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ABSTRACT

We present THiCweed, a new approach to an-
alyzing transcription factor binding data from
high-throughput chromatin immunoprecipitation-
sequencing (ChIP-seq) experiments. THiCweed clus-
ters bound regions based on sequence similarity us-
ing a divisive hierarchical clustering approach based
on sequence similarity within sliding windows, while
exploring both strands. ThiCweed is specially geared
toward data containing mixtures of motifs, which
present a challenge to traditional motif-finders. Our
implementation is significantly faster than standard
motif-finding programs, able to process 30 000 peaks
in 1–2 h, on a single CPU core of a desktop com-
puter. On synthetic data containing mixtures of mo-
tifs it is as accurate or more accurate than all other
tested programs. THiCweed performs best with large
‘window’ sizes (≥50 bp), much longer than typical
binding sites (7–15 bp). On real data it successfully
recovers literature motifs, but also uncovers com-
plex sequence characteristics in flanking DNA, vari-
ant motifs and secondary motifs even when they
occur in <5% of the input, all of which appear bio-
logically relevant. We also find recurring sequence
patterns across diverse ChIP-seq datasets, possi-
bly related to chromatin architecture and looping.
THiCweed thus goes beyond traditional motif find-
ing to give new insights into genomic transcription
factor-binding complexity.

INTRODUCTION

Chromatin immunoprecipitation with sequencing (ChIP-
seq) (1) is a widely used assay for determining transcription
factor-binding sites (TFBS) in vivo. By crosslinking the in
vivo DNA–protein complexes using formaldehyde, sonicat-
ing to break the DNA, precipitating the protein of interest

using a specific antibody, reversing the crosslinks, sequenc-
ing the DNA fragments and mapping them to a reference
genome, a genome-wide map of TFBS with a resolution of
100–200 bp can be obtained. Newer variants like ChIP-exo
(2) and ChIP-nexus (3), which promise even higher reso-
lution, are gaining popularity. Typically these assays yield
hundreds or, in large genomes, thousands to hundreds of
thousands of binding sites per factor per cell type (4,5).

TFBS are generally characterized by short conserved pat-
terns or ‘motifs’ in the DNA sequence, commonly repre-
sented by ‘position weight matrices’ (PWMs) (6,7), a prob-
abilistic representation where each position within a bind-
ing site is described by an independent categorical distribu-
tion over the 4 nucleotides. A key bioinformatic task is to
identify these motifs, but ab initio motif detection using tra-
ditional tools such as MEME (8) and Gibbs samplers such
as AlignACE (9,10) and PhyloGibbs (11,12) is a challenge
on such large datasets. Additionally, it is common for fac-
tors to interact with DNA via co-factors and not directly,
which means a mixture of different motifs may be found in
the ChIP-seq data.

A previous program by one of us, MuMoD (13), was tar-
geted at the second of these problems: it simultaneously and
sensitively finds multiple motifs in a given dataset. Other
programs such as Chipmunk (14–16), Meme-Chip (17) and
Weeder (18,19) find successive motifs sequentially, masking
previously identified sites or sequences to find the next mo-
tif.

The program we describe here, THiCweed, offers both
speed and accuracy in finding multiple motifs in large
datasets. It does not require prior information on the num-
ber of motifs or the lengths of the motif, since its approach
is based on clustering rather than traditional motif finding,
and the clustering is based on stringent statistical criteria.
On synthetic data, we show that it outperforms all current
alternatives greatly on speed and is close to the best current
alternative in terms of accuracy. On real genomic data, it
reveals an unusual complexity in the structure of sequence
motifs, in particular in internal dependencies and in flank-
ing sequence extending far beyond the core motif.
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MATERIALS AND METHODS

There are two components to our approach:

(i) First is an efficient method of divisive hierarchical clus-
tering. Starting with one large cluster, we split it in two
clusters (or three, the third consisting of poor matches
to either cluster). The scoring is described below, and is
based on the likelihood ratio of a sequence belonging to
one or the other cluster, done iteratively starting from
an initial heuristic split. We then split each new cluster
into two (or three) further clusters; and proceed until
no further splits are possible. For each split, we apply
stringent statistical criteria to accept or reject the split.
Further optimizations are described in ‘Algorithm’.

(ii) During this clustering process, we include shifts and re-
verse complements of individual sequences to find opti-
mal clusters. This is implemented by considering fixed-
sized ‘windows’ of length W, one window within each
sequence. Sequences may have variable length; we per-
mit up to half the window to lie outside the sequence,
with the missing nucleotides scored as N’s, so that for
each sequence of length L, 2L configurations (L win-
dow positions and two orientations) are considered and
the optimal window chosen. The default choice of W
is one-third the median sequence length, that is, much
longer than a typical TF motif. whose positioning and
orientation is sampled. This, it turns out, constitutes an
effective and fast implementation of an ab initio motif
finder on large ChIP-seq datasets, in addition to detect-
ing the variations in motif and sequence context alluded
to in the previous point.
THiCweed can also be used on sequences that have
been previously aligned by a ‘feature’ (motif) to
discover additional motifs/complexities, by disabling
shifts and reverse complements, similar to the program
No Promoter Left Behind (20,21), but we do not discuss
this use here.

Our divisive clustering is in contrast to typical (ag-
glomerative) hierarchical clustering, where individual data
points are formed into clusters, requiring O(N3) or at best
O(N2log N) time for N data points. We call our approach
‘Top–down hierarchical clustering’; and since its purpose is
to weed out ‘signals’ in ChIP-seq peaks, we call the program
‘THiCweed’. (We considered ‘THC-weed’ but it may con-
fuse search engines.)

Algorithm

Top–down hierarchical clustering. The algorithm and a
typical run through it are portrayed in Figure 1 and de-
scribed below. We first take the simpler case of input data
that has been pre-aligned with all sequences of the same
length, where we do not consider shifts and reverse com-
plements of sequences. The steps are as follows:

(i) Initialize with one cluster containing all sequences.
(ii) Split every current cluster C (initially just one cluster),

into two clusters C1 and C2, using scoring and signif-
icance criteria described below. Sequences not consis-
tently clustering with either C1 or C2 (as described be-

low) are concatenated into a third cluster Cp. In each
round, all these unclustered sequences from each divi-
sion are concatenated into one cluster.

(iii) After every two iterations of step (2), if the current state
has more than two clusters, reassign the poor-scoring
sequences (sequences whose likelihoods in their cur-
rent cluster are low) to the ‘best’ available cluster.

(iv) Repeat from (2), until no new clusters are formed and
no reassignments are made.

The user may specify a maximum number of desired clus-
ters, and if the number of clusters at the end is greater than
this, a dendrogram of current clusters is constructed and
closest leaves are joined until the number of clusters is suf-
ficiently reduced.

Scoring. Only windowed portions of sequences are scored.
Let the window length be W. Consider a cluster C with N
sequence windows in it, S1, S2, . . . , SN. The probability of
seeing this data if all these windows were drawn from the
same PWM model is:

P(C) =
W∏

i=1

∏
α �(niα + c)�(4c)

�(
∑

α niα + 4c)�(c)4
(1)

where, ni� is the number of times nucleotide � appears
in column i, and c is a pseudocount (0.5 by default). If the
cluster contains a single sequence, this expression reduces
to

( 1
4

)W
.

The likelihood that a sequence window S is sampled from
the same PWM as sequences in a cluster C that contains N
seqs is:

P(S|C) = P(S.C)
P(C)

=
W∏

i=1

ni Si + c
N + 4c

(2)

where, Si indicates the i’th nucleotide in sequence window S
and ni Si is the number of occurrences of that nucleotide at
position i in the cluster.

When splitting a cluster, an initial split is made by rank-
ing each sequence by its likelihood of belonging to that clus-
ter, and moving the ‘best’ 25% to another cluster. Then se-
quences are selected in random order, removed from their
current cluster and re-assigned to the more likely cluster,
considering all possible window choices (position and ori-
entation) within the sequence during the reassignment, until
no further reassignments are made.

The significance of the split is assessed using two crite-
ria. First, we demand that the log ratio of the likelihoods of
the two clusters, to the likelihood of the unsplit cluster, as
calculated from Equation 1, exceed a threshold, calculated
from the log likelihood ratio (LLR) of two columns being
cleanly separated in nucleotide composition. That is, sup-
pose the two clusters consisted of random sequences, and
were split on a single position––say, one cluster contained
only A or C in that position, the other only G or T––while
the nucleotides at all other positions are evenly distributed.
This is not a significant split (it is always possible to do this,
or better, for any cluster). Call the log likelihood ratio in
this case L1. However, if the clusters differed in this man-
ner in two positions––one cluster contained only A or C in
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Figure 1. (A) Flowchart for the hierarchical clustering algorithm. The initialization is with all sequences in one cluster. At every pass, an attempt is made
to split every current cluster. Splits are accepted or rejected based on significance. Every two passes, a reassignment of low-scoring sequences to the best
available cluster is made. When a pass has ended with no splits being made, the program terminates returning the current clusters. (B) A possible run for
an input of 2000 sequences. The blue boxes represent cluster sizes, green arrows from ‘Split Cluster’ boxes indicate successful splits and red arrows indicate
unsuccessful splits. Each horizontal row of ‘split cluster’ boxes represents one pass.

those two positions, the other only G or T––this would be
significant. Call the log likelihood ratio of this split L2. We
demand the LLR of the split performed be equal to at least
L1 + T(L2 − L1) where, T is a parameter set to 0.4 by default
(Supplementary Data). L1 and L2 can be calculated quickly
using Equation 1.

Second, we demand that the splits be reproducible. using
the following approach: we perform the split four times with
four random initializations. With the resulting four pairs of
clusters, we demand that at least three of the six pairwise
cluster comparisons that result have an adjusted Rand in-
dex (ARI) (22) greater than a threshold r (by default 0.2).
An ARI of 1.0 indicates perfect agreement while random
clusterings would have ARIs close to zero. If the three pair-
wise comparisons between the first three splits each exceed
r, the fourth split is not performed. If the split is accepted,
the three pairs of clusters resulting from the three splits
are identified based on majority membership and sequences
that failed to be consistently clustered by this criterion (that
is, did not cluster in the same way according to this associ-
ation) are put in a third cluster.

Splits that fail one of these two significant criteria are re-
jected, that is, the split clusters are joined again and returned
to the pool. Both parameters T and r are user adjustable.
The default values were chosen based on benchmarks on
synthetic data, as discussed in Supplementary Data.

When reassigning sequences (step 3 of the algorithm),
we consider the poorest 20% of the sequences (measured
by their likelihoods in their current clusters). For each se-
quence S, we first remove it from its current cluster, then
calculate P(C′) for each available cluster C where, C′ = C +
S, using the above formula, and add it to the best cluster.
In practice, on average 4% and at most about 10% of the
sequences considered in this step get reassigned.

Benchmarking: synthetic data

We generated synthetic datasets consisting of sequences of
length 100 bp each, with motifs drawn from random PWMs
placed within the central 40 bp of these sequences, and oth-
erwise random (each nucleotide having probability 0.25).
The PWMs had columns sampled from Dirichlet distribu-
tions with uniform hyperparameter c (i.e. each column v de-
noting the probability distribution over the four bases A, C,
G and T, was independently sampled from the distribution
P(v) ∝ vc−1

α ). Drawing from a Dirichlet distribution with a
low value of c is more likely to result in a probability dis-
tribution that is highly skewed, i.e. is different from a uni-
form 0.25 probability per base. This skewness reduces with
increase in c, a high value of c making the motif less distin-
guishable from background. Five datasets were generated
with c = 0.1, 0.2, 0.3, 0.4 and 0.5. Each dataset consisted of
20 files, with each file having sequences containing between
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two and five distinct motifs (one motif per sequence), the
motifs drawn from PWMs of a ‘core’ width of 5–10 bp and
a tapering ‘flank’ to a full width of 10–20 bp (to reflect what
is often in real data, as described below). The core positions
were drawn from Dirichlet distributions with the hyperpa-
rameter c as described above, while the flanks tapered off
rapidly from the core c to a hyperparameter of 20 (essen-
tially a uniformly random vector). The performance of the
programs and therefore the conclusions do not change when
the flank is omitted (not shown).

Each sequence contained one motif, and each dataset
contained motifs drawn from a small number of PWMs.
The number and lengths of PWMs were varied across
datasets for each c, but the distribution of numbers and
lengths was the same for different c’s. Figure 2 shows syn-
thetic motifs for c = 0.1, 0.3 and 0.5, all with a core width
of 6 bp and a full width of 20 bp.

THiCweed and five other programs (Peak-Motifs (23),
MuMoD, Chipmunk, Meme-Chip and Weeder2) were run
on these sets, in multiple-motif ZOOPS mode (zero or one
occurrences of a motif per sequence). The ‘known’ cluster-
ing of the set was the assignment of sequences to PWMs
and the ‘predicted’ clustering for each program was the as-
signment of sequences to predicted motifs. The known and
predicted clusters were compared using the ARI, and the re-
sults plotted as a function of c. Higher ARI indicates a bet-
ter match between the clusterings, with 1.0 indicating per-
fect agreement and 0.0 being the value expected by chance.

Two such datasets are shown here, with dataset 1 contain-
ing 1000 sequences per file and dataset 2 containing 5000
sequences per file. The ARIs are averaged over all 20 files
for each value of c in each dataset.

Commandline options:
THiCweed: no additional parameters
MuMoD: default parameters were used for the curves

marked ‘MuMoD’. For ‘MuMoD(i)’ the true number of
motifs was specified.

ChipMunk: in all runs, the correct number of motifs was
specified. The length of the motif was given as 7:20.

Weeder: default options, but with a background fre-
quency model derived from synthetic data.

Meme-Chip (meme): dreme was disabled with ‘-dreme-
m 0’, and the known number of motifs specified with ‘-
meme-nmotifs’, with default parameters otherwise.

Meme-Chip (dreme): meme was disabled with ‘-meme-
nmotifs 0’ Peak-Motifs: default parameters were used.

Other notes
Despite the ‘filter’ keyword used in the command line,

Chipmunk sometimes predicts multiple motifs per sequence
because it searches for matches for predicted motifs in all se-
quences. For computing the ARI, each sequence was clas-
sified to the best-matching motif, as per the score reported
by Chipmunk. The same was done for Peak-Motifs. In ad-
dition, sequences where no motifs were reported were as-
signed to an additional cluster.

ENCODE data

Here we used data from the ENCODE project (4,5,24), con-
sisting of ChIP-seq peaks. Narrowpeak files were down-
loaded from the ENCODE website. Seventy five base pairs

flanking sequence was taken about each peak location, and
repetitive regions (lowercase sequence in chromosome files
downloaded from the UCSC Genome Browser (25), identi-
fied using RepeatMasker and Tandem Repeat Finder with
period of 12 or less) were rejected for the purposes of this
work. The cell types and ENCODE accession numbers for
various factors portrayed in Figures 4–7 are as follows, and
full output is available on the web server:

Factor Cell type Accession number

BATF GM12878 ENCSR000BGT
ENCFF002CGQ

BCL11A GM12878 ENCSR000BHA
ENCFF002CGR

ELK1 (Figure 4:1) HeLa-S3 ENCSR000ECI
ENCFF001VIJ

ELK1 (Figure 4:2) A549 ENCSR623KNM
ENCFF818TAN

FOS HeLa-S3 ENCSR000EZE
ENCFF001VHZ

FOXA1 Ishikawa ENCSR000BKW
ENCFF002CGL

GATA1 erythroblast ENCSR000EXP
ENCFF001VQR

GATA2 K562 ENCSR000EWG
ENCFF001VNE

IRF1 (Figure 5) K562 ENCSR000EGL
ENCFF002CWW

IRF1 (Figure 4) K562 ENCSR000EGT
ENCFF001VNN

IRF3 GM12878 ENCSR408JQO
ENCFF735DCQ

MAX HeLa-S3 ENCSR000EZF
ENCFF001VIT

MEF2C GM12878 ENCSR000BNG
ENCFF002CHD

MYC K562 ENCSR000EGS
ENCFF002CWF

NFYA HeLa-S3 ENCSR000DNS
ENCFF002CSU

NR2F2 K562 ENCSR000BRS
ENCFF002CME

RELA GM12878 ENCSR000EAG
ENCFF001VET

REST Panc1 ENCSR000BJO
ENCFF002CNA

RFX5 HepG2 ENCSR000EEA
ENCFF002CUT

SIX5 GM12878 ENCSR000BJE
ENCFF002CHU

SP1 K562 ENCSR000BKO
ENCFF002CMN

SP2 (Figure 4:1) H1-hESC ENCSR000BQG
ENCFF002CJL

SP2 (Figure 4:2,3,4) HepG2 ENCSR000BOU
ENCFF002CLC

STAT5A K562 ENCSR000BRR
ENCFF002CMQ

TAL1 K562 ENCSR000EHB
ENCFF002CYH

TEAD4 K562 ENCSR000BRK
ENCFF002CMT

ZNF143 GM12878 ENCSR000DZL
ENCFF002CPW

The ZNF143 clusters were compared with nucleosome
positioning data in the same cell type (GM12878) from EN-
CODE and PhastCons (26) phylogenetic conservation data
(with other primates) from the UCSC genome site (25), dis-
tances from nearest transcriptional start sites (TSS) and
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Figure 2. (A) Examples of embedded synthetic motifs. In this case all these have core widths of 6 bp and full widths of 20 bp, which are common to
corresponding files in all datasets. The PWMs are sampled from different values of c, which varies from the indicated value in the core to a large value of
20 at the periphery. This is intended to model the appearance of motifs observed in real data. (B) and (C): ARI (higher is better) of predicted clustering
to known clustering of synthetic datasets, containing motifs drawn from PWMs sampled column wise from Dirichlet distributions with hyperparameter c.
Error bars in black (standard error from 20 datasets). (B) In the case of 1000 seqs/file, THiCweed is competitive but somewhat inferior on this metric to
MuMoD and ChipMunk, and somewhat superior to MemeChip (meme mode). (C) With 5000 seqs/file, comparing the better-performing programs from
the previous figure, THiCweed is very close to MuMoD in performance.

DNAse-seq values from ENCODE, using custom python
scripts. For TSS, we used the refGene data from the hg19
release on the UCSC genome browser site.

RESULTS

Synthetic data

Results for the two datasets described in ‘Materials and
Methods’ section are plotted in Figure 2 parts A, B and C
for c = 0.1, 0.2, 0.3, 0.4 and 0.5 (smaller value of c corre-
sponds to sharper motifs).

In all cases THiCweed was run with default parameters,
and in particular, a ‘window size’ of 33 bp or one-third the
median input sequence length. As noted, it is designed to
be run with large window sizes on real genomic data. Also,
the stringent criteria for splitting a cluster ensure that spu-
rious clusters are unlikely, so setting the maximum number
of clusters helps only marginally (not shown). Since clusters
are split according to significance criteria, there is no option
to set a minimal amount of clusters.

MuMoD was run both with default parameters (‘Mu-
MoD’) and with the additional information of number of
motifs (‘MuMoD(i)’); the latter provides only marginal im-
provement. Chipmunk (in ChipHorde mode) requires the
exact number of motifs to be told to it, which was done in
these cases, and the range of lengths of the motif was given.
Meme-Chip with its default options run the MEME motif
finder on a random subset of the input data, with inferior re-
sults. Forcing MEME for the full set improved the results, at
a significant cost in running time. For comparison, we also
disabled MEME entirely in favor of DREME, a heuristic

approach based on regular expressions rather than PWMs.
Weeder2 was run with default options but a background
model derived from synthetic data, as described in Meth-
ods. With 1000 seqs/set, THiCweed is competitive with Mu-
MoD and ChipMunk on this metric.

Only the best performers were tested with 5000 seqs/set.
All programs show improved performance here, because
the motif strength is maintained the same but background
‘noise’ reduces as N− 1

2 with increasing number of sequences
N. But THiCweed’s improvement is sharper: it catches up
with MuMoD and is largely superior to ChipMunk.

The reason for poor performance of Peak-Motifs seems
to be its prediction of a very large number of motifs that are
minor variations of one another. While it is hard to judge
the relevance of this for real data, in the case of synthetic
data these are certainly spurious and THiCweed’s statistical
criteria for splitting help it avoid this problem.

Running times: synthetic data

Figure 3A shows running times of all the programs tested,
except Peak-Motifs, for synthetic input data consisting of
200, 400, 600, 800 and 1000 sequences, each 1000-bp long
and containing two different motifs, each of length 10 sam-
pled with Dirichlet parameter 0.2, in 60:40 proportion.
Meme-Chip in MEME mode is an outlier: though its per-
formance in accuracy is not very far behind other programs
(Figure 2, its running time would seem to disqualify it from
realistic datasets (and indeed it disables MEME by default
for sequence sets larger than about 600 × 100 bp). It ap-
pears that, of the other programs, Chipmunk and Meme-
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Figure 3. Running time of various programs as the size of the dataset varies for (A) synthetic data and (B) data from the ENCODE project. (C) THiCweed’s
performance on real data varies significantly with the complexity of the sequence features. Nevertheless, it remains on average much faster than other
programs (Peak-Motifs was not tested but it is the fastest in this comparison).

Chip (Dreme mode) have runtimes increasing roughly lin-
early with data size; MuMoD and Weeder running times
increase superlinearly; and THiCweed’s increase is some-
what sublinear. The figure also discusses running time on
genomic data from ENCODE, discussed below.

ChIP-seq data from the ENCODE project

Running on actual genomic data yields a variety of different
results depending on the factor being examined and the size
of the dataset.

THiCweed has no prior knowledge of the number of dif-
ferent motif clusters, but by default reports a maximum of
15. In some cases far fewer are reported. Because of the sta-
tistical criteria on splitting clusters that we use, described in
‘Materials and Methods’ section, we believe that large num-
bers of clusters, if produced, are statistically significant, but
THiCweed can recluster the output into smaller numbers
of clusters for ease of visualization and this is done in some
cases here. Also, it works with window sizes much larger
than typical motif lengths that one considers; here we used
50 bp. We compare the discovered motifs to previously re-
ported motifs from JASPAR (27,28); the THiCweed website
also includes comparisons to motifs from HocoMoco (29)
and FactorBook (30).

Ubiquitous ‘zinger’ motifs. Hunt and Wasserman (31) ob-
served that certain TF motifs occur repeatedly in differ-
ent ChIP-seq datasets, which they termed ‘zingers’. In par-
ticular they identified CTCF-like, JUN-like, ETS-like and
THAP11-like motifs in multiple datasets. We see all of these
in our analysis of ENCODE data too (for example, the
THAP11-like and CTCF motifs occur in Figure 7, but sev-
eral other motifs appear across multiple experiments. Fig-
ure 4 shows examples that resemble IRF1, SP2, GATA1,
NFYB, REST and a novel motif that we could not identify.
Of these, SP2 and the novel motif are roughly as ubiqui-
tous as CTCF. Both frequently co-occur with CTCF and
the SP2-like motif tends to be concentrated near TSS (an
example is in Figure 7). We suspect a role for these in chro-
matin organization, a topic to be explored in future work.

Also noteworthy is the appearance of a secondary motif
in multiple cases for the GATA-like and NFYB-like motifs;
and the variable spacing of the REST-like motif. The canon-
ical motif has two halves, TCAGCACC and GGACAG,

separated by 2 nt. But we pick up variants, previously de-
scribed in (32), with longer spacing (8 and 9 bp here).
Such widely spaced motifs cause problems for conventional
motif-finders, but are readily picked up in our approach.

Examples of THiCweed output. Figure 5 shows four ex-
amples of motif output. In some cases the output has been
reclustered and filtered for compactness of viewing; com-
plete results for these and many more factors are available
on the THiCweed website.

We make the following observations:

(i) Zinger motifs are widespread here. The SP1-like motif
that we documented above occurs in IRF1 and NFYA.
The unidentified motif in the previous section appears
in REST and FOXA1. CTCF occurs in NFYA and
FOXA1. ETS-like occurs in IRF1.

(ii) The canonical motif for IRF1 occurs in two clusters,
one of which has an additional poly-T tail.

(iii) Similarly, the canonical motif for NFYA appears in
three clusters, one of which also exhibits a weak sec-
ondary motif to the left.

(iv) The canonical REST motif occurs as a closely spaced
dimer (fourth cluster), partial closely spaced dimer
(fifth cluster), monomer (third cluster) and a widely
spaced dimer (second cluster). All of these variants
also occur in THiCweed output for SP2 (Figure 6) sug-
gesting an interaction between SP2 and REST. The
widely spaced dimer is not picked up by other motif
finders.

A much larger collection of THiCweed output on EN-
CODE factors is available on the website. Features similar
to those noted above are ubiquitous.

Comparison with other programs. Figure 6 compares the
output of THiCweed with three other programs. All pro-
grams pick up the main motif (though with varying num-
bers of instances). All also pick up the REST motif, but
only THiCweed picks up the widely spaced version in one
piece. THiCweed also seems to reveal a larger surround-
ing sequence context in many cases, notably for the SP1-
like motif which generally occurs in a CG-rich background.
Peak-Motifs identifies a very large number of motifs, most
of which appear to be minor variations of the main motif.
This may explain the poor performance of Peak-Motifs on
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Figure 4. Motifs that occur across multiple chip-seq datasets, in addition to zinger motifs identified in (31). The factor for which the motif is the canonical
motif according to JASPAR is indicated at the top of each column, together with the JASPAR sequence logo. Below are datasets for various other TFs
where THiCweed finds the same motif.

Figure 5. Sample THiCweed output on four ChIP-seq datasets: IRF1 (5543 peaks), NFYA (4497 peaks), REST (3998 peaks) and FOXA1 (4029 peaks).
Not all output clusters are shown here. The full output is available on the THiCweed website.
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Figure 6. Comparison of clustering of 2019 peaks for SP2 by THiCweed, with motifs found by three other programs.

Figure 7. Comparison of sequence clusters of 14 937 ZNF143 ChIP-seq peaks with DNAse-seq values (color scale: blue = open, red = closed), nucleosome
occupancy (color scale: white = 0, brown = 5+), PhastCons conservation score (color scale: white = 0, dark blue = 1) and distance from nearest TSS,
suggesting connections between the motif structure in different sequence clusters, biological function, evolutionary conservation pressure, nucleosome
positioning and open/closed chromatin.

our synthetic benchmark: the ARI would penalize breaking
up clusters into smaller clusters.

Biological relevance of these clusters. We typically find sev-
eral different motifs, variants of a motif and a few ap-
parently uninformative clusters in THiCweed runs. Bio-
logical significance to these are suggested on comparing
other genomic features, such as phylogenetic conserva-
tion (via PhastCons scores (26) from the UCSC Genome
Browser (25)) and nucleosome occupancy and DNAse-seq
data (from ENCODE (4)). Figure 7 compares each of eight
clusters for ZNF143 with a plot of conservation, nucleo-
some occupancy (in an extended region of 1000 bp on each

side), distance to the nearest TSS and DNAse-seq values.
Cluster 6 (SP2-like motif) tends to be concentrated close
to TSSs (mostly within 1000 bp––a pattern we see consis-
tently), shows little phylogenetic conservation and no sign
of nucleosome positioning. Cluster 1 (a motif resembling
THAP11, identified in (31) as a zinger motif), too, is con-
centrated near TSSs; it too shows little effect in nucleosome
positioning, but is strongly conserved. Cluster 7, resembling
the REST motif, is spread away from TSSs, is phylogeneti-
cally conserved and has an effect on nucleosome position-
ing (which we observe in other datasets where this motif oc-
curs).
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Cluster 8 seems uninformative, but it appears concen-
trated near the TSSs (within about 5000 bp), which would
likely not happen if it consisted only of random uncluster-
able sequences left over from the other clusters.

The remaining clusters are variants of the CTCF motif;
cluster 5 includes the previously documented ‘M2’ motif.
Cluster 3 appears different from other CTCF clusters in that
it occurs in a GC-rich background, is more concentrated
near TSS (mostly within about 10 000 bp), appears a little
less conserved and a little less effective at nucleosome posi-
tioning, with more open chromatin as shown by DNAse.

Running times: ENCODE data

Figure 3B shows the results of THiCweed, MuMoD, Chip-
Munk and Meme-Chip (MEME mode) on real ENCODE
data, consisting of 400–2000 random samples from a set of
CTCF ChIP-seq peaks (dataset ENCFF001USS). The re-
sults are similar to on the synthetic data, except that, some-
what surprisingly, Meme-Chip is faster than MuMoD and
ChipMunk on larger datasets.

Figure 3C shows the running time of THiCweed as a
function of the number of clusters found, on 92 ChIP-seq
datasets each consisting of 27 000–33 000 peaks, across mul-
tiple TFs and cell lines. The running time increases with the
number of clusters, but somewhat sublinearly. On such real-
istic ChIP-seq datasets, THiCweed’s running time is about
two orders of magnitude less than MuMoD, which can take
days and is also much faster than all other programs tested.
Meme-Chip uses the MEME step on only a small fraction
of the input sequences; and Weeder2 learns motifs from a
small fraction of the sequences and uses those to analyze
the rest (19). THiCweed processes the majority of files of
this size in under 2 h, with interesting and biologically rele-
vant results.

DISCUSSION

Motif finding in large datasets produced by ChIP-seq and
similar experiments is a qualitatively different problem in
complexity from what traditional motif finders are used to
handle. Additionally, one could liken the problem of find-
ing rarely occurring motifs to finding a needle in a haystack.
We view THiCweed’s approach as ‘sequence feature anal-
ysis’ (over large windows) rather than ‘motif finding’ (de-
tection of short patterns). Our novel clustering algorithm
can comfortably handle tens of thousands of sequences at a
time, and with significant heterogeneity in motif content. It
successfully picks up biologically relevant motifs even when
they occur in fewer than 5% of the input sequences, such as
the REST-like motif in ZNF143 (cluster 7 in Figure 7). Its
large window size enables it to also pick up secondary mo-
tifs like the M2 CTCF motif in the ZNF143 data (Figure 7),
the widely spaced dimer in SP2 and REST (Figures 5 and
6), and peripheral features such as an overall CG-richness
in some motifs (eg CTCF-like cluster 3 in Figure 7). The
significance criterion used for splitting, and the differences
in biological parameters in Figure 7, suggest that these dif-
ferences are important and are not artifacts.

Uniquely among the programs we have tested, THiCweed
achieves its combination of speed and accuracy without

resorting to heuristics in scoring (as DREME and Chip-
munk do, using regular expressions and ‘seeding’ respec-
tively) and without resorting to training on a small subset
of the sequences (as Weeder does). THiCweed’s clustering
algorithm is stochastic, but is essentially similar to an iter-
ated K-means clustering with K = 2, with significance cri-
teria to avoid spurious splits. Instead of invoking pairwise
distances and calculating a centroid, however, we calculate
multinomial likelihoods correctly within the limitations of
the PWM assumption. The clustering algorithm and wide-
window approach ensures that little or no prior information
is required to run the program: significant short motifs can
be found inside longer windows by eyeballing, but other rel-
evant sequence features can be picked up too.

A possible shortcoming is that within THiCweed’s frame-
work, only one motif occurrence per sequence will be de-
tected (unless two motifs co-occur with a restricted spac-
ing, as in the extended REST motif and the secondary M2
CTCF motif). Sequences that match no dominant motif
may end up in a relatively uninformative cluster such as
cluster 8 in Figure 7. One may ask whether, in clusters that
do not match the canonical motif, the motif nevertheless
occurs elsewhere in some of the peaks in additional to the
non-canonical motif in the cluster. We checked for this pos-
sibility exhaustively using FIMO (33), with a q-value thresh-
old of 10−3 and found that, out of 93 TFs that have a
PWM in JASPAR, only 25 reported any sequences at all
that were not clustered with canonical motif matched but
that nevertheless showed hits for the JASPAR motif. These
too showed matches in very few cases; the exceptions were
SP2 and EGR1, both of which have GC rich canonical mo-
tifs, which reported matches in about 15 and 14%, respec-
tively, of such sequences. It would therefore seem that the
‘missing’ of canonical motifs because of occurrence of other
strong motifs within ChIP-seq peaks is not a common con-
cern in practice.

At the moment, THiCweed runs on a single CPU core,
but significant speedups are possible by parallelization.

In cases where there is a profusion of similar but slightly
different motif patterns as well as an occurrence of many
different motifs (as in the ZNF143/CTCF case), it appears
that the differences may have biological significance, as re-
flected by nucleosome positioning and phylogenetic conser-
vation. We plan to explore this, and the significance of some
of the novel zinger motifs, further in a future work.

AVAILABILITY

The software is open source and available for download
at http://www.imsc.res.in/∼rsidd/thicweed/ under the two-
clause BSD license. An online web server is also available,
linked on the above page, and can be used for modest-sized
jobs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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