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Background. Cooperation of CD4+ T helper cells with specific B cells is crucial for protective vaccination against pathogens by
inducing long-lived neutralizing antibody responses. During infection with persistence-prone viruses, prolonged virus
replication correlates with low neutralizing antibody responses. We recently described that a viral mutant of lymphocytic
choriomeningitis virus (LCMV), which lacks a T helper epitope, counterintuitively induced an enhanced protective antibody
response. Likewise, partial depletion of the CD4+ T cell compartment by using anti-CD4 antibodies enhanced protective
antibodies. Principal Findings. Here we have developed a protocol to selectively reduce the CD4+ T cell response against
viral CD4+ T cell epitopes. We demonstrate that in vivo treatment with LCMV-derived MHC-II peptides induced non-
responsiveness of specific CD4+ T cells without affecting CD4+ T cell reactivity towards other antigens. This was associated
with accelerated virus-specific neutralizing IgG-antibody responses. In contrast to a complete absence of CD4+ T cell help,
tolerisation did not impair CD8+ T cell responses. Conclusions. This result reveals a novel ‘‘negative vaccination’’ strategy
where specific CD4+ T cell unresponsiveness may be used to enhance the delayed protective antibody responses in chronic
virus infections.
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INTRODUCTION
Induction of a long-lived protective neutralizing IgG response is

a hallmark of virtually all successful vaccinations [1]. However,

vaccination strategies against many important human pathogens

have failed so far. These include vaccination against HIV [2],

HCV [3], malaria [4] and tuberculosis [5], all representing

chronic persisting infections. Vaccination failure correlates with

much delayed and often poor pathogen-specific protective

antibody responses [6,7] on one side and often with great

variability of the protective antigen on the other side. The delayed

neutralizing antibody response against the noncytopathic lympho-

cytic choriomeningitis virus (LCMV) in mice correlates with low

precursor frequencies of B cells specific for the neutralizing

antigenic site [8], with mutational variability of the relevant

glycoprotein determinant [9] and with CD8+ T cell-mediated

immunopathology [10]. In addition, LCMV and several persisting

human pathogens like HCV [11] and HIV [12] induce a T helper

cell-dependent, mostly polyclonal B cell activation [13] whereas

protective antibodies specific for the virus surface glycoprotein

remain undetectably low for more than 50–100 days. Counter-

intuitively, experimental partial–but not complete-reduction of T

helper cell responses reduced polyclonal B cell activation and

enhanced virus-specific neutralizing antibody responses [14].

Consistently, transfer of CD27-competent T helper cells into

CD27-deficient mice reduced the improved virus-neutralizing

antibody titers observed after LCMV infection of these mice [15].

Both experiments suggested that too much T help somehow

impairs virus-neutralizing antibody responses. Here we show that

‘‘negative vaccination’’ by specific tolerisation with LCMV MHC-

class II-restricted CD4+ T cell epitopes inhibited virus-specific

helper CD4+ T cell responses but enhanced protective antibody

responses in terms of earlier onset and higher titers without

impairing protective CD8+ T cell responses or third-party specific

immune responses.

RESULTS

Peptide tolerisation leads to functional impairment

of virus-specific CD4+ T cells
Exposure to and persistence of sufficient antigen can lead to initial

over-activation and subsequent exhaustion of CD8+ T cells [16].

This phenomenon is commonly observed during persistent viral

infection [16], and can be mimicked by administration of synthetic

peptide-antigen by continuous treatment or slow release in in-

complete Freund̀s adjuvant (IFA) [17]. Naı̈ve or memory CD8+ T

cells undergo rapid proliferation after contact with antigen in IFA,

followed by apoptosis and deletion [17]. Similarly, administration of

CD4+ T helper cell peptide in IFA intraperitoneally can inhibit onset

of CD4 T cell dependent autoimmune disease [18]. LCMV-specific
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peptide tolerisation of CD4+ T cell helper function was analyzed by

adoptively transferring 56104 indicator splenocytes from a mouse

transgenic for a T cell receptor recognizing the LCMV helper

epitope GP61 (LCMV-glycoprotein61-80/I-Ab-specific TCR,

SMARTA mice) into naı̈ve C57BL/6 mice. Transferred T cells

expressed the T cell marker Thy1.1 and thus could be tracked by

FACS analysis in the Thy1.2-expressing C57BL/6 mouse recipients.

We transferred as few as 56104 splenocytes which kept the precursor

frequency in a physiological range and cells were still detectable by

FACS. Recipient mice were treated with 100 mg GP61 in IFA on

days -9, -6, -3 before infection with LCMV. A control group of

recipient mice was treated with IFA alone. IFA treatment without

peptide did not expand transfused Thy1.1+ T cells, demonstrating

that IFA alone did not activate CD4+ T cells through bystander

activation (Figure 1A). T helper cells from peptide non-treated mice

displayed a strong expansion upon LCMV infection (.1000 fold,

Figure 1A), whereas T helper cells from peptide treated mice were

few and showed no expansion (,2 fold, Figure 1A), implying

functional non-responsiveness of those T cells. We compared the

phenotype of the few remaining GP61-IFA treated T cells with the

peptide non-treated vastly expanded T cells by gating on GP61

specific Thy1.1+ T cells (Figure 1B). Production of the Th1 cytokine

IFN-c was strongly reduced in GP61-IFA treated Thy1.1+ T cells

compared to IFA treated T cells, whereas TNF-a production was

within normal range (Figure 1B–E). Peptide-treatment did not shift

the effector phenotype of T helper cells towards Th2, as secretion of

IL-4 and IL-10 was low (Figure 1B–E). Thus, peptide-induced T

helper cell non-responsiveness affected antigen-specific T helper cells

and remained robust even after LCMV infection. Functional non-

responsiveness of T cells, despite physical presence of very few T cells

as measured here, has been described as T cell ‘‘anergy’’ , associated

with a disturbed intracellular signaling of diacylglycerol [19]. Such

anergy can be experimentally bypassed in vitro by stimulation of T

cells with PMA and ionomycin, which directly activate proteinkinase

C and increase intracellular calcium flux. After stimulation with

PMA plus ionomycin, Thy1.1+ T cells from control mice displayed

strong production of IFN-c, however tolerised T helper cells virtually

did not respond to this direct activation stimulus (Figure 1E). Thus,

treatment with GP61-IFA induced a non-responsiveness that was

rather complete and not mediated by ‘‘classical’’ anergy.

To further characterise specific T helper cell non-responsiveness,

several activation markers were screened which are regulated upon

TCR triggering in a chronological program. Very early after

activation, CD4+ T cells are known to up-regulate CD44, which

remains up-regulated. A transient up-regulation of CD69 is followed

by down-regulation of IL-7R and CD62L. Depending on their

differentiation some of these T cells up-regulate CXCR3 and/or

down-regulate CCR7 later on [20–22]. Those few GP61-specific

CD4+ T cells detected in the spleen after GP61-IFA treatment

showed similar expression of CD44 compared to peptide non-

treated T helper cells, indicating that they were stimulated by

antigen (Figure 1F&G). They displayed a significantly higher

expression of the activation marker CD69 after LCMV infection

compared to control IFA-only treated T helper cells while down-

regulation of IL-7Ra and CD62L was significantly less pronounced

in GP61-IFA treated T helper cells (Figure 1E&F). CXCR3 was

expressed at significantly lower levels on GP61-IFA treated T cells

(Figure 1E&F), while CCR7 was not expressed differently on GP61-

tolerized T cells (data not shown). Therefore, we concluded that the

very few remaining GP61-IFA treated CD4+ T cells were sufficiently

activated to up-regulate the effector marker CD44, but stayed in an

early activation status without differentiation into full-blown effector

T helper cells, which probably was the reason for the observed

absence of proliferation.

PD-1 has been demonstrated to be a marker expressed by

exhausted CD8+ T cells in LCMV as well as in HIV infection [23].

Additionally, prolonged antigen contact may induce a regulatory

phenotype in CD4+ T cells. However, we did not find any

difference between IFA-only and GP61-IFA treated CD4+ T cells

with respect to PD-1 expression or expression of classical

regulatory T cell phenotype markers (Figure S1).

Next, the maintenance of non-responsiveness following T helper

cell peptide treatment was analyzed. Therefore 56106 indicator

splenocytes were transferred from SMARTA6Thy1.1+ mice into

C57BL/6 recipients. Mice were treated with GP61-IFA, and

control mice were treated with IFA alone. Nine days later, the

spleen cells were transferred into new IFA or GP61-IFA treated

mice and expansion was analyzed after infection with LCMV WE

(scheme of transfer: Figure S2). We found that the presence of

GP61-IFA in the secondary recipient mouse completely inhibited

expansion of Thy1.1+ cells (Figure 1H). Peptide-tolerised T helper

cells proliferated to a much reduced extent in peptide-free IFA-

only treated second recipients after virus infection (Figure 1H),

indicating a partially reversible intrinsic non-responsiveness of the

transferred GP61-specific T cells. In conclusion, specific peptide

treatment drastically reduced specific CD4+ T helper cell

proliferation. The few remaining cells were seemingly ‘‘stuck’’ in

an early (probably transient) activation state and/or were

preferentially undergoing cell death during the subsequent

activation steps.

Peptide-induced helper T cell non-responsiveness

improves LCMV-specific neutralizing antibody

responses
Next, we analyzed whether peptide tolerisation of the LCMV

glycoprotein-derived epitope (GP61) or the LCMV nucleoprotein

derived NP309 epitope influenced protective antibody responses.

Following specific peptide treatment and LCMV infection of

C57BL/6 mice, endogenous CD4+ T cells specific for both the

immunodominant T helper epitope from the LCMV-glycoprotein

GP61-80 (GP61) and for the LCMV-nucleoprotein NP309-328

(NP309, Figure 2A) were rendered unresponsive. This non-

responsiveness of endogenous CD4+ T cells was long lasting, as

in vitro GP61 peptide re-stimulation of GP61-IFA treated LCMV

infected mice after 100 days showed virtually no expansion of

GP61-specific T cells (Figure 2B). Serum of such treated C57BL/6

mice was then analyzed for antibody formation. Tolerisation of the

NP309-328 T helper cell response did not significantly affect the

antibody response against LCMV-glycoprotein. In contrast, the

antibody response against the LCMV-glycoprotein GP1 portion

carrying the neutralizing epitope [24] was clearly accelerated and

of higher titer after tolerisation with GP61-80 alone or with GP61-

80 plus NP309-328 (Figure 2C+D). Antibody responses directed to

LCMV-nucleoprotein were only slightly enhanced after tolerisa-

tion with these peptides (Figure 2C). As the precursor frequency of

NP-specific B cells is high in naı̈ve mice, antibody responses

against LCMV-NP are already quite strong without tolerisation

[24]. Therefore the limited B cell repertoire directed against GP1

[24] could benefit most from tolerisation. To demonstrate in

a secondary manner that the enhanced antibody response was

indeed a consequence of the altered T helper cell response and not

of direct B cell stimulation, we peptide-tolerised H-2d BALB/c

mice which do not present the GP61-80 epitope on MHC II. In

contrast to the clearly enhanced GP-1-specific antibody responses

in peptide-tolerised C57BL/6 mice, we found no difference in

GP1-specific IgG antibodies in GP61-80 peptide-treated or

peptide non-treated BALB/c mice (Figure 2E).

Tolerisation for Protection
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Figure 1. Peptide tolerisation leads to functional impairment of virus-specific CD4+ T cells. A–G: 56104 splenocytes from mice transgenic for a T
cell receptor recognizing the LCMV helper epitope GP61 (LCMV-glycoprotein61-80/I-Ab-specific TCR, SMARTA mice) and expressing the T cell marker
Thy1.1 were adoptively transferred into C57BL/6 mice on day -10. One group of mice was treated with 100 mg GP61 dissolved in IFA (squares), while
control mice were treated with IFA alone (circles) at days -9, -6, -3. At day 0 mice were infected with 200pfu LCMV-WE or left untreated. Seven days
after infection mice were analyzed for CD4+ T cell function. (A) Frequencies of GP61-specific CD4+ T cells (Thy1.1+ T cells) were analysed in spleen and
blood. (B) For further phenotyping of thy1.1+ CD4+ cells, cells were gated as shown in the gating tree. (C) Cells were re-stimulated with GP61 in vitro
and after six hours Thy1.1+ T cells were analysed for intracellular expression of IL-4, IL-10, IFN-c and TNF-a by FACS analysis (one of four representative
dot blots is shown. (D) Bar charts show data analyzed in C (n = 4,*p,0.001). (E) Cells were re-stimulated with PMA/Ionomycin in vitro and after six

Tolerisation for Protection
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Maintained CD8+ T cell function is maintained after

specific CD4+ T cell tolerisation
In various infection models it has been documented that CD4+ T

cell help is important for CD8+ T cell function and especially

CD8+ T cell memory [25–27]. We found no differences in

LCMV-specific gp33-tet+ CD8+ T cells between tolerised and

non-tolerised mice during infection with 200 pfu LCMV-WE

(Figure 3A). During infection with 26106 pfu LCMV-WE,

overwhelming replication of LCMV leads to partial deletion of

the NP396 epitope-specific CD8 T cell repertoire (Figure S3).

Infection of GP61-IFA tolerised mice with 26106 pfu led to

normal expansion of tet-gp33+ cells. Mice treated with GP61-IFA

had similar frequencies of tet-gp33+ CD8+ T cells after high dose

LCMV infection as IFA only treated mice suggesting that

tolerisation does not influence exhaustion of CD8+ T cells (Figure

S3). For more precise analysis of CD4+ T cell tolerisation-derived

effects on CD8+ T cell function upon peptide tolerisation, 56104

splenocytes from SMARTA mice were transfused into C57BL/6

mice on day -10. One group of mice was treated with 100 mg

GP61 emulsified in IFA, while control mice were treated with IFA

alone at days -9, -6, -3. At day 0, mice were infected with 200pfu

LCMV-WE or left untreated. Seven days after infection, the

frequency of LCMV-specific (GP33-specific) CD8+ T cells was

analyzed by tetramer staining in the spleen. No difference was

observed in overall CD8+ T cell frequencies with or without T helper

cell tolerisation (Figure S4). CD8+ T cells showed no difference

neither in activation markers CD25, CD69, CD44, CD62L, IL-7Ra,

CXCR3 nor PD-1 (Figure 3B). Consistent with these results, no

differences were found in expression of intracellular IFN-c and

Granzyme B in CD8+ T cells after GP33 re-stimulation (Figure 3C).

These results rendered it unlikely that the enhanced antibody

production following helper T cell tolerisation was due to a difference

in the primary CD8+ T cell response. Since virus elimination after

infection with 200pfu LCMV is known to be mediated by CD8+ T

cells [28], differences in the amount of viral antigen could not be

responsible for the measured differences in antibody formation.

Nevertheless, we also evaluated whether GP61 or NP309 tolerisation

enhanced the LCMV-GP specific antibody response in cd82/2 mice.

In line with the previous findings in C57BL/6 mice, an earlier and

higher GP-specific IgG antibody response was found in GP61/

NP309-IFA tolerised cd82/2 mice (Figure 3D). Higher LCMV GP-1

specific IgG titers measured by ELISA also correlated with earlier

and higher LCMV neutralizing antibody titers as measured by

a virus neutralisation assay (Figure 3E). By day 35, virus was

undetectable in blood of 7 out of 8 GP61/NP309-IFA treated

cd82/2 mice while it was controlled in only 1 of 7 IFA-treated mice

(Figure 3F, p = 0.0059). As an additional control, the observed virus

titer differences of peptide treated vs peptide non-treated mice in the

absence of CD8+ T cells was not found in LCMV-infected, CD8+ T

cell-depleted, B cell-deficient jh2/2 mice. This further supported that

virus control was B cell-dependent in CD8+ T cell deficient mice

(Figure S5). In conclusion these data indicated that tolerisation

with GP61-IFA enhanced protective antibodies independently of

CD8+ T cells.

Protective antibody responses against a ‘‘third-

party’’ virus are not affected by GP61-IFA

tolerization
Lastly, we analysed whether tolerisation with GP61 peptide

generally impaired CD4+ T cell function in response to a third-

party pathogen. C57BL/6 mice were tolerised with GP61-80

peptide and were then infected with vesicular stomatitis virus

(VSV). Following VSV infection, a rapid CD4+ T cell-dependent

IgG formation is necessary to prevent lethal encephalitis [29].

Treatment of C57BL/6 mice with GP61-IFA affected neither the

anti-VSV IgM nor the IgG response (Figure 4).

DISCUSSION
Peptide given i.p. in incomplete Freund̀s Adjuvant lead to

unresponsiveness of specific CD4+ T cells. Interestingly, sub-

cutaneous application of peptide in complete Freund̀s Adjuvant or

in incomplete Freund̀s Adjuvant leads to priming of immune cells

[30]. This suggests that systemic persistence rather than the

stimulatory quality of IFA is responsible for induction of

unresponsiveness. The unresponsive phenotype of CD4+ T cells

was characterised by a lack of proliferation and a lack of IFN-c
production even after restimulation with PMA and ionomycin,

which excludes anergy as a potential mechanism of CD4+ T cell

unresponsiveness. We observed small differences in differentiation

markers on tolerised CD4+ T cells, which might hint to altered

differentiation of non-responsive T cells.

T cell tolerisation augmented the usually very late protective

antibody response against the non-cytopathic persistence-prone virus

LCMV. It is not clear so far how exactly T cell tolerisation influences

antibody responses. However, together with the data derived from

our former study [14] we speculate that an overwhelming CD4+ T

helper cell response will preferentially trigger low affinity non

protective B cells. Reduction of CD4 T cell help will therefore shift

the balance of switched B cells to more high affinity B cells.

Since this tolerisation procedure is in contrast to conventional

vaccination strategies aiming at an enhancement of immune

responses, we named it ‘‘negative vaccination’’. The primary specific

CD8+ T cell responses remained unaffected by peptide tolerisation.

Although we have not directly analysed memory CD8+ T cell

responses in T helper cell peptide-tolerized mice, we believe them to

be unaffected due to two reasons. First, the T helper cell support to

CD8+ T cell memory [25] has been demonstrated to be antigen non-

r

hours Thy1.1+ T cells were analyzed for intracellular expression of IL-4, IL-10, IFN-c and TNF-a by FACS analysis (n = 4, *p,0.001). (F) GP61-specific
Thy1.1+ CD4+ T cells and CD4+ T cells from untreated C57BL/6 mice were analysed for the activation markers CD69, IL-7Ra, CD62L, CD44 and CXCR3
(marker is set on the activated phenotype). (G) Statistically analysis from the data derived in F (n = 4, *p,0.05). H: 56106 splenocytes from mice
transgenic for a T cell receptor recognizing the LCMV helper epitope GP61 (LCMV-glycoprotein61-80/I-Ab-specific TCR, SMARTA mice) and expressing
the T cell marker Thy1.1 were transferred into a total of six C57BL/6 mice on day -11. Three of those mice were treated with 100 mg GP61 dissolved in
IFA (GP61-IFA-pretreated), while the other three mice were treated with IFA alone (IFA-pretreated) at days -10, -7, -4. In addition six C57BL/6 mice
were treated with 100 mg GP61 dissolved in IFA (GP61-IFA-treated) and six control mice were treated with IFA alone (IFA-treated) at days -10, -7, -4. At
day -1 splenocytes from each of the three GP61-IFA-pretreated mice were transferred into one GP61-IFA-treated, one IFA-treated and one untreated
C57BL/6 mouse (one untreated C57BL/6 mouse died during transfer). In parallel splenocytes from each IFA-pretreated mouse was transferred into
one GP61-IFA-treated, one IFA-treated and one untreated C57BL/6 mouse (transfer scheme Figure S2). Number of transferred splenocytes was
adapted to the frequencies so that all mice received the same numbers of Thy1.1+ CD4+ T cells at day -1 (data not shown). On day 0 mice were
infected with 200pfu LCMV-WE. Six days after infection mice were analyzed for Thy1.1+ CD4+ T cells by FACS analysis.
doi:10.1371/journal.pone.0001162.g001

Tolerisation for Protection
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Figure 2. Tolerisation of CD4+ T cells improves LCMV-specific antibody response. A: C57BL/6 mice were tolerised with either 100 mg GP61-80-IFA,
100 mg NP309-328-IFA, or both peptides in IFA on days -109, -106, -103. On day 0, mice were infected with 200pfu LCMV-WE and splenocytes were
analysed for intracellular IFN-c expression after re-stimulation with different T cell epitopes in vitro 12 days later. The original dot plots are shown
(n = 5). B: C57BL/6 mice were treated with 100 mg GP61-80-IFA or IFA on days -9, -6 and -3. On day 0, mice were infected with 200pfu LCMV-WE and
splenocytes were analysed for intracellular IFN-c after re-stimulation with different T cell epitopes in vitro 12 days later (n = 3, p,0.001). C+D: C57BL/6
mice were tolerized with either 100 mg GP61-80-IFA, 100 mg NP309-328-IFA or both peptides in IFA on days -9, -6, -3. On day 0, mice were infected
with 200pfu LCMV-WE and LCMV-nucleoprotein (NP) specific antibodies were measured by ELISA at the indicated time points (n = 5, * p,0.05, C).
LCMV-glycoprotein (GP) specific antibodies were measured by ELISA at the indicated time points (n = 5–7, *p,0.001, D). E: BALB/c mice were
peptide-tolerised with 100 mg GP61-80-IFA or IFA alone on day -9, -6 and -3. On day 0 mice were infected with 200pfu of LCMV-WE and LCMV-GP
specific IgG antibodies were measured in the serum at the indicated time points (n = 8, ns).
doi:10.1371/journal.pone.0001162.g002

Tolerisation for Protection
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Figure 3. Peptide tolerisation improves protective antibody responses independently and without impairment of CD8+ T cells. A: C57BL/6 mice
were treated with GP61-IFA and NP309-IFA, while control mice were treated with IFA alone at days -9, -6, -3. At day 0 mice were infected with 200pfu
LCMV-WE, and GP-specific (tet-gp33+) CD8+ T cells were analyzed in the blood by FACS analysis (n = 4, ns). B+C: 56104 splenocytes from mice
transgenic for a T cell receptor recognizing the LCMV helper epitope GP61 (LCMV-glycoprotein61-80/I-Ab-specific TCR, SMARTA mice) and for the T cell
marker Thy1.1 were transferred into C57BL/6 mice on day -10. One group of mice was treated with 100 mg GP61 dissolved in IFA, while control mice
were treated with IFA alone at days -9, -6, -3. At day 0 mice were infected with 200pfu LCMV-WE or left untreated. GP33 specific CD8+ T cells were
analyzed for frequencies (Figure S3) and for the expression of the activation markers CD25, CD69, CD44, CD62L, IL-7Ra, CXCR3 and PD-1 (1 of 4
histogram plots is shown, grey area represents staining of naı̈ve CD8+ T cells, B). CD8+ T cells were analyzed for expression of the intracellular effector
molecules IFN-c and Granzyme B after restimulation (1 of 4 dot plots is shown, C). D–F: cd82/2 mice were treated with GP61/NP309-IFA or with IFA
alone on days -9, -6 and -3. On day 0 mice were infected with 200pfu LCMV-WE and LCMV-GP1 specific IgG antibodies were detected by ELISA (n = 3–
4, *p = 0.03, D) and by neutralisation assay (n = 7–8, *p = 0.04, E) at the indicated time points. Virus blood titers were measured with plaque assay on
day 35 after LCMV infection as indicated (n = 7–8, p = 0.0059, F).
doi:10.1371/journal.pone.0001162.g003

Tolerisation for Protection
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specific [31]. Second, partial T helper cell depletion did not reduce

memory CD8+ T cell responses as tested in an in vivo cytotoxicity

assay 150 days following infection [14].

It is difficult to rapidly induce neutralizing antibodies against

surface glycoproteins of several persistent pathogens in man,

including HCV, HIV or several parasitic infections, where

neutralizing antibodies become detectable often only after 50–

200 days, if at all. Our results here raise the obvious question of

whether similar antibody-suppressive effects of T helper cells may

be important in HIV or HCV infection and whether reduction of

specific CD4+ T cell help may accelerate and augment HCV- or

HIV-neutralizing antibody responses. As it is not possible to work

with HIV or HCV in mice this topic is not easy to address.

Analysing other infection models might give some more insights

about the role of CD4 T helper cell tolerisation on antibody

responses during infection with persistence prone viruses, however

this still is not representative for HIV or HCV infection in

humans. However, there are some correlative findings about the

role of strong CD4 T cell help and neutralizing antibodies in

human persistent prone infections. It was demonstrated that strong

T helper cell responses are associated with low neutralizing

antibodies after HCV infection in man, although they were

associated with virus clearance in this study [32]. However, a study

examining spontaneous HCV clearance in young patients did

measure unexpected low helper T cell responses [33]. This is

consistent with another study that could not find a correlation of

the T cell response and HCV clearance [34].

In addition, experiments to improve virus-specific T helper cells

before SIV challenge in macaques have resulted in paradoxically

higher virus load and more rapid death of animals [35]. Recent

experiments with SIV have also demonstrated that generally

reduced cellular immune responses may be associated with

enhanced survival [35]. This correlates with the finding that high

T helper cell numbers before HIV infection are an independent

risk factor for more rapid disease progression [36]. As CD4+ T

cells are themselves a target of HIV, those data are difficult to

interpret and more studies have to be done to rule out a potential

role of CD4 T cell tolerisation on the impact of neutralizing

antibodies and outcome of disease.

In conclusion, this new ‘‘negative vaccination’’ protocol to

tolerise virus-specific CD4+ T cells leads to an efficient and

selective enhancement of virus-specific protective antibody

responses during LCMV infection, leaving third-party CD4+ T

cell responses unaffected. It may offer a new strategy for depletion

of overwhelming CD4+ T cell help in human disease.

MATERIALS AND METHODS

Mice and viruses
LCMV strain WE was originally obtained from F. Lehmann-

Grube (Heinrich Pette Institute, Hamburg, Germany) and was

propagated in L929 cells. LCMV and VSV neutralization assays

were performed as described [14]. Virus blood titers were

measured using a plaque forming assay as described [14]. Mice

were infected with 200 plaque forming units (pfu) LCMV-WE.

Mice transgenic for a T cell receptor recognizing LCMV

glycoprotein61-80 (LCMV-GP61/I-Ab-specific TCR, SMARTA

mice) were maintained on the C57BL/6 genetic background. All

experiments were performed in single ventilated cages. Animal

experiments were carried out with authorization of the Veterinär-

amt of the Kanton Zurich and in accordance with the Swiss law

for animal protection.

Preparation of peptide in incomplete Freund

Adjuvant (IFA)
GP61 (GP61-80, GLNGPDIYKGVYQFKSVEFD) or NP309

(NP309-328, SGEGWPYIACRTSVVGRAWE) were synthesized

by Neosystems. Peptides were dissolved in DMSO in 50 mg/ml

and than diluted to 1 mg/ml in PBS. Peptide dissolved in PBS was

mixed 1:1 with incomplete Freund Adjuvant (IFA, DIFCO

Laboratories, Detroit Michigan 48232-7038, USA). As control

DMSO diluted in PBS was mixed with IFA 1:1.

FACS analysis
Tetramer production and FACS analysis was performed as

described previously [17]. Briefly, splenocytes or peripheral blood

lymphocytes were stained using PE-labeled GP33 MHC class I

tetramers (GP33/H-2Db) for 15 minutes at 37uC, followed by

staining with anti-CD8 (BD Biosciences) for 30 minutes at 4uC.

For determination of LCMV specific CD4+ T cells lymphocytes

were stained with anti-CD4 and anti Thy1.1 (CD90.1, BD

Figure 4. LCMV-GP specific peptide tolerisation does not affect antibody production against third party pathogen. C57BL/6 were tolerised with
100 mg GP61-IFA at day -9, -6 and -3. At day 0, mice were infected with 26106 PFU of vesicular stomatitis virus (VSV). Neutralizing antibodies against
VSV-glycoprotein were measured by VSV neutralisation assay; total neutralizing Ig (A) and neutralizing IgG (B). VSV-glycoprotein binding IgG was
measured by ELISA (C).
doi:10.1371/journal.pone.0001162.g004
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Biosciences). For determination of their activation status, lympho-

cytes were stained with anti-CD25, anti-CD69, anti GITR, anti-

CD62L, anti-CD44 and anti IL-7Ra (BD Biosciences) for

30 minutes at 4uC. For cytokine analysis cells were re-stimulated

in vitro with antigen or with PMA/Ionomycin and fixed with 1%

Formalin. Cells were permeabilized with saponin and stained for

intracellular IFN-c, IL-10, IL-4 (BD Biosiences) and intracellular

Granzyme B (CALTAG, Burlingame, CA). For staining of

regulatory T cells, an anti-FoxP3 kit was used (eBiosciences).

ELISA
96-well plates were coated with 100 ml recombinant LCMV-

glycoprotein-GP1-supernatant[14], baculo LCMV-NP or baculo

VSV-GP. 1:30 pre-diluted sera were incubated for 90 min,

washed with PBS containing 0.5% Tween 20, then incubated

further with anti-mouse IgG-horseradish-peroxidase (HRP)

(1:1000) (Sigma-Aldrich) for detection of virus-specific IgG

responses. For the detection of IgG antibodies specific for LCMV

GP, plates were coated with anti human Fc, followed by

incubation with the LCMV-GP1-Fc[14]. Plates were then blocked

with 2% bovine serum albumin (in PBS) for 2 h at room

temperature. 1:30 pre-diluted sera were incubated for 90 min.

Anti mouse-IgG-HRP (1:1000) (Sigma-Aldrich) was used to detect

specific IgG-responses. In all ELISA-assays a green colour-

reaction was produced using 2.29-azino-bis(3-ethylbenzothiazo-

line-6-sulfonate (ABTS) (Boehringer-Mannheim) as a substrate.

The ELISA-titer was defined as the log2-serum-dilution resulting

in an optical density (OD405) two-fold above background.

Neutralization assay was performed as previously described

[14]. Sera were pre-diluted 306 or 406 and than titrated with

a dilution step of 26. To compare the neutralization titers with

data derived from ELISA, results were calculated, and presented

as (log3)630.

Statistical analysis
Data are expressed as mean6S.E.M. Statistical significant

differences between two different groups were analyzed using

students t test. Analysis including several groups were tested with

one-way ANOVA with additional Bonferoni or Dunnett test.

Statistical significant differences between treatment groups which

were analyzed to several time points were analyzed using two-way

ANOVA (repeated measurements). p values,0.05 were consid-

ered as statistically significant.

SUPPORTING INFORMATION

Figure S1 56104 splenocytes from mice transgenic for a T cell

receptor recognizing the LCMV helper epitope GP61 (LCMV-

glycoprotein61-80/I-Ab-specific TCR, SMARTA mice) and

expressing the T cell marker Thy1.1 were transferred into

C57BL/6 mice on day -10. One group of mice was treated with

100mg GP61 disolved in IFA, while control mice were treated with

IFA alone at days -9, -6, -3. At day 0 mice were infected with

200pfu LCMV-WE or left untreated. Seven days after infection

GP61-specific Thy1.1+ CD4+ T cells and CD4+ T cells from

untreated B6 mice were analyzed for expression of GITR, PD-1

and regulatory T cells by CD25 and FoxP3 staining.

Found at: doi:10.1371/journal.pone.0001162.s001 (0.41 MB TIF)

Figure S2 Shows transfer scheme from experiment presented in

Figure 1H.

Found at: doi:10.1371/journal.pone.0001162.s002 (0.41 MB TIF)

Figure S3 C57BL/6 mice were treated with 100microg GP61

dissolved in IFA, while control mice were treated with IFA alone

at days -9, -6, -3. At day 0 mice were infected with 26106pfu

LCMV-WE. GP33 and NP396 specific CD8+ T cells were

analyzed in the blood on day 12 after infection.

Found at: doi:10.1371/journal.pone.0001162.s003 (0.38 MB TIF)

Figure S4 56104 splenocytes from mice transgenic for a T cell

receptor recognizing the LCMV helper epitope GP61 (LCMV-

glycoprotein61-80/I-Ab-specific TCR, SMARTA mice) and for

the T cell marker Thy1.1 were transferred into C57BL/6 mice on

day -10. One group of mice was treated with 100mg GP61

dissolved in IFA, while control mice were treated with IFA alone

at days -9, -6, -3. At day 0 mice were infected with 200pfu LCMV-

WE or left untreated. GP33 specific CD8+ T cells were analyzed

for frequencies.

Found at: doi:10.1371/journal.pone.0001162.s004 (0.38 MB TIF)

Figure S5 Jh-/- mice were treated with 100 mg GP61 dissolved

in IFA or with IFA alone at days -9, -6, -3. On days -2 and -1 CD8

T cells were depleted. At day 0 mice were infected with 200pfu

LCMV-WE. Mice were analyzed for replicating virus in the blood

at the indicated time points.

Found at: doi:10.1371/journal.pone.0001162.s005 (0.38 MB TIF)
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