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In this study, we investigated the effect of the dynamic changes in brain activation during
neurofeedback training in the classification of the different brain states associated with
the target tasks. We hypothesized that ongoing activation patterns could change during
neurofeedback session due to learning effects and, in the process, could affect the
performance of brain state classifiers trained using data obtained prior to the session.
Using a motor imagery paradigm, we then examined the application of an incremental
training approach where classifiers were continuously updated in order to account for
these activation changes. Our results confirmed our hypothesis that neurofeedback
training could be associated with dynamic changes in brain activation characterized
by an initially more widespread brain activation followed by a more focused and
localized activation pattern. By continuously updating the trained classifiers after each
feedback run, significant improvement in accurately classifying the different brain states
associated with the target motor imagery tasks was achieved. These findings suggest
the importance of taking into account brain activation changes during neurofeedback
in order to provide more reliable and accurate feedback information to the participants,
which is critical for an effective neurofeedback application.

Keywords: real-time fMRI, motor imagery, neurofeedback, support vector machines, incremental training, brain
state, learning

INTRODUCTION

Real-time functional magnetic resonance imaging (fMRI), coupled with machine learning
algorithms, has enabled the real-time identification of different brain states during fMRI scans
(LaConte et al., 2007; LaConte, 2011; Shibata et al., 2011; Sitaram et al., 2011; Bagarinao et al.,
2018). Using support vector machines (SVM), a type of supervised machine learning algorithm,
LaConte et al. (2007) demonstrated the first real-time decoding of brain states corresponding to the
left and right button presses task. In the same study, they also demonstrated the classifier’s ability to
decode other cognitive and emotional states, albeit in a small number of participants. This approach
was later extended by Sitaram et al. (2011) to the online classification and feedback of multiple
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emotional states. Shibata et al. (2011) used sparse logistic
regression to decode target activation patterns from
localized brain regions and used neurofeedback to induce
perceptual learning.

Recently, we employed a multivariate pattern analysis using
SVM to demonstrate the importance of feedback information in
improving volitional recall of brain activation patterns during
motor imagery training (Bagarinao et al., 2018). Specifically,
we examined the effect of neurofeedback in recalling activation
patterns associated with motor imagery tasks. For this purpose,
participants underwent extended motor imagery task training
consisting of two scanning sessions, one with feedback and the
other without feedback. Consistency in recalling motor imagery
relevant activation patterns was assessed using SVM. The results
clearly showed that with feedback information, participants were
able to recall relevant activation patterns significantly better than
without feedback. For the training with feedback, we used data
obtained from an initial scan to train SVMs, which were later used
in the succeeding feedback runs (LaConte, 2011). We observed
that the SVMs’ classification performance tended to decrease with
each feedback run.

One of the implicit assumptions in brain state classification
studies using supervised learning algorithms is the stationarity
of the measured system (i.e., the brain) (Vapnik, 1999; Hastie
et al., 2009). However, for most neurofeedback studies, the goal
of training is for participants to learn the target tasks. This
can be in the form of either up- or down-regulating activity in
circumscribed brain regions (DeCharms et al., 2004; deCharms
et al., 2005; Caria et al., 2007; Zotev et al., 2011, 2018; Hamilton
et al., 2016; Sherwood et al., 2016), inducing specific patterns of
brain activity (Shibata et al., 2011; Amano et al., 2016; Cortese
et al., 2016, 2017; Koizumi et al., 2016), or enhancing connectivity
between regions (Koush et al., 2013, 2017; Kim et al., 2015).
As demonstrated by earlier studies, neurofeedback training can
change functional brain networks (Haller et al., 2013) and can
alter the profile of connectivity patterns of specific brain regions,
for example, in the right inferior gyrus (Rota et al., 2011) as
well as in the insular cortex (Lee et al., 2011). All of these entail
dynamic changes in the brain’s activity if the participant has to
learn the target tasks.

For neurofeedback to be effective, the feedback information
also needs to be reliable and representative of the ongoing
brain activity or activation pattern that was meant to be
volitionally controlled. Otherwise, the feedback signal would
not be of help to participants in actually self-regulating their
brain activity. This can be clearly seen in neurofeedback studies
that used sham control (deCharms et al., 2005; Rota et al.,
2009; Caria et al., 2010; Zotev et al., 2018). Under the sham
condition, the feedback signal provided to the participants does
not represent actual activation. Findings using sham control
have clearly demonstrated that the desired effect is not usually
achieved, suggesting the importance of having the right feedback
information for neurofeedback training to be effective. To
account for the changing activation pattern that could be driven
by learning effects and to be able to provide relevant feedback
information, the system itself must be able to adapt as the
training progresses.

In this study, we hypothesized that during neurofeedback
training, dynamic changes in activation patterns could occur
as participants learned to perform the target tasks. To account
for these changing activation patterns, we examined whether
continuously updating trained classifiers after every feedback
scan could improve the classifiers’ performance and thus provide
a more accurate feedback information to the participants. For
this, we used a brain–machine interface (BMI) system that
employed a motor imagery paradigm coupled with real-time
fMRI based neurofeedback (Bagarinao et al., 2018). The choice
of motor imagery, a covert cognitive process where an action
is mentally simulated but not actually performed (Grèzes and
Decety, 2000; Hétu et al., 2013), is motivated by its potential as
an effective neurorehabilitation tool to improve motor functions
(Jackson et al., 2001; Zimmermann-Schlatter et al., 2008; Malouin
and Richards, 2013). We used linear SVMs to classify brain states
associated with different motor imagery tasks and evaluated its
performance during feedback runs.

MATERIALS AND METHODS

Participants
We recruited 30 healthy young participants (15 males and
15 females), ranging in age from 20 to 25 years old (mean
age = 21.7 years, standard deviation = 1.3 years) for this study.
All participants had no history of neurological or psychiatric
disorders, right handed as indexed by a handedness inventory
test for Japanese (Hatta and Hotta, 2008), and with Mini-Mental
State Examination score greater than 26. This study was approved
by the Institutional Review Board of the National Center for
Geriatrics and Gerontology of Japan. All participants gave written
informed consent before joining the study.

Experimental Paradigm and Tasks
All participants underwent real-time fMRI scanning at the
National Center for Geriatrics and Gerontology in Japan. The
outline of the experimental protocol and tasks is given in
Figure 1A. Each scanning session consisted of the following
scans: (1) an anatomical localizer scan, (2) T1-weighted high
resolution anatomical image scan, and (3) 4 motor imagery task
fMRI scans (runs 0 to 3). All task fMRI scans consisted of nine
rest (R) and eight task blocks with each block lasting for 30 s. The
task blocks were divided into four blocks of imagined left hand
gripping and opening (LGO) and four blocks of imagined right
hand gripping and opening (RGO). In the first motor imagery
scan (run 0), no feedback was provided, while for the remaining
three scans (runs 1–3), feedback signals were given. In-between
feedback scans, participants were given 5 min of rest.

Participants were also given time to practice the motor
imagery tasks outside the scanner. During this practice session,
the participants were initially asked to imagine gripping and
opening their right or left hand to get a sense of the motor
imagery tasks. This was done without time constraint. Once the
participants felt comfortable doing the imagery tasks, they were
then asked to actually perform the movements and instructed
to remember the physical sensation of these movements as
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FIGURE 1 | Outline of (A) the experiment protocol and tasks and (B) the modified training strategy used in this study. Each scan block in (A) is 30 s long. R, rest;
LGO, imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; SVM, support vector machine.

an additional guide for the imagery tasks. Finally, participants
performed half of the task protocol corresponding to two
blocks each of LGO and RGO tasks with rest in-between
tasks using the same timing (30 s each block) and visual cue
presentation in front of the stimulus computer. This was done
to familiarize the participants with the actual tasks and timing
during the scans. Participants were also instructed to continue
doing the same imagery task even if the robot does not respond
during the scans.

Imaging Parameters
All scans were acquired using a Siemens Magnetom Trio
(Siemens, Erlangen, Germany) 3.0 T MRI scanner with a 12-
channel head coil. Anatomical T1-weighted MR images were
acquired using a 3D MPRAGE (Magnetization Prepared Rapid
Acquisition Gradient Echo, Siemens) pulse sequence (Mugler
and Brookeman, 1990) with the following imaging parameters:
repetition time (TR) = 2.53 s, echo time (TE) = 2.64 ms, 208
sagittal slices with a 50% distance factor and 1 mm thickness, field
of view (FOV) = 250 mm, 256 × 256 matrix dimension and in
plane voxel resolution of about 1.0 mm × 1.0 mm × 1.0 mm.
The functional images were acquired using a gradient echo
(GE) echo planar imaging (EPI) sequence with the following
parameters: TR = 2.0 s, TE = 30 ms, flip angle (FA) = 80
degrees, 37 axial slices with a distance factor of 30% and thickness
of 3.0 mm, FOV = 192 mm, 64 × 64 matrix dimension,

voxel resolution = 3.0 mm × 3.0 mm × 3.0 mm, and a
total of 255 volumes.

Neurofeedback Training
For the feedback scans, we used our previously reported BMI
system (Bagarinao et al., 2018). The system employed a small
humanoid robot (KHR-3V, Kondo Science, Japan), the arms of
which could be controlled (e.g., raising or lowering) via its USB
connection to the real-time analysis system. During real-time
fMRI scan, the system operates as follows. Each acquired image
volume is immediately sent to the analysis system, which then
processes the data. The preprocessed data is then fed into a
previously trained SVM for real-time classification. If the target
brain activation pattern has been identified, the analysis system
will send a command (e.g., raise left arm) to the humanoid robot
for immediate execution. The action of the robot is captured by
a video camera, which sends the live video feed to the participant
via a projector.

In this study, SVMs were trained to classify the different brain
states associated with the imagery tasks and the trained SVMs
were used to classify, in real-time, the ongoing brain state of
the participants during feedback scans. Specifically, during task
blocks, each acquired image volume was processed immediately
by the analysis system, then classified by the trained SVM, and
depending on the classification result, a command signal was
sent to the humanoid robot. If SVM classified the volume as task
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(LGO/RGO) as compared to rest, the arm of the humanoid robot
corresponding to the imagery task would be raised by 11 degrees,
while for incorrect classification, the arm of the robot would
remain stationary. Thus, during the task block, the robot’s arm
would be continuously raised with an increment of 11 degrees
depending on the SVM’s classification output. The higher the
accuracy, the higher the corresponding arm would be raised. At
the end of the task block, the arm would be reset to its initial
downward position. During rest blocks, the robot stayed still
and the participants focused their attention on a cross mark
positioned on the robot’s body. The feedback was designed to
be representative of or consistent with the task design. Since the
classification was based on rest vs. task, when the classification
was incorrect (SVM predicted rest during task blocks), the robot
would not move, and when the classification was correct, the
robot would move.

Unlike previous approaches, we used an incremental training
strategy outlined in Figure 1B to train the SVMs during feedback
scans. Specifically, the data from run 0 was used to train initial
SVMs (SVM0) to classify rest from LGO (R vs. LGO) or rest
from RGO (R vs. RGO) brain states. The trained SVMs were then
used to classify in real time the acquired volumes obtained during
feedback scan 1 (run 1). After the scan, the SVMs were updated
and retrained using only the newly acquired data from run 1. The
data from run 0 were not included in retraining the SVMs. The
newly trained SVMs (SVM1) were then used to classify the data
in the following feedback scan (run 2). This updating process was
repeated until the last feedback scan.

For online and real-time image preprocessing, we used
Statistical Parametric Mapping (SPM8, Wellcome Trust Center
for Neuroimaging, London, United Kingdom) running on
Matlab (R2016b, MathWorks, Natick, MA, United States). Data
obtained during run 0 were immediately preprocessed after the
scan (online preprocessing). The acquired functional images were
realigned using a two-pass approach as implemented in SPM8.
In the first pass, the images were co-registered to the first image
in the series using a rigid body spatial transformation (three
parameters for translation and three parameters for rotation) and
the mean functional image, Imean, was then computed. In the
second pass, the realigned images were further co-registered to
the computed mean image. This mean image was also used as
the reference image when aligning all functional images acquired
during feedback scans. After realignment, the participant’s
anatomical T1-weighted image was then co-registered to Imean
and segmented into component images including gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF). The
segmentation step also generated the transformation information
from subject space to the Montreal Neurological Institute
(MNI) template space. Using this information, the realigned
functional images were normalized to MNI, resampled to a
3 mm × 3 mm × 3 mm voxel resolution and smoothed using
an 8-mm full-width-at-half-maximum (FWHM) 3D Gaussian
kernel. Finally, we applied a whole brain mask to the preprocessed
images to exclude voxels outside the brain. This preprocessed
data were then used to train SVM0. Although the normalization
step is unnecessary for individual analysis, we performed this
step so that results could be easily validated and compared with

that of the other subjects. Moreover, we also used a common
whole brain mask to limit SVM analysis to voxels within the brain
and normalization made this easier. During feedback scans, each
functional image was preprocessed immediately after acquisition
(real-time preprocessing). The image was first realigned to Imean
estimated from run 0, then normalized to the MNI space,
resampled to a 3 mm × 3 mm × 3 mm voxel resolution,
smoothed using an 8-mm FWHM 3D Gaussian kernel, masked
using the same whole brain mask employed in run 0 to exclude
voxels outside the brain, incrementally detrended, and used as
input to the trained SVMs for the real-time classification of the
brain’s activation pattern. The SVM’s output was also detrended
to correct for possible classifier drift (LaConte et al., 2007).

Offline Data Analysis
We also performed offline analyses of the acquired data to
generate the activation maps associated with the imagery tasks.
For this, we used SPM12. The T1-weighted images were first
segmented into component images including GM, WM, and CSF,
among others, using SPM’s segmentation approach (Ashburner
and Friston, 2005). The bias-corrected anatomical image as
well as the transformation information from subject space to
MNI space were then obtained. For the functional images,
the first 5 volumes were discarded to account for the initial
image inhomogeneity. The remaining images were then realigned
relative to the mean functional image, co-registered to the bias-
corrected anatomical image, normalized to the standard MNI
space using the transformation information obtained from the
segmentation step, resampled to a 2 mm × 2 mm × 2 mm voxel
resolution, and spatially smoothed using an 8-mm FWHM 3D
Gaussian filter.

Using the preprocessed functional images, the activation
maps associated with all imagery tasks were generated for each
participant. To do this, we used a box-car convolved with SPM’s
canonical hemodynamic response function to model each task
(LGO/RGO). The 6 estimated realignment parameters were also
included as covariates of no interest to account for the effects
of head motion. Contrast images were extracted for the LGO
and RGO tasks as well as contrasts comparing the two tasks
(LGO > RGO). One-sample t-tests of the resulting contrast
maps were also performed to generate activation maps at the
group level. All statistical maps were corrected for multiple
comparisons at the cluster level with p < 0.05 using family-
wise error correction (FWEc) and a cluster-defining threshold
(CDT) set to p = 0.001 as implemented in SPM12. To test our
hypothesis of the changing activation patterns during feedback
scans, we performed a one-way repeated measures analysis of
variance (ANOVA) using contrast images for each participants
from feedback runs 1 to 3 for both LGO and RGO tasks. Post
hoc paired sample t-tests were also performed between pairs of
feedback runs. We used the Neuromorphometrics atlas available
in SPM12 to label the different cortical areas in the obtained
statistical maps. Surface projections of the activation maps are
shown using BrainNet Viewer (Xia et al., 2013).

Offline SVM analyses were also performed using the
preprocessed data and employing the same training strategy
outlined in Figure 1B for more precise and detailed analyses.
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Three SVM classification models including R vs. LGO, R vs.
RGO, and LGO vs. RGO were investigated. The third model
was added to evaluate the discrimination of the representation
of the imagery movement between the left and the right hands.
Since feedback training only involved the first two models, the
classification performance of the third model could serve as
an indirect measure to quantify learning of the imagery tasks,
that is, the higher the classification performance, the better the
participants were able to generate distinct activation patterns
for the two tasks in spite of the fact that the feedback was
solely based on the classification of rest vs. task (LGO/RGO)
brain states. To evaluate the SVMs’ performance for the first
two classification models, we computed the task predictive value
(TPV), defined as the ratio between the number of correctly
classified task volumes and the total number of task volumes.
Specifically, for R vs. LGO classification model, TPV was defined
as the ratio between the number of correctly classified LGO
volumes and the total number of LGO volumes within the run.
The TPV for R vs. RGO classification model was defined in the
same way. For the LGO vs. RGO classification model, we used
accuracy defined as the total number of correctly classified LGO
and RGO volumes over the total number of LGO and RGO
volumes. Rest volumes were excluded in these definitions since
rest blocks were not monitored during the scan and participants
might also have practiced the task during rest blocks, which
could lead to inaccurate classification. We also investigated the
effect of SVM re-training strategy on the estimated classification
measures using a one-way repeated-measures ANOVA. In all
SVM analyses, we used a linear SVM and set the regularization
parameter c to 1. We used the default value of c since this
value has provided robust classification performance on the same
classification problem based on our previous study (Bagarinao
et al., 2018). All analyses were performed in Matlab (R2016b,
MathWorks, Natick, MA, United States) using in-house scripts
and LIBSVM (Chang and Lin, 2011), a free library for SVMs.

To identify regions that significantly contributed to the trained
SVM’s classification performance, we performed a one-sample
t-test to the weights obtained from all participants for each
of the classification model above using SPM12. This is to test
whether the mean weight value at each voxel across participants
were significantly greater than or less than 0. The resulting
statistical maps were then corrected for multiple comparisons
at the cluster level using FWEc p < 0.05 (CDT p = 0.001) as
implemented in SPM12.

Validation Analyses
To further demonstrate the advantages of updating SVMs during
a series of neurofeedback training runs, we performed additional
offline validation analyses using the preprocessed data. The goal
of these additional analyses was to contrast the classification
performance when SVMs were only trained using data from
run 0 and tested using data from feedback runs 1–3 with no
training update, which is the typical approach. For these analyses,
the same 3 SVM classification models (R vs. LGO, R vs. RGO,
and LGO vs. RGO) were evaluated using the same performance
measures (TPV for the first two models and accuracy for
the third model).

RESULTS

Improvement in Classification
Performance With SVM Re-training
Figure 2 shows box plots of the classification performance of
the SVMs trained using the incremental approach. Means and
standard deviations are summarized in Table 1. For the real-time
SVM performance (Figure 2A), the mean TPV values were 71.06,
78.83, and 78.28 for R vs. LGO and 72.78, 70.22, and 72.78 for
R vs. RGO during feedback runs 1, 2, and 3, respectively. The
result of one-way repeated-measures ANOVA showed significant
main effect (F2,58 = 4.99, p = 0.010) in TPV values across feedback
runs for R vs. LGO classification driven by the improvement in
TPV between runs 1 and 2 (p = 0.0096, post hoc paired sample
t-test) and runs 1 and 3 (p = 0.0178). For R vs. RGO classification,
no significant (F2,58 = 0.536, p = 0.588) change was observed in
TPV values across feedback runs. The list of TPV values for all
participants is given in Supplementary Table S1.

For the offline analysis (Figure 2B), we observed improvement
in the classification performance as compared to that obtained
during real-time analysis. This is mostly driven by better
image preprocessing and additional optimization during offline
analysis. The mean TPV values were 81.00, 85.78, and 84.17 for R
vs. LGO classification and 81.00, 82.67, and 85.61 for R vs. RGO
classification during feedback runs 1 to 3, respectively. Similarly,
the mean accuracy values were 67.17, 74.03, and 72.06 for LGO
vs. RGO classification. The results of the one-way repeated-
measures ANOVA showed significant main effect in TPV values
for R vs. LGO classification (F2,58 = 3.9107, p = 0.0255) and
in accuracies for LGO vs. RGO classification (F2,58 = 5.2610,
p = 0.0079) across feedback runs. Again, no significant change
(F2,58 = 2.3711, p = 0.1024) was observed in TPV values for
R vs. RGO classification. Post hoc paired sample t-tests showed
significant improvement in TPV values between scans 1 and 2 for
R vs. LGO classification (p = 0.014). The accuracy in classifying
LGO vs. RGO also significantly improved between scans 1 and 2
(p = 0.002) as well as between scans 1 and 3 (p = 0.041). The list
of TPV values and classification accuracies for all participants is
given in Supplementary Table S2.

SVM Performance in the Validation
Analyses
Figure 3 shows the SVM performance in the validation analyses
of the preprocessed data. Using only the data from run 0 to train
the SVMs and testing the trained SVM on data from runs 1 to
3, the mean TPV values for the R vs. LGO classification for runs
1 to 3 were 81.00, 78.00, and 71.44, respectively. For the R vs.
RGO classification task, the mean TPV values for runs 1 to 3
were 81.00, 76.89, and 71.72, respectively, and for the LGO vs.
RGO classification, the mean accuracies were 67.17, 63.44, and
60.56, respectively. One-way repeated measures ANOVA showed
significant main effect in TPV values for R vs. LGO classification
(F2,58 = 18.4031, p < 0.0000) and for R vs. RGO classification
(F2,58 = 9.0382, p = 0.0004) as well as in the classification accuracy
for LGO vs. RGO classification (F2,58 = 7.0906, p = 0.0018) across
feedback runs. Post hoc paired sample t-tests showed significant
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FIGURE 2 | Classification performance for support vector machines (SVMs) trained using the incremental strategy outlined in Figure 1B (A) during real-time
neurofeedback training (real-time analysis) and (B) offline analysis of the same data set. R, rest; LGO, imagined left hand gripping and opening; RGO, imagined right
hand gripping and opening; TPV, task predictive value.

TABLE 1 | Support vector machine (SVM) classification performance for the different classification models.

Real-time analysis Offline analysis

R vs. LGO (TPV, %) R vs. RGO (TPV, %) R vs. LGO (TPV, %) R vs. RGO (TPV, %) LGO vs. RGO (Accuracy, %)

Run 1 71.06 (13.52) 72.78 (12.69) 81.00 (9.54) 81.00 (9.35) 67.17 (14.72)

Run 2 78.83 (11.16) 70.22 (09.30) 85.78 (8.11) 82.67 (10.34) 74.03 (13.53)

Run 3 78.28 (11.21) 72.78 (12.36) 84.17 (8.19) 85.61 (8.63) 72.06 (13.59)

R, rest; LGO, imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; TPV, task predictive value; numbers enclosed in parentheses
represent standard deviation values.

decrease in TPV values between runs 1 and 3 (p< 0.0000 for R vs.
LGO and p = 0.0008 for R vs. RGO) and runs 2 and 3 (p < 0.0000
for R vs. LGO and p = 0.0144 for R vs. RGO) as well as in the
classification accuracy between runs 1 and 2 (p = 0.0291) and
runs 1 and 3 (p = 0.0029) for the LGO vs. RGO classification
model. These results suggest that without re-training, the SVM
performance significantly decreases with each feedback run. The
list of TPV values and accuracies for all participants is given in
Supplementary Table S3.

Changes in Activation Patterns During
Feedback Runs
Figure 4 shows the group-level activation maps for the different
tasks during feedback runs 1 to 3 generated using one-sample
t-tests of the corresponding subject-level activation maps. Based
on this figure, we could clearly see that the activation pattern
changed from feedback run 1 to run 3 with the former being more
widespread and the latter more focused on relevant brain regions.

Clusters showing significant activation/deactivation during
feedback runs 1 to 3 are summarized in Tables 2–4, respectively.

For the LGO task (Figure 4A), regions that were consistently
activated across feedback runs included the bilateral inferior
occipital gyrus/middle temporal gyrus, right opercular part
of the inferior frontal gyrus/anterior insula, left cerebellum
(not shown in the figure), bilateral supplementary motor
cortex/right superior frontal gyrus, right middle frontal
gyrus, left precentral gyrus/anterior insula/frontal and
central operculum, and right supramarginal gyrus. Regions
activated only during feedback runs 1 and 2 included the left
supramarginal gyrus and right thalamus proper/pallidum. The
left cerebellum (inferior portion, not shown) was activated
during feedback runs 1 and 3, while the right cerebellum
(not shown) was activated only during feedback run 1. On
the other hand, consistent deactivations across feedback
runs were observed in the bilateral posterior cingulate gyrus
and the left angular gyrus. The left central operculum, left
hippocampus, bilateral anterior cingulate gyrus/medial
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FIGURE 3 | Classification performance for support vector machines trained using data from run 0 and tested using data from feedback runs 1 to 3 without training
update. R, rest; LGO, imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; TPV, task predictive value.

FIGURE 4 | Group activation maps for imagined (A) left hand gripping and opening (LGO) and (B) right hand gripping and opening (RGO) tasks and (C) the contrast
(LGO > RGO) between the two tasks obtained using a one-sample t-test from individual contrast maps for feedback runs 1 to 3 (left to right). All statistical maps were
corrected for multiple comparisons at the cluster level using family-wise error correction (FWEc) p < 0.05 with a cluster-defining threshold (CDT) set at p = 0.001.
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TABLE 2 | Clusters showing significant (FWEc p < 0.05) activation and deactivation during feedback run 1 for the different motor imagery tasks.

x y z z-val Cluster size Area Other peaks

LGO

Activation −52 −68 6 7.555 5064 L MTG L SMG

32 20 4 7.534 20006 R AIns R SMC, R CO

52 −60 2 6.797 7118 R MTG R SMG

−36 16 4 6.696 5616 L FO L PrG

−24 −64 −24 6.670 2537 L Cer

28 −62 −24 5.271 418 R Cer

Deactivation −38 −16 20 7.162 493 L CO

−30 −8 −20 5.700 8038 L Hip

−50 −22 58 5.551 476 L PoG

−10 −40 70 5.550 933 L PoG R MPrG, R PoG

−4 56 −8 4.954 1123 L MFC L MSFG, R MFC

−36 −78 42 4.374 244 L AnG

RGO

Activation 52 −62 2 Inf 10032 R MTG R SMG, R Cer

−46 −66 8 7.195 5273 L MTG L SMG, L PO

50 8 14 6.807 23271 R OpIFG R SMC, L PrG

−28 −64 −24 6.262 2116 L Cer R Cer

Deactivation 40 −14 22 6.022 5995 R CO R Hip

40 −24 62 5.931 1828 R PoG R MPrG

22 −92 2 5.086 752 R OCP L Cun

LGO vs. RGO

LGO > RGO −52 −72 2 5.377 1110 L IOG L MTG

44 −14 20 5.071 496 R CO R Pu

30 −18 62 4.784 1863 R PrG

−18 −86 32 4.203 238 L SOG L MOG

LGO < RGO 24 −52 −18 5.074 2114 R Cer R ITG, R IOG

−50 −24 18 4.698 294 L PO

24 −82 32 4.615 284 R SOG

−42 −28 42 4.590 1120 L PoG L PrG

LGO, imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; MTG, middle temporal gyrus; SMG, supramarginal gyrus; AIns, anterior
insula; SMC, supplementary motor cortex; CO, central operculum; FO, frontal operculum; PrG, precentral gyrus; Cer, cerebellum; Hip, hippocampus; PoG, postcentral
gyrus; MPrG, medial precentral gyrus; MFC, medial frontal cortex; MSFG, medial superior frontal gyrus; AnG, angular gyrus; OpIFG, opercular part of the inferior frontal
gyrus; OCP, occipital pole; Cun, cuneus; IOG, inferior occipital gyrus; Pu, putamen; SOG, superior occipital gyrus; MOG, middle occipital gyrus; ITG, inferior temporal
gyrus; PO, posterior operculum; L, left; R, right.

frontal cortex, right fusiform gyrus/hippocampus, and the
left postcentral gyrus/medial precentral gyrus were deactivated
during feedback runs 1 and 2, while the right superior temporal
gyrus/temporal pole/middle temporal gyrus was deactivated
during feedback run 2.

For the RGO task (Figure 4B), regions that were consistently
activated across feedback runs included the right middle
temporal gyrus/inferior occipital gyrus, right opercular part
of the inferior frontal gyrus/precentral gyrus, left middle
temporal gyrus, left cerebellum (not shown), right middle frontal
gyrus, right supramarginal gyrus, left precentral gyrus, bilateral
supplementary motor cortex, and the left thalamus proper.
The left supramarginal gyrus and the right cerebellum were
activated only during feedback runs 1 and 2, while the left
lateral part of the orbital gyrus was activated only during
feedback run 2. On the other hand, only the right postcentral
gyrus was consistently deactivated across feedback runs, while
the bilateral precuneus/posterior cingulate gyrus and the left

fusiform gyrus/parahippocampal gyrus were deactivated during
feedback runs 2 and 3, the right central operculum during
feedback runs 1 and 3, the left angular gyrus and right medial
frontal cortex during feedback run 3, and the right occipital pole
during feedback run 1.

Contrasting the two tasks (Figure 4C), regions showing
consistent higher activations in the LGO task compared to the
RGO task across all feedback runs included the right precentral
gyrus and the left inferior occipital gyrus/middle temporal gyrus.
The right central operculum showed higher activation in the
LGO task compared to the RGO task only during feedback runs
1 and 3, while the left superior occipital gyrus showed higher
activation during feedback run 1, and the right occipital pole
and left cerebellum only during feedback run 3. In contrast,
only the right inferior occipital gyrus showed consistent higher
activation in the RGO task compared to the LGO task across all
feedback runs. The right superior occipital gyrus, left precentral
gyrus, left posterior operculum, and the right cerebellum also
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TABLE 3 | Clusters showing significant (FWEc p < 0.05) activation and deactivation during feedback run 2 for the different motor imagery tasks.

x y z z-val Cluster size Area Other peaks

LGO

Activation 46 −64 4 6.287 1015 R IOG

−46 −70 4 6.195 1038 L IOG

56 12 12 6.162 3477 R OpIFG R AIns

60 −32 44 5.581 2625 R SMG

46 42 −2 5.570 1176 R TrIFG R LOrG, R MFG

−46 0 6 5.509 1396 L CO L OpIFG, L AIns

−6 −4 68 5.453 972 L SMC R SMC, R SFG

−60 −24 26 5.434 1068 L SMG

−30 −68 −22 4.361 531 L Cer

18 −8 8 4.099 556 R ThP R Pallidum

Deactivation −36 −16 22 5.794 850 L CO L PCgG, L MCgG

−34 −26 −14 5.773 5710 L Hip L OCP, L PCu

−2 38 −14 5.099 1603 L ACgG R SCA, R ACgG

36 −42 −8 4.838 829 R FuG R Hip

−18 −40 60 4.791 1946 L PoG

−38 −76 40 4.614 602 L AnG

58 4 −14 4.055 279 R STG R TMP, R MTG

RGO

Activation 46 −66 4 6.761 4579 R IOG R SMG

52 10 14 6.023 3523 R OpIFG R PrG

−50 4 14 5.717 2265 L PrG L AIns, L CO

−66 −26 34 5.496 1544 L SMG L PO

42 46 −4 5.290 1591 R MFG

−46 −62 2 5.185 656 L MTG

−36 42 −16 5.051 526 L LOrG L OrIFG, L MFG

−6 −2 58 4.969 1133 L SMC R SMC

26 −62 −24 4.705 614 R Cer

−26 −64 −24 4.307 284 L Cer

−20 −4 14 3.830 332 L Cau L ThP

Deactivation −36 −44 −8 5.058 933 L FuG L Hip, L PHG

12 −40 74 4.611 397 R PoG R SPL, R MPoG

26 −18 −14 4.577 569 R Hip

44 −20 58 4.451 445 R PoG R PrG

−8 −50 6 4.226 1188 L PCgG R PCu, L PCu

LGO vs. RGO

LGO > RGO −46 −72 2 5.193 649 L IOG

32 −18 58 4.798 636 R PrG R PoG

LGO < RGO 24 −86 38 5.525 378 R SOG R MOG

46 −64 2 5.395 1988 R IOG R Cer

−22 −14 74 5.047 1217 L PrG L SPL, L SFG

−44 −26 22 4.696 931 L PO L Pu

−8 −16 54 4.543 378 L SMC L MPrG

−12 −100 8 4.008 350 L OCP L Calc

LGO, imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; IOG, inferior occipital gyrus; OpIFG, opercular part of the inferior frontal
gyrus; AIns, anterior insula; SMG, supramarginal gyrus; TrIFG, triangular part of the inferior frontal gyrus; LOrG, lateral orbital gyrus; MFG, middle frontal gyrus; CO, central
operculum; SMC, supplementary motor cortex; SFG, superior frontal gyrus; Cer, cerebellum; ThP, thalamus proper; PCgG, posterior cingulate gyrus; MCgG, midcingulate
gyrus; Hip, hippocampus; OCP, occipital pole; PCu, precuneus; ACgG, anterior cingulate gyrus; SCA, subcallosal area; FuG, fusiform gyrus; PoG, postcentral gyrus; AnG,
angular gyrus; STG, superior temporal gyrus; TMP, temporal pole; MTG, middle temporal gyrus; PrG, precentral gyrus; PO, posterior operculum; OrIFG, orbital part of the
inferior frontal gyrus; Cau, caudate; PHG, parahippocampal gyrus; SPL, superior parietal lobule; MPoG, medial postcentral gyrus; SOG, superior occipital gyrus; MOG,
middle occipital gyrus; Pu, putamen; MPrG, medial precentral gyrus; Calc, calcarine; L, left; R, right.
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TABLE 4 | Clusters showing significant (FWEc p < 0.05) activation and deactivation during feedback run 3 for the different motor imagery tasks.

x y z z-val Cluster size Area Other peaks

LGO

Activation −48 −70 4 6.411 785 L IOG

50 8 12 5.567 2445 R OpIFG R FO, R PrG

46 −64 4 5.494 799 R IOG

−28 −64 −24 5.028 564 L Cer

−6 −4 66 4.879 825 L SMC R SMC, R SFG

40 48 8 4.814 775 R MFG

−22 −72 −44 4.611 313 L Cer

−54 4 14 4.555 420 L PrG L FO, L AIns

60 −22 26 4.452 1119 R SMG

Deactivation −12 −48 0 4.791 5004 L PCgG R PCgG, L PCu

−42 −72 30 4.109 378 L AnG

RGO

Activation 52 −62 0 5.956 1218 R MTG R IOG

48 8 12 5.906 2939 R OpIFG R PrG, R FO

−48 −68 6 5.420 405 L MTG

−20 −72 −44 4.973 531 L Cer

42 48 0 4.918 1056 R MFG R LOrG

58 −32 42 4.858 1743 R SMG R STG

−52 4 14 4.843 1269 L PrG L CO

−6 −2 58 4.755 1015 L SMC R SMC

−18 −10 18 4.243 318 L ThP L Cau

Deactivation 18 −50 8 5.907 9945 R PCu R PoG

34 −12 22 5.859 358 R CO

−40 −70 32 4.901 828 L AnG L SOG

4 48 −14 4.138 399 R MFC L SFG, L MSFG

LGO vs. RGO

LGO > RGO 36 −14 20 5.504 369 R CO R PIns, R Pu

24 −18 74 5.190 1114 R PrG

−50 −70 4 4.593 463 L IOG L MTG

18 −94 6 4.569 310 R OCP R Calc

−24 −38 −24 4.051 399 L Cer

LGO < RGO −12 −98 −6 4.670 187 L Calc

42 −72 8 4.132 206 R IOG

LGO, imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; IOG, inferior occipital gyrus; OpIFG, opercular part of the inferior frontal
gyrus; FO, frontal operculum; PrG, precentral gyrus; Cer, cerebellum; SMC, supplementary motor cortex; SFG, superior frontal gyrus; MFG, middle frontal gyrus; AIns,
anterior insula; SMG, supramarginal gyrus; PCgG, posterior cingulate gyrus; PCu, precuneus; AnG, angular gyrus; MTG, middle temporal gyrus; LOrG, lateral orbital
gyrus; STG, superior temporal gyrus; CO, central operculum; ThP, thalamus proper; Cau, caudate; PoG, postcentral gyrus; SOG, superior occipital gyrus; MFC, medial
frontal cortex; MSFG, medial superior frontal gyrus; PIns, posterior insula; Pu, putamen; OCP, occipital pole; Calc, calcarine; L, left; R, right.

showed higher activation in the RGO task during feedback runs
1 and 2, while the left calcarine showed this during runs 2 and
3. Finally, the left supplementary motor cortex was higher in
RGO task during feedback run 2 and the left postcentral gyrus
during feedback run 1.

The results of the one-way repeated-measures ANOVA
showed significant main effect for both tasks across feedback
runs (Figure 5). For the LGO task (Figure 5A), significant
changes in activation can be seen in the right middle frontal
gyrus/opercular part of the inferior frontal gyrus, while for the
RGO task (Figure 5B), in the bilateral middle temporal gyrus,
left supramarginal gyrus, and left precentral gyrus. These changes
were mostly driven by a decrease in activation in these regions
between feedback runs 1 and 3 (Figure 5, lower figures). Aside

from these regions, other regions showing significant decrease
in activation included the bilateral middle temporal gyrus, right
supplementary motor cortex, left middle frontal gyrus, and right
supramarginal gyrus for the LGO task and the right opercular
part of the inferior frontal gyrus/precentral gyrus and right
supramarginal gyrus for the RGO task. The list of clusters
showing significant changes across feedback runs, including peak
MNI coordinates and cluster sizes, is given in Table 5.

Significant SVM Weights
Support vector machines weights of the three classification
models that are significant are shown in Figure 6. Regions
that had generally higher activity during rest as compared to
that during task (LGO/RGO) are shown in red-yellow colors
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FIGURE 5 | Regions showing significant main effect in one-way repeated measures analysis of variance for the imagined (A) LGO and (B) RGO tasks. Results of
post hoc paired sample t-tests for both LGO and RGO tasks are also shown in the bottom figures. All statistical maps were corrected for multiple comparisons using
FWEc p < 0.05 with CDT p = 0.001.

in Figures 6A,B, or during LGO task as compared to RGO
task in Figure 6C, whereas the opposite condition is shown
in blue – light blue colors. Most of the relevant regions in
the sensorimotor network appeared to have significant weights
across runs. An important difference is the absence of the middle
temporal gyrus/inferior occipital gyrus in the significance maps
for run 0 as compared to that for runs 1–3. This difference is
mainly due to the absence of feedback in run 0. Moreover, in
spite of the decreasing activation intensity difference between
LGO and RGO tasks across feedback runs (Figure 4C), regions in
the sensorimotor network consistently showed significant weight
values across feedback runs. The total number of voxels showing
significant weight values for the 3 classification models also
decreased from run 1 to run 3, although this is not so apparent in
the figure. The lists of clusters with significant (FWEc p < 0.05,
CDT p = 0.001) SVM weights for the 3 classification models are
given in Supplementary Tables S4–S6.

DISCUSSION

Using a motor imagery paradigm, we investigated the effect of
the dynamic changes in brain activation during neurofeedback

training to the classification of the different brain states associated
with the target tasks. These changes could be driven by learning
effects and possibly other factors. Our findings confirmed our
hypothesis that brain activation patterns could dynamically
change as the training progresses. By continuously adapting the
trained SVMs after every feedback runs, significant improvement
in the classification of the different brain states associated with
the target motor imagery tasks could be attained. For BMI
applications, this improvement could lead to better control of
the system. And for neurofeedback training, this could provide
more reliable feedback information to the participants, which is
necessary to attain a successful neurofeedback training.

The goal of neurofeedback training is for participants to
learn the target tasks using feedback information directly derived
from their ongoing brain activity. This entails that dynamic
changes in brain activation could potentially occur as the training
progressed. Based on our findings, we did observe a more
widespread activation during feedback run 1 followed by a
more focused and localized patterns in succeeding runs. This
initial widespread activity could be driven by the recruitment
of additional brain regions needed to learn the target new skill.
As the participants acquired the needed skill, irrelevant regions
would no longer be activated whereas the relevant ones would
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TABLE 5 | Clusters showing significant main effect in a one-way repeated measures analysis of variance for the different tasks across feedback runs.

x y z z-val Cluster size Area Other peaks

LGO

Main 38 22 18 4.839 888 R MFG R OpIFG

Run 1 > run 3 38 22 18 5.176 3115 R MFG R OpIFG, R SFG

52 −54 6 4.487 704 R MTG R ITG

10 16 44 4.300 793 R SMC R SFG

−42 −58 8 4.216 606 L MTG

−48 28 24 4.165 1089 L MFG L OpIFG

60 −26 50 4.075 474 R SMG

RGO

Main 58 −46 −6 4.494 524 R MTG

−66 −26 30 4.377 259 L SMG

−52 6 16 4.357 517 L PrG L OpIFG, L TrIFG

−62 −50 −2 4.330 229 L MTG

Run 1 > run 3 58 −46 −6 4.918 1047 R MTG

−62 −50 −2 4.839 1958 L MTG L SMG

58 24 18 4.701 1197 R OpIFG R PrG

−60 14 22 4.629 1194 L OpIFG L PrG, L TrIFG

54 −22 34 4.414 379 R SMG

LGO, imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; MFG, middle frontal gyrus; OpIFG, opercular part of the inferior frontal
gyrus; SFG, superior frontal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; SMC, supplementary motor cortex; SMG, supramarginal gyrus; PrG,
precentral gyrus; TrIFG, triangular part of the inferior frontal gyrus; L, left; R, right.

FIGURE 6 | Significant weights (FWEc p < 0.05 with CDT p = 0.001) of the different SVM classification models obtained using a one-sample t-test of the SVM
weights from all participants: (A) R vs. LGO, (B) R vs. RGO, and (C) LGO vs. RGO. Red–yellow color map indicates that the activity during rest (R) is higher
compared to that during task (LGO/RGO) in R vs. LGO and R vs. RGO models and higher during LGO task compared to that during RGO task in LGO vs. RGO
model. Blue–light blue color map indicates the opposite.
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become more prominent. This similar trend was also observed
for connectivity patterns during neurofeedback training where
connectivity was initially widespread among several regions and
later confined to a small number of regions after participants
presumably consolidated regulation skills (Rota et al., 2011).
Thus, these activation changes should be considered when
identifying different brain states during neurofeedback training.

Previous neurofeedback studies using brain state classification
used datasets acquired before training to train classifiers, which
would then be employed to classify the different brain states in
succeeding feedback scans (see approach in validation analyses).
Many of these studies had observed that the performance of
classifiers trained this way usually decreased across feedback
runs. LaConte (2011) attributed this effect to learning, suggesting
that activation patterns changed during feedback training when
participants learned the target tasks. Using a simple motor
learning task, they demonstrated that the classification accuracy
of the trained SVM did decrease when participants learned the
task, whereas for those who did not, the accuracy remained
the same or even increased. In our previous study (Bagarinao
et al., 2018), we also observed the same trend, although the
observed decrease was not statistically significant across the
three feedback runs. To further support these previous findings,
we performed the validation analyses (see section “Validation
Analyses”) in which we trained SVMs using data from run 0
and used the trained SVMs to classify data from runs 1 to
3. These supplemental analyses were primarily performed to
demonstrate that without re-training, the classifiers’ performance
would be significantly affected due to the changing activation
pattern (Figure 4). As is clearly evident in Figure 3, the
classifiers’ performance did decrease with each feedback run.
Using a very limited number of participants (2 participants),
Sitaram et al. (2011) had also demonstrated that participants
learned to improve their performance (measured in terms of
classification accuracy) using an incremental method of re-
training the classifiers. Our findings showing increases in TPV
and accuracy values with continuous SVM re-training further
validated their result for an extended number of participants.

One could also argue that even without SVM re-training,
the classification performance could still be improved when
participants learned the task since activation regions were
becoming more well-defined (Figure 4). However, SVMs trained
using data with a more widespread activation pattern could
assign significant weights to regions that were initially active
but not really relevant to the task. Without SVM re-training,
these regions would still contribute to the classification even
if these regions were no longer active after learning, thus
affecting the SVM’s performance as clearly demonstrated in the
results of the validation analyses (Figure 3). With SVM re-
training, regions irrelevant to the task could be assigned non-
significant weights to improve performance. Indeed, as shown
in Figure 6 and Supplementary Tables S4–S6, the number of
voxels with significant weights decreased with each feedback
run, suggesting that some regions weighted as significant in
the previous runs were no longer significant in feedback run
3. Although the presence of other confounding factors (e.g.,
learning) during neurofeedback training could also influence the

SVM’s performance, the results reasonably indicated that the
observed improvement in TPV values and accuracies was most
likely driven by SVM re-training.

A consequence of the incremental training approach is the
possibility that with training, the learned activation may not
converge in the direction of the preferred activation pattern. This
could be driven, for example, by the participants trying to explore
different strategies for the target task, then the SVMs adjusting to
the change in activation patterns and providing updated feedback
to the participants, which in turn, affects the participants’ choice
of strategy. This “adaptive” training is an intriguing scenario,
but is unlikely with the current protocol. Here, we used two
predefined tasks where the activation patterns are known in
advance. Moreover, participants were also instructed to continue
doing the same task even if there was no response from the robot
(no movement). To identify if indeed the training results are
consistent with the training goals, one can examine the resulting
activation map, which can be readily generated when using real-
time fMRI as compared to other modalities. Alternatively, one
can also include a control task from which the target task can be
contrasted or compared with, as performed in this study. This is
particularly useful to detect cases where participants just perform
something to contrast with the rest condition. Lastly, one can also
include behavioral measures that can be evaluated for a successful
training. Adaptive training is an interesting problem that will
need more detailed investigation possibly using a different task
design and is beyond the scope of the current paper.

Although the primary focus of the paper is to examine the
efficacy of incremental training to improve SVMs’ classification
performance when activation patterns dynamically change
during training, our findings have also shown indications of
the possible effects of the improvement in the classification
to the participants’ ability to learn the task-relevant activation
patterns. In our previous study (Bagarinao et al., 2018) comparing
participants’ performance of motor imagery tasks with and
without feedback, we have shown that participants were able
to generate more consistent brain activation patterns that are
relevant to the tasks during sessions with neurofeedback as
compared to that without feedback, suggesting the importance
of the feedback information. In that study, the SVMs were only
trained using data from run 0 (the one without feedback) and
the trained SVMs were subsequently used in the succeeding
feedback runs. Under this condition, we found no significant
improvement in the classification performance across feedback
runs and the SVMs’ performance even showed some tendency
to decrease with each feedback run. In terms of activation, we
also did not observed significant changes across feedback runs.
In contrast to these findings, we have demonstrated here that
with incremental SVM training, improvement in accuracy could
be observed across feedback runs. This improvement was also
accompanied by significant changes in brain activation in the
direction that lead to more focal activations in task-relevant brain
regions. Although the way the feedback was presented differed
in these two studies, and thus limiting a direct comparison, the
motor imagery tasks were the same. Taken together, the findings
of these two studies seemed to suggest the possibility that the
improvement in SVMs’ performance has provided participants
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with better feedback information, which in turn, has led them to
generate the more focal and task-relevant activation patterns. To
fully address this association, more detailed investigations such as
having a direct control group will be necessary.

In terms of activations, we identified several regions activated
during feedback runs. Some of these were consistent with
regions usually associated with motor imagery tasks including
supplementary motor cortex, premotor cortex, prefrontal cortex,
posterior parietal cortex, cerebellum, and basal ganglia (O’Shea
and Moran, 2017; Tong et al., 2017). Interestingly, we did not find
activations in the contralateral primary motor cortex (M1), an
important target region for neurorehabilitation applications, for
both imagery tasks at the group level. Instead, the ipsilateral M1
was consistently deactivated in all feedback runs for the RGO task
and in the first two runs for the LGO task (Figure 4), consistent
with previous results (Chiew et al., 2012). Findings concerning
M1 activation during motor imagery task are inconsistent.
A meta-analysis based on 75 papers showed that only 22 out
of the 122 experiments reported M1 activation (Hétu et al.,
2013). In a recent study using fMRI-based neurofeedback, Mehler
et al. (2019) also reported that M1 could not be activated during
imagery task in spite of the provided feedback information,
supporting our finding. In contrast, they reported consistent
activation of the supplementary motor cortex, which is also
similar to what we observed.

The activation of other regions could be related to processes
associated with neurofeedback training. In a recent review,
Sitaram et al. (2017) had proposed three neurofeedback-
related networks that included the dorsolateral prefrontal cortex,
thalamus, lateral occipital, and posterior parietal cortex as regions
for the control of visual neurofeedback, the dorsal striatum
for neurofeedback learning, and the ventral striatum, anterior
cingulate cortex, and anterior insula for neurofeedback reward.
In this study, we also observed similar activation for some of these
regions. For instance, we observed consistent activation of the
left/right inferior occipital gyrus/middle temporal gyrus, regions
implicated for the control of visual neurofeedback. These regions
were also observed to be active when feedback was provided
during motor imagery task but not without feedback (Bagarinao
et al., 2018). It is also interesting to note that some of the
regions associated with neurofeedback-related processes overlap
with that of the motor imagery task (e.g., posterior parietal,
anterior insula, and others). This could be due to the fact that
neurofeedback training also involved some form of imagery.

Comparing across feedback runs, we observed that some
regions showed significant decrease in activation with training.
One such region is the inferior occipital gyrus/middle temporal
gyrus. This region has been implicated in several neurofeedback
studies (Berman et al., 2012; Marchesotti et al., 2017; Bagarinao
et al., 2018) and, as mentioned earlier, could be associated with
the control of visual feedback (Sitaram et al., 2017). The observed
decreased activity of this region with training could indicate
that participants were slowly decreasing their reliance on the
feedback information as they learned the imagery tasks. Similar
decreases in activation were also observed in the contralateral
middle frontal gyrus/opercular part of the inferior frontal gyrus.
Higher activation of this region has been associated with early

learning or with a still incomplete motor sequence acquisition
(Müller et al., 2002). Like the inferior occipital gyrus, this
region may also be involved in the initial learning of the
motor imagery tasks and becomes less activated as the new
skill is acquired.

We also observed significant improvement in LGO task
classification across feedback runs as compared to RGO task
(Figure 2). Since most participants were right handed, this
may be associated with the influence of handedness in learning
motor imagery. An earlier study has demonstrated that motor
imagery abilities are unbalanced between dominant and non-
dominant hands (Maruff et al., 1999) with the dominant hand
showing better performance (Guillot et al., 2010; Paizis et al.,
2014). This behavioral difference could produce asymmetrical
brain activation. Based on a magnetoencephalography study,
Boe et al. (2014) have shown that the non-dominant hand
induced a stronger event-related desynchronization in the
ipsilateral sensorimotor cortex than in the contralateral cortex.
This greater activation was considered as an indication of
the control group’s inability to perform the motor imagery
task with the non-dominant hand. Our data also showed
consistent deactivation during RGO (dominant) task in the
ipsilateral sensorimotor region, but not during the LGO (non-
dominant) task (Figure 4). These differences in activation may
explain why the LGO task showed significant improvement
in classification across feedback runs than the RGO task.
In this case, motor imagery with the non-dominant hand
exhibited stronger and more dynamic activation pattern during
training, leading to classification improvements whereas that of
the dominant hand appeared more stable, resulting in more
consistent classification.

Finally, we note the relevance of our findings for motor
imagery training, particularly in relation to its clinical
applications. Several studies have examined the application
of motor imagery training as a no-cost, safe, and easy way to
enhance motor functions. Motor imagery training has been
employed to improve athletes’ performance (Feltz and Landers,
1983), provide additional benefits to conventional physiotherapy
(Zimmermann-Schlatter et al., 2008), and enhance motor
recovery following stroke (Jackson et al., 2001; Sharma et al.,
2006; de Vries and Mulder, 2007). Motor imagery can also
be used to identify potential sources of residual functional
impairment in well-recovered stroke patients (Sharma et al.,
2009a,b). By providing neurofeedback, motor imagery training
has been shown to be more effective for neurorehabilitation. For
example, adding BMI system in conjunction with motor imagery
training to provide online contingent sensory feedback of brain
activity has been shown effective in improving clinical parameters
of post-stroke motor recovery (Ramos-Murguialday et al., 2013;
Ono et al., 2014; Frolov et al., 2017). In healthy participants,
using neurofeedback has been shown to significantly improve
volitional recall of motor imagery activation patterns (Bagarinao
et al., 2018). In these approaches, the BMI systems actively
decode the brain activity and display the outcome to the user
to create a feedback that is reflective of the task performance.
Pilot studies using real-time fMRI-based neurofeedback for
motor function recovery in stroke patients have also shown
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some promise (Sitaram et al., 2012; Liew et al., 2016). Using
motor-imagery-based strategies, patients were able to increase
connectivity between cortical and subcortical regions (Liew et al.,
2016) and increase regulation of the activity in regions relevant
to motor function (Sitaram et al., 2012; Lioi et al., 2020). An
adaptive, multi-target motor imagery training approach was also
proposed by Lioi et al. (2020). They used two target regions
where the regions’ contributions to the feedback signal were
weighted and the weight values were adjusted at the latter part
of the training. In principle, this is similar to the proposed
incremental SVM training approach. With SVM, regions are
weighted according to their contribution to the classification.
With the proposed incremental training, the weights can be
adjusted according to the changes in activation pattern as the
training progresses. Thus, further optimizing neurofeedback-
based motor imagery training using the incremental strategy
could be beneficial in improving the reliability of feedback
information during motor imagery task training. This approach
could also be used to customize differences in learning strategies,
which may vary among individuals.

One of the limitations of the current study is the small
number of feedback runs to continuously assess the improvement
in accuracy with SVM re-training. We used only a limited
number of runs to minimize task fatigue, which would increase
with more feedback runs and could also introduce changes in
activation pattern. Another limitation is the lack of independent
instruments to assess the improvement in motor imagery
performance of the participants during or after training. In the
absence of such instruments, we used an indirect measure based
on the accuracy of classifying the LGO task against the RGO
task. Since the feedback information was mainly based on rest
vs. task (LGO/RGO) performance, improvement in LGO vs.
RGO classification would suggest better separation of the tasks’
activation patterns, which could be taken as an indication of the
improvement in motor imagery performance in both tasks.

CONCLUSION

Our results confirmed our hypothesis that activation patterns
could dynamically change during neurofeedback training as
participants learned to perform the target motor imagery tasks.
To account for these changes, we employed a training strategy
that continuously updates the trained classifiers after every
feedback run, resulting in the improvement of the SVM’s overall
classification performance. This is important in order to provide
more reliable and accurate feedback information to participants

during neurofeedback training, an essential factor that could
affect the effectiveness of neurofeedback in clinical settings.
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