group of seven cases was used as the holdout test set, in this group all cases were females.

Four cases (57.1%) had an ICP > 25cm water. The median ICP in this group was 29.5cm water

(range 26 to 32, IQR = 5.25). The remaining three cases (42.9%) had a median ICP of 20cm

Fig 8. Importance plot retinal venous model. IOPi, HRWa, and an1 were the most important features in this model. IOPi = Induced intraocular pressure,

HRWa=Harmonic regression wave amplitude, an1,2 = the cosine coefficient of the first and second harmonics, bn1,2 = the sine coefficient of the first and

second harmonics, laterality = left / right eye, Distance = distance along the retinal vessel measured in mm, hemiretina = superior / inferior retina.

https://doi.org/10.1371/journal.pone.0275417.g008
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water (range 17 to 22, IQR = 2.5). Table 5 summarises the mean, median, and peak density of

the predicted ICP from each vascular model. When the mean, median, and peak density for

predicted ICP from the arterial and venous models are compared using the t-test and Bland-

Altman bias statistic (Table 6), it is clear that the predicted ICP estimated from the venous

median had the best agreement with measured ICP as indicated by the lowest Bland-Altman

bias. A comparison of measured and median estimated ICP is demonstrated graphically in

Bland-Altman plots (Figs 11 and 12).

Discussion

Extreme Gradient Boost demonstrated favorable accuracy in the non-invasive prediction of

ICP applied to Modified Photoplethysmography data. Quantitative interference due to optical

reflections, shadowing, blink, and motion artifact secondary to saccadic movements render

ophthalmic imaging artifact prone. Modified Photoplethysmography controls these multiple

sources of interference. The Goldmann contact lens used for optic nerve observation and

imaging eliminates blinking and reduces motion artifact providing optical continuity, field sta-

bility, and reducing information degradation. Induced intraocular pressure generates a range

vascular pulse amplitude responses, therefore, enabling comparative analysis of the pulse wave

under a range of transmural pressures. Moreover, retinal vascular pulse wave decomposition

Table 3. Feature importance of the machine learning models.

Feature Gain Cover Frequency

Arterial Model

IOPi 0.6092 0.3207 0.2547

an1 0.1000 0.0782 0.1357

HRWa 0.0804 0.2165 0.1228

Distance 0.0585 0.0821 0.1309

Laterality 0.0450 0.0112 0.0310

bn1 0.0378 0.1110 0.1037

bn2 0.0360 0.0917 0.1101

an2 0.0258 0.0828 0.0961

Hemiretina 0.0073 0.0057 0.0150

Venous Model

IOPi 0.5476 0.2673 0.2028

HRWa 0.1414 0.2094 0.1291

an1 0.1024 0.1123 0.1362

Distance 0.0701 0.1185 0.1384

bn1 0.0383 0.0810 0.1115

Laterality 0.0352 0.0082 0.0254

an2 0.0349 0.1083 0.1218

bn2 0.0261 0.0890 0.1175

Hemiretina 0.0041 0.0060 0.0173

Gain is the difference between the calculated similarity scores for successive leafs in the decision tree, it represents the

average training loss gained when using a feature for further branching. Cover the number of times a feature is used

to split the data across all trees weighted by the number of training data points that go through those splits Frequency

represents the ratio of the number of times a feature is used to split the data across the whole tree. IOPi, an1 and

HRWa dominated the feature importance of both models. Feature importance is demonstrated graphically in Figs 7

and 8.

https://doi.org/10.1371/journal.pone.0275417.t003
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in the Fourier domain allows for computationally efficient information filtering. The harmonic

regression approach applied in image analysis not only adjusts for motion artifacts through its

linear spline; it applies a statistical approach to evaluate the fit of the Fourier harmonics to the

non-periodic component of the vascular pulse. Hence it facilitates the decision of rejecting an

Fig 9. SHAP summary plot retinal arterial model demonstrating the feature contribution of the XGB model predicting ICP from the arterial model.

Induced intraocular pressure (IOPi) was the most important feature in the model (mean SHAP = 5.3884), approximately four times the value of the cosine

coefficient of the first harmonic (an1 mean = 1.4689). Laterality = Right/Left eye, Distance = Retinal vascular pulsation amplitude as a function of distance

from the center of the optic disc in mm, HRWa=Harmonic regression wave amplitude, an1,2, bn1,2=cosine and sine coefficients of the first and second

harmonics, hemiretina = Superior/Inferior retina.

https://doi.org/10.1371/journal.pone.0275417.g009
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analysis output where the signal model fit does not achieve statistical significance at each

image pixel cluster [30, 36].

Current clinical ophthalmic literature cites other approaches to non-invasive ICP predic-

tion, these can be classified into clinical/retinal imaging (pupillometry, IOP, optical coherence

tomography (OCT), fundus photography, ophthalmodynamometry), radiological

Fig 10. SHAP summary plot retinal venous model demonstrating the feature contribution of the XGB model predicting ICP from the venous model.

Induced intraocular pressure (IOPi) was the most important feature in the model (mean SHAP = 5.723), approximately four times the value of the

harmonic regression wave amplitude (HRWa mean = 1.425). HRWa=Harmonic regression wave amplitude, an1,2, bn1,2=cosine and sine coefficients of the

first and second harmonics, laterality = Right/Left eye, Distance = Retinal vascular pulsation amplitude as a function of distance from the center of the optic

disc in mm, hemiretina = Superior/Inferior retina.

https://doi.org/10.1371/journal.pone.0275417.g010
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Table 4. Mean SHAP values for the arterial and venous models.

Feature Mean SHAP Value

Arterial Model

IOPi 5.3884

an1 1.4689

Laterality 1.2477

Distance 0.6626

HRWa 0.5754

bn2 0.5171

an2 0.4275

bn1 0.4082

Hemiretina 0.1563

Venous Model

IOPi 5.6375

HRWa 1.7024

an1 1.3856

Laterality 0.8710

Distance 0.7625

bn1 0.6178

an2 0.5370

bn2 0.4284

Hemiretina 0.2103

SHAP values are based on a game theoretic approach to estimate the contribution of a feature to the models

prediction by considering all possible combinations of the feature to the outcome in what is called a power set. SHAP

values are demonstrated graphically in Figs 9 and 10.

https://doi.org/10.1371/journal.pone.0275417.t004

Table 5. Hold-out test set comparing measured and predicted ICP (cm water) using the XGB models for both the

arteries and veins.

Case ICP Mean (se) Median (IQR) Peak Density

Arterial Model

1 22 26.59 (0.17) 25.18 (8.54) 24.98

2 32 24.13 (0.32) 24.05 (6.47) 24.45

3 20 24.52 (0.30) 21.63 (8.94) 20.07

4 32 31.86 (0.26) 30.66 (10.79) 28.70

5 17 23.26 (0.16) 22.80 (7.06) 21.36

6 27 28.25 (0.23) 25.12 (8.49) 24.05

7 26 28.65 (0.41) 25.59 (13.79) 23.38

Venous Model

1 22 27.77 (0.19) 26.34 (8.26) 24.47

2 32 30.90 (0.34) 29.13 (9.09) 27.77

3 20 24.18 (0.21) 23.21 (6.24) 22.98

4 32 31.29 (0.25) 30.55 (9.73) 30.20

5 17 22.78 (0.13) 23.00 (6.22) 23.33

6 27 26.26 (0.11) 25.09 (6.97) 24.01

7 26 20.70 (0.25) 18.44 (8.21) 15.91

Three Methods were used to assess the best estimate the mean, median and peak density of predicted ICP.

https://doi.org/10.1371/journal.pone.0275417.t005
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(Ultrasonography (U/S)/Computed Tomography (CT)/Magnetic Resonance Imaging (MRI)),

and electrophysiological methods (Flash Visual Evoked Potentials (VEP)). The accessibility of

the pupil and the development of objective quantitative hand-held modalities to measure

pupillary diameter and function have made it an appealing option for the non-invasive estima-

tion of ICP in an intensive care unit (ICU) setting. In the largest multi-center study to date,

Chen et al. used the NeurOptics pupillometer to correlate the pupillary function with ICP in a

population of 134 ICU patients. They described the temporal inverse relationship of pupillary

reactivity with raised ICP, which they termed the Neurological Pupil index, which is derived

by algorithmically transforming parameters involved in the pupillary light reflex. Interestingly,

this approach had forecasting capability as the authors reported that an abnormal Neurological

Pupil index preceded an ICP spike on average by 15.9 hours [47]. However, this approach

yielded a course range of ICP values correlated with pupillary function. In a prospective obser-

vational study, Stevens et al. found a weak but statistically insignificant relationship between

the Neurological Pupil index and ICP [48]. Hence, further research is required to establish the

role of automated pupillometry in ICP estimation.

Tonometry has demonstrated inconsistent results in ICP prediction. Sajjadi et al. measured

IOP using a Schiotz tonometer in 50 subjects who underwent lumbar puncture. They reported

a strong correlation (R = 0.955, p<0.001) independent of body mass index, age, and neurologi-

cal diagnosis [49]. Other investigators failed to replicate these results using different techniques

of IOP estimation [50–54].

Over the last two decades, OCT has been central to the diagnosis and management of optic

nerve disorders, the earliest report was by Borchert et al. who patented a method to estimate

ICP using OCT measurements of RNFL thickness; however, the authors do not provide the

correlations between these variables necessary generate a prediction [55]. A multitude of

parameters have been evaluated for potential estimation of ICP [56–60]. In a multicenter

study, Vijay et al. reported that optic nerve head central thickness was found to be the most

closely associated parameter with ICP (R = 0.60–0.73) among a variety of macular and optic

nerve protocols [61]. However, the association between the many OCT parameters, papille-

dema severity, and ICP is complex and remains undefined. Moreover, due to the need for sub-

ject cooperation, this test cannot be applied to patients with severe neurological disorders. To

address this limitation, Andersen et al. used the retinal arterio-venous ratio as a biomarker of

elevated ICP. Images were recorded using an Epicam portable camera, this method achieved a

94% (85–98%) sensitivity and 50% (34–66%) specificity in detecting patients with an

Table 6. Bland-Altman analysis and t-test, comparing between the measured and predicted ICP using XGB.

Predicted ICP t-test statistic p-value Bland-Altman Bias (sd/se)

Arterial Model

Mean -0.9036 0.4011 -1.6086 (4.7101/1.7803)

Median 0.0838 0.936 0.1386 (4.3775/1.6545)

Peak density 0.8352 0.4356 1.2871 (4.0775/1.5412)

Venous Model

Mean -0.7098 0.5045 -1.1257 (4.1963/1.5861)

Median 0.0190 0.9854 0.0343 (4.7657/1.8013)

Peak density 0.5069 0.6303 1.0471 (5.4659/2.0659)

The measured ICP was compared against the mean and peak density of the estimate from both vascular models. The

venous median demonstrates the highest agreement with measured intracranial pressure. sd = standard deviation,

se = standard error. Bland-Altman plots are displayed in (Figs 11 and 12).

https://doi.org/10.1371/journal.pone.0275417.t006
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ICP� 20mmHg. Indicating that although there was a 94% probability of correctly identifying

individuals with ICP� 20 mmHg, this was mitigated by the 50% probability of misclassifying

healthy individuals [62], thereby limiting the practical applicability of this approach.

Radiological imaging of retinal vascular parameters has been explored as a substitute for

clinical methods especially since practicality demands the ability to predict ICP with minimal

patient cooperation in the ICU setting. In a prospective case-control study, Jeub et al. used

transbulbar sonography for the measurement of vascular flow in the central retinal artery. At a

Fig 11. Bland-Altman plot predicted median predicted intracranial pressure of the arterial Extreme Gradient Boost model. The intervals of two

standard deviations are considered as the concordance limits between the two measurements, accounting for 95% of the observed differences. The Bland-

Altman bias was 0.139±1.6545 cm water (p<0.94), the arterial model provided a potential avenue for internal validation of the prediction.

https://doi.org/10.1371/journal.pone.0275417.g011
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threshold value of 11.0 cm/s, the peak systolic velocity predicted pathological ICP levels with a

70% sensitivity and 69% specificity [63]. Using spectral Doppler imaging, Miller et al. reported

the reduction in blood flow velocity in both the central retinal artery and central retinal vein in

18 children with elevated ICP (p<0.02), however, the limited number of recruited subjects for

this study precluded the calculation of statistical test accuracy parameters [64]. Ragauskas et al

compared a two-depth transorbital Doppler technique to measure blood flow velocity in the

ophthalmic artery with ultrasonographic measurement of optic nerve sheath diameter [65],

Fig 12. Bland-Altman plot predicted median predicted intracranial pressure of the venous Extreme Gradient Boost model. The intervals of two

standard deviations are considered as the concordance limits between the two measurements, accounting for 95% of the observed differences. The Bland-

Altman bias from the venous model (0.034±1.8013 cm water (p<0.99)) was lower compared to that of the arterial model.

https://doi.org/10.1371/journal.pone.0275417.g012
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this method was reported to have better diagnostic reliability for detecting elevated ICP com-

pared to optic nerve sheath diameter measurement [66–69]. An independent clinical valida-

tion study determined that this technique had a fair agreement to ICP measured using lumbar

puncture [70]. The theoretical basis establishing a correlation between optic nerve sheath

diameter and ICP was first suggested in 1968 by Hayreh et al. in a primate model [71]. Subse-

quent studies have imaged this parameter using U/S, CT, and MRI making it a favorable

option for subjects with significant neurological impairment. In the largest study to date, Raja-

jee et al. found the optimal optic nerve sheath diameter for detection of ICP> 20 mmHg was

>0.48 cm as measured by U/S, where a sensitivity of 96% and specificity of 94% were achieved

[72]. Most studies indicate an optic nerve sheath diameter of>5 mm as the threshold for

determining elevated ICP [73–75]. Measurement of the optic nerve sheath diameter using CT

or MRI can overcome this limitation. High agreement and reproducibility have been reported

between these imaging modalities [76–78]. However, radiological methods have high opera-

tional costs, and image interpretability is operator dependent particularly in the case of U/S.

Some disorders such as subarachnoid hemorrhage may not be suited for this modality [79].

Moreover, the range of pressure correlation with optic nerve sheath diameter can be narrow,

the iCOP study reported a favorable correlation between optic nerve sheath diameter and ICP

between 3.7 mm Hg and 26.5 mm Hg [80]. The precision and accuracy of MRI measurements

of optic nerve sheath diameter are yet to be defined, as well as the optimal measurement tech-

nique and the influence of the time course of ICP fluctuations on changes in optic nerve sheath

dimension [81].

Flash Visual Evoked Potentials (FVEPs) can demonstrate the integrity of the visual pathway

from the retina to the occipital cortex. A longer FVEP wave crest latency, a reduction in ampli-

tude, and an increase in wave width have been observed with elevated ICP. These findings

were reported from two early studies where a relatively strong linear relationship (R2� 0.7)

between FVEP N2 wave latency and ICP was observed. Using this method high correlation

was particularly demonstrated at ICP levels >300 mm water [82, 83]. These findings were rep-

licated using either a single or combined modality with transcranial doppler [84, 85]. There

are significant limitations with FEVPs, a significant level of expertise is required to administer

the test, it is unsuitable in patients with bifrontal lobe pathology, retinal damage, or optic neu-

ropathy [84]. Moreover, factors such as blood glucose concentration, the patient’s nerve con-

duction rate, and electrolytes levels can result in high variance in the FVEP waveform

properties [86].

Early studies which applied ophthalmodynamometry to this research question correlated

retinal venous pulse pressure as a single parameter with ICP [20–22]. The wide range of linear

correlations (R = 0.69–0.968) did not, however, yield a clear conclusion regarding the applica-

bility of their findings. Further attempts to improve predictability such as seeking an optimal

reliability cutoff point or excluding patients with papilledema either did not produce the

intended practical outcome or further restricted its applicability [21]. Querfurth et al. intro-

duced simultaneous color doppler monitoring of the central retinal and ophthalmic arterial

flow velocities to improve predictability. They reported a more significant correlation

(R = 0.95, p< 0.005) with combined parameter approach [23]. Modified photoplethysmogra-

phy provides a quantitative ICP prediction along a continuous scale. Fourier domain decom-

position of the retinal vascular pulse amplitude enables a selective inclusion of pulse wave

harmonics hence, increasing the signal-to-noise ratio in the data set. In a recent study, we

described a physiological model to estimate ICP where a plot of the induced intraocular pres-

sure (x-axis) against the retinal venous pulse (y-axis) was measured using Modified Photo-

plethysmography. Predicted ICP was plotted from the x-axis intersection extrapolated from

the peak retinal venous pulsation amplitude. A mean absolute error of 3.0 mmHg was achieved
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using this technique [29]. However, the XGB approach adds unique advantages: 1) The

machine learning decision tree model addresses the heteroscedastic data structure directly and

allows the model fit to be optimized as cases are added to the dataset thereby futureproofing

the model’s performance. 2) An improved predictive analysis by a reduction in the mean bias

to 0.034±1.80 cm water (0.025±1.32 mmHg). 3) The ability to generate an independent predic-

tion from the retinal arteries and veins and from all points from the retinal vessels in the image

field enables visualization of the distribution of the predictions in the form of a peak density

plot and to draw comparisons from the independent outputs. Therefore the XGB approach

provides a method of internally validating the prediction from each case. However, papille-

dema may reduce the predictive accuracy when the renormalization of the ICP is followed by a

lag in regression of the optic nerve changes [87], this may impact diagnostic accuracy of post-

treatment serial Modified Photoplethysmography imaging tests.

Artificial intelligence classification methods that use clinical, electrophysiologic, or radio-

graphic data to discriminate between normal and high ICP have been described [88–90]. Neu-

ral network classification models have yielded a total accuracy ranging between 70.2±4.5% to

92.05±2.25%. Golzan et al. estimated ICP using a neural network regression model derived

from retinal venous pulse amplitude measured using the Dynamic Vessel Analyser, which is

the only commercially available device used to quantitatively measure the retinal vascular

pulse parameters. This device uses arbitrary units rather than frequency domain decomposi-

tion of the pulse wave. They reported a mean square error of ±1.27 mmHg in ICP prediction.

However, they did not validate the model predictions on external cases, therefore, only internal

validation results were reported. Moreover, only the venous pulse amplitude was used in the

model prediction the arterial pulse characteristics was not taken into consideration in the

model. In contrast to our method, the pulse amplitude was quantified using empirical units

rather than a frequency domain decomposition strategy [91]. In our study, the XGB approach

provided unique advantages over other machine learning options, hyperparameter tuning

using Bayesian optimization (Table 1), mitigated model overfitting, this is the case where

model output is not generalizable due to close fit to the sample data, a known limitation in

decision tree machine learning algorithms. The wide normal ICP range (2–25 cm water) [39,

92] and the predominance of non-linear dynamics in the interactions between ICP, IOP, and

the retinal vascular pulse [28] may both contribute to data heteroscedasticity, which is the

non-constant distribution of the error term of the predictors. This was addressed by the

unique ability of a decision tree regression to generate a prediction without specifying an aver-

age structure for the model. The specific pruning algorithm is a significant factor in addressing

the heteroscedasticity [93]. Moreover, the XGB analysis approach requires minimal data pre-

processing and neither normalization nor scaling are necessary [94, 95].

Intracranial pressure predictions derived from the venous model demonstrated better

agreement with measured ICP compared to that provided by the arterial model. This may be

due to the higher amplitude pulsation in the retinal veins compared to the arteries and the dif-

ference in venous pulsation amplitude between the ICPn and ICPh groups. Functional and

structural differences between the arterial and venous systems, which in turn result in differ-

ences in wall tension and compliance may have played a role. Blood vessel walls consist mainly

of water (70%), which is inelastic and incompressible, the remaining structure consists of a

mesh of fibers with elastic properties. The fibrillary material consists of collagen, elastin, and

smooth muscle cell layer in various percentages depending on the type and location of the ves-

sel [96, 97]. Heterogeneity of structural building blocks of the vessel wall results in a radius-

tension curve with non-linear characteristics. Whereas collagen fibers demonstrate a steep

length-tension relationship and are closer to the linear relationship as expected from Hooke’s

law, elastin has a flat length-tension relationship [98], and that of smooth muscle is modified
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by the level of contraction [96]. Additionally, there are geometric factors that augment the

venous response to changes in transmural pressure, at physiological ranges, a relatively small

increase of transmural pressure from 0 to 10 mm Hg increases the venous volume by� 200%,

which reflects a change in geometry from ellipsoidal to circular associated with an increased

cross-sectional area. At supra-physiological venous transmural pressure (>40mmHg) there is

a minimal increase in the relative volume as a result of the increase in compliance. In contrast,

the arterial wall shows a smaller slope of the gradient between relative volume and transmural

pressure accounting for the higher tolerance to transmural pressure [98]. Therefore, the arte-

rial wall has curvilinear compliance over a range of transmural pressures, whereas venous

walls have a semi-sigmoidal range of compliance. These structural and consequently func-

tional differences may underlie the differences in vascular response to raised ICP and conse-

quently may impact model predictive accuracy. Models derived from each vascular system

misclassified one of the hold-out test cases with high ICP (case-2 in the arterial model and

case-7 for the venous model). Additionally, both models predicted raised ICP for case 1 when

the measured ICP was normal. The agreement between the predictions (�25 cm water)

derived from the XGB models from both vascular systems in case-1 (Table 5) raises the possi-

bility that the predicted ICP may represent the actual ICP. This scenario highlights the chal-

lenges of lumbar puncture manometry. Studies based on continuous monitoring report that

ICP generally measures between 5 -10 mm Hg above atmospheric pressure [99]. However, this

value may fluctuate within a range of 30 cm water over 12 hours [100]. Therefore, a time delay

between the lumbar puncture and the ophthalmic assessment may have resulted in a spurious

outcome in this case. Furthermore, a precise ICP estimate requires a consistent manometry

technique where the needle entry point needs to be on the same level as the midline of the

spine, which should also be at the same level as the patient’s head. To complicate matters leak-

age around the needle can result in an erroneous estimate [6]. Further consideration needs to

be given to the fact that ICP is estimated and measured from different levels. A historic

assumption intracranially measured ICP (EVD-ICP) is equal to opening pressure measured at

the lumbar spine (LP-ICP) [101, 102]. In recent years, this matter has been a subject of debate

where some studies have documented agreement between intracranial and lumbar measure-

ments [103], correlated [104, 105], and others have disputed both agreement and correlation

[106, 107]. Among these studies, Lenfeldt et al. experimentally raised the ICP using computer-

ized lumbar infusion in subjects with communicating hydrocephalus. Simultaneously mea-

sured LP-ICP and Brain tissue ICP demonstrated a strong correlation (R2 = 0.98) between the

two ICP measurements throughout a pressure range of 0–600 mm water, the mean±standard

deviation was -10±29 mm water. Therefore, LP-ICP correlates strongly with brain tissue-ICP

in the absence of pathological obstruction to the cerebrospinal fluid flow [105].

Both feature importance (Figs 7 and 8) and SHAP summary plots (Figs 9 and 10) demon-

strated that IOPi was the most significant parameter in both the arterial and venous models.

Moreover, there was a positive correlation between IOPi and the impact on both XGB models.

This indicates that ophthalmodynamometry is an important component of our image acquisi-

tion methodology. Moreover, the findings are consistent with the high correlation between ret-

inal venous opening pressure and ICP described in ophthalmodynamometric studies in

human [20–23] and animal studies [18, 19, 108–110]. Changes in the venous system from

raised ICP arises from elevated downstream cerebral venous pressures and external pressure

on the subarachnoid segment of the central retinal vein, which increases vascular resistance

[111]. The literature has been less clear on the changes in retinal arterial circulation in this con-

text. Moreover, it is intriguing that arterial pulsation parameters provided information suffi-

cient to generate a prediction in spite of the less clinically recognised changes in the retinal

arterial system with raised ICP. Our study demonstrated an increase in the arterial wall
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pulsation amplitude in the ICPh group albeit at a narrower range than that of the venous sys-

tem (Fig 4). In a recently published study, in addition to the retinal vascular pulse amplitude

antipodal effect in response to abnormally elevated intracranial pressure, where a decrease in

retinal venous pulse was accompanied by an increase in the arterial pulse proportionate to

raised ICP [28]. We postulated that this effect may represent functional differences in the

transmural pressure gradient between the retinal arteries and the retinal veins, where the for-

mer exhibits a higher range than the latter, therefore the retinal artery demonstrates pulsations

at higher induced IOPi values, this combined with raised venous pressure and reduced venous

compliance and possibly augmentation of the retinal arterial pressure wave in association with

elevated ICP. Other compensatory mechanisms known to modify the cerebrovascular dynam-

ics through auto-regulatory control have been described in the retinal arterial system as well

[112–115]. However, the role of these mechanisms in our observations remain unresolved. We

found that the SHAP values suggested that ocular laterality was a prominent factor in the pre-

dictive model, particularly that derived from the arterial system, it could be hypothesized that

hemodynamic phenomena depend on physiologically inherent asymmetry in vascular dynam-

ics play an important role in the optimization of cardiovascular functions [116, 117]. Recent

studies have demonstrated the association between ocular laterality on retinal vascular occlu-

sions [118, 119]. Although there are anatomic reasons for retinal arterial occlusions pertaining

to embolic etiologies, the reason why asymmetry plays a role in the arterial rather than the

venous system remains unclear.

A major limitation of machine learning algorithms is the black-box problem, given that the

nature of machine learning is based on accuracy-driven performance metrics, these models

will likely continue to become even more opaque in the future, especially machine learning-

generated ensembles of decision trees [120–123]. More recently, software packages like

DALEX [124], breakdown [125] and XGBExplainer [126] have made some gains in terms of

XGB model interpretability. A fundamental restriction inherent in all tree-based models is the

inability to extrapolate target values beyond the range of the training data when making pre-

dictions, this is in contrast to linear models that can extrapolate predictions beyond the range

of the training dataset [127]. Our study included a small number of participants, a larger data-

set would likely offer improved generalizability. Image acquisition requires subject coopera-

tion, which hinders the technique’s applicability in patients with cognitive or significant

neurological deficits, therefore future developments would include a compact imaging system.

Conclusion

The venous XGB model showed higher predictive accuracy compared to the arterial. Among

the nine evaluated features IOPi was the most important model feature in both vascular sys-

tems. Although the venous median predicted ICP showed the highest agreement with mea-

sured ICP using lumbar puncture, an independent prediction derived from the retinal arteries

can provide a system of internal validation for the result. Previous studies have not considered

the retinal arterial system for this purpose. The prediction model can potentially be integrated

into a neurological clinical decision algorithm to evaluate the indication for lumbar puncture.
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