D68-D73
doi:10.1093/nar/gkjo75

Nucleic Acids Research, 2006, Vol. 34, Database issue

cisRED: a database system for genome-scale
computational discovery of regulatory elements

G. Robertson*, M. Bilenky, K. Lin, A. He, W. Yuen, M. Dagpinar, R. Varhol, K. Teague,

O. L. Griffith, X. Zhang, Y. Pan, M. Hassel, M. C. Sleumer, W. Pan, E. D. Pleasance,

M. Chuang, H. Hao, Y. Y. Li, N. Robertson, C. Fjell, B. Li, S. B. Montgomery, T. Astakhova,
J. Zhou', J. Sander’, A. S. Siddiqui and S. J. M. Jones

Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
and 'Department of Computing Science, University of Alberta, Edmonton, AB, Canada

Received August 15, 2005; Revised and Accepted October 8, 2005

ABSTRACT

We describe cisRED, a database for conserved regu-
latory elements that are identified and ranked by a
genome-scale computational system (www.cisred.
org). The database and high-throughput predictive
pipeline are designed to address diverse target
genomes in the context of rapidly evolving data
resources and tools. Motifs are predicted in promoter
regions using multiple discovery methods applied to
sequence sets that include corresponding sequence
regions from vertebrates. We estimate motif signi-
ficance by applying discovery and post-processing
methods to randomized sequence sets that are
adaptively derived from target sequence sets, retain
motifs with p-values below a threshold and identify
groups of similar motifs and co-occurring motif
patterns. The database offers information on atomic
motifs, motif groups and patterns. It is web-
accessible, and can be queried directly, downloaded
or installed locally.

INTRODUCTION

Approaches for identifying transcriptional regulatory motifs
computationally have been reviewed previously (1-3).
Recently, progress has been made towards identifying a ‘com-
prehensive catalog’” of mammalian elements (4,5). As genome
resources, data types and tools evolve, predictive approaches
developed for such work can also be directed at a number
of closely connected issues. Some of these include taking
advantage in motif discovery of increasing numbers of gen-
omes, including low-coverage sequences; quantifying the

contributions to motif discovery of different genomes or
sets of genomes; improving the predictive reliability of motifs
by genome-scale clustering and co-occurrence; determining a
best minimal set of motif discovery methods, probably in a
discovery approach that uses multiple methods (6); and using
coexpression and other functional data types.

In this report, we describe a new cisSRED database that
contains predictions for whole-genome discovery of regulat-
ory elements in mammals and other eukaryotes. We also
describe the predictive system behind the database, which
uses genome-scale approaches to predict deeply conserved
ab initio motifs and identifies groups of similar motifs and
co-occurring patterns of motifs. Results are available in a web-
accessible and downloadable MySQL database. The system is
designed to be readily maintained and extended in the context
of rapidly evolving resources, data types and tools.

DATA SOURCES AND PROCESSING

The system is outlined in Figure 1, and is described in detail
at www.cisred.org/content/databases_methods. The upstream
section of the pipeline loads the database with significant
discovered atomic motifs, and the section downstream of
the database identifies groups of similar atomic motifs and
co-occurring patterns of motifs. An atomic motif consists of
a set of sequences, typically with a common length between 6
and 12 bp, members of which are present in a sequence region
on the target species and in corresponding regions on other
genomes.

The system uses genome resources that are a combination of
directly downloaded and processed sequences, annotations
and relationships (e.g. orthology, coexpression and interac-
tions). These are stored in an automatically updated local
resource that holds a wide range of public and commercial
databases.
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Figure 1. Data processing system for high-throughput motif discovery, clustering, co-occurrence, annotation and performance assessment.

Motif discovery was carried out in a search region based
on a single major transcript for each gene. An input target
sequence set consisted of a sequence from the target species,
and corresponding sequences from homologous vertebrate
genes. The following rules were used to assemble target
sequence sets for cisSRED 1.2e. We identified homologous
genes by combining data from Compara (7), HomoloGene
(8), Inparanoid (9) and KEGG (10). For each target human
gene and each of its orthologues, we took the major Ensembl
(7) transcript if its protein sequence was N-terminal complete.
We further required that the human gene had an annotated
Ensembl 5'-untranslated region (5-UTR) that was at least
10 bp long. For each target gene’s orthologue set, we required

at least one of Dog, Mouse and Rat, and at least one of
Chicken, Frog, Fugu, Tetraodon and Zebrafish. If the human
5'-UTR was <500 bp, we applied no UTR requirements to
orthologues; however, if the human 5-UTR was >500 bp,
we required that all orthologues had annotated Ensembl
5'-UTRs that were at least 10 bp long. After this filtering,
for any orthologous region that was missing from an input
sequence set, we added a sequence region from the current
UCSC (11,12) multiple sequence alignment. For a small subset
of the target genes, corresponding regions from ENCODE-
specific species were then added from the current ENCODE
multiple sequence alignment (13). Finally, regions were added
from an internally processed version of the unannotated
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Macaca mullata genome from http://www.hgsc.bcm.tmc.edu/
projects/rmacaque/. These rules delivered ~7500 human tar-
get genes with sequence sets that contained a minimum of
three and an average of six orthologous sequences from
other genomes. Sequence regions extended 1.5 kb upstream
and 100 bp downstream of transcription start sites (TSS), net
of all types of repeats except LTR/ERV1, LTR/ERVL, LTR/
MaLR and of coding sequences, which were masked.

In addition to a target sequence set, we supplied each dis-
covery program with a genomic ‘background’ input file. The
background input for each species consisted of 1000 concat-
enated search regions that were randomly selected from the
genome’s entire set of search regions.

We used multiple discovery methods in parallel, running
each method with a range of parameter settings; typically
target motif width and motif occurrence model were varied.
We used a compact but diverse base set of discovery methods
that consisted of CONSENSUS (14), MEME (15) and Motif-
Sampler (16). Raw discovered motifs were post-processed, for
example, to remove identical motifs reported by the same
algorithm, and to merge strongly overlapped motifs.

We assigned p-values to motifs discovered by multiple
methods across large sets of target genes whose sequence
sets varied in species composition, as follows. First, we iden-
tified a representative subset of target sequence sets that
sampled the range of species compositions of the target
sets. Then, for each representative target sequence set, we
created random sequence sets by retaining the original
sequence from the target species and replacing each ortholog-
ous sequence with a synthetic sequence. The random synthetic
sequence was generated from the target sequence by a tool we
developed to simulate neutral evolution using published sub-
stitution rates and indel rates and lengths. Each random
sequence set was generated 30 times in order to avoid statist-
ical bias. We then submitted each target sequence set and all
random sequence sets to identical motif discovery and post-
processing procedures. We assigned method-independent
(MI) scores to all motifs discovered in target and random
sequence sets, using a trainable function that contained four
non-negative parameters:

(1 + (XID)(I + OLZCremote)(l + (X4W)B
(1 +0L3(1 _Cclose)) '

where coefficients took the following possible values: D,
W eR,Be {0,1} and C € [0, 1]. In the above equation,
D characterized the number of site sequences in a motif; W and
B characterized the shape of a motif’s information content
profile; and C characterized motif sequence conservation.
The score increased when the motif was conserved for species
that are evolutionarily remote from the target, and decreased
when the motif was not conserved for species that are close to
the target (primates, in the case of human). We used the dis-
tribution of MI scores for motifs from a target gene’s random
sequences to transform the MI scores for the target gene’s
motifs into p-values. Finally, we loaded the database with
motifs whose p-values were below a threshold (which, for
cisRED 1.2e, was 0.05).

A library of known transcription factor binding sites, split
into mutually exclusive training and testing fractions, was
used to optimize the scoring function and to characterize

score(o) =

the performance of the system. The library contained
~1000 sites for ~300 human genes from TRANSFAC v9.1
(17), and ~250 binding sites that we curated from the liter-
ature. We optimized the scoring function by simulated anneal-
ing, using a training fraction of known sites from randomly
selected genes and two objective functions: the area under a
receiver operating characteristic (ROC) curve and the number
of experimentally known motifs that were not predicted. We
assessed the system’s predictive performance with a test frac-
tion of known sites, using observables like sensitivity, speci-
ficity and positive predictive value (PPV) (e.g. www.cisred.
org/content/databases_methods/human_1_2e/performance).
Although comparisons of method performance are constrained
by many factors, current system performance compared
favourably to results in a recent study (6).

To identify groups of similar motifs, we defined two pair-
wise motif similarity metrics. For the first metric, we used a
version of the Levenstein edit distance between two sequences
that was modified to permit no internal gaps (18). For each
motif, M, and its reverse complement, RC(M), we scanned
motif pairs relative to each other, and reported the overall
minimum average mutual edit distance to motif K, i.e.
min(d(M, K), d(RC(M),K)). The second metric was based
on the maximum information content shared between position
frequency matrices derived for each motif, and also treated a
motif and its reverse complement as equivalent. We hierarch-
ically clustered pairwise dissimilarity matrices with the local
density-based OPTICS algorithm (19). We extracted clusters
from OPTICS’ reachability output by applying an automatic
cluster recognition method that identifies cluster boundaries as
inflection points in the reachability plot (20), then traversing
these hierarchical segmentation results with an algorithm that
traced a deepest available path, constrained by a maximum
preset depth.

The large size of mammalian genomes makes it challenging
to organize the computational hardware and software infra-
structure required to address such issues routinely. We did the
large-scale discovery, similarity and co-occurrence calcula-
tions on a Beowulf-style, ~400 CPU (Pentium III, Xeon,
Opteron) OSCAR cluster (http://oscar.openclustergroup.org)
running Red Hat Linux 9; and remotely on the Beowulf
~1700 CPU ‘glacier’ cluster at WestGrid (www.westgrid.ca).
We clustered motifs on a 12 dual-core CPU (UltraSPARC 1V)
SMP server with 96 GB of RAM running Solaris 9.

CISRED DATABASE CONTENTS,
STRUCTURE AND ACCESS

Figure 2 shows a schematic diagram of the database design
from a user perspective. The database infrastructure is
designed to evolve to hold results from a range of mammals,
as well as results from model organisms. Because promoter
regions are enriched sources of regulatory elements, motif
discovery and the cisRED design were both based on regions
around TSSs. cisRED human v1.2 contains motifs from pro-
moter regions of ~7500 human genes using Ensembl v30
(NCBI 35) data, as well as a pilot result set of ~250 mouse
genes.

The current database design makes three types or levels
of information available for regulatory elements: (i) atomic
motifs, which are discovered independently in each target
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Figure 2. Database contents and high-level links, from a web user perspective, as of cisSRED human v1.2. ‘Atomic motifs’ are motifs discovered in target sequence
sets. ‘Groups’ are clusters of similar motifs that are identified by large-scale OPTICS (19) clustering. ‘Patterns’ are co-occurring sets of group-labelled motifs.

region sequence set; (ii) groups of similar motifs, each of
which is a putative model for the binding site of a single
transcription factor; and (iii) co-occurring patterns of models,
which are putative regulatory modules.

Predicted regulatory elements can be viewed directly in
cisRED’s web user interface. From this interface, motifs
can be viewed in the UCSC genome browser, in the Ensembl
genome browser via a DAS server, or in the Sockeye
comparative genomics workspace (21). A user can filter the
displayed motifs by criteria like the p-value threshold, the
orthologous species present in a motif and the discovery
method.

The database contains a table of high-confidence globally
coexpressed genes (22); genes coexpressed with each cisSRED
target gene are listed on that gene’s page. Coexpression
resources are available for download at http://www.bcgsc.
ca/gc/bomge/coexpression. The database also contains a
table of single nucleotide polymorphisms (SNPs) from
dbSNP (8) that occur in predicted motifs. When a predicted
human motif contains a SNP, the cisRED atomic motif page
highlights this variation on the target sequence of a motif site

sequence set, and the highlighted base hyperlinks to the SNP’s
primary source information in dbSNP.

The database can be accessed in several ways. A web user
interface is available at www.cisred.org. A current schema
diagram is available from the ‘Databases & Methods’
page, and direct SQL queries can be run on the MySQL
databases at db.cisred.org. A user can download the data,
with SQL files, as well as a compressed file that contains
all input FASTA sequence sets. As genome resources and
our data processing evolve, we update database contents.
Because older versions of the database may not be compatible
with the current user interface, only recent versions for each
species can be accessed through the web or via a MySQL
client. However, historical releases of ciSRED databases are
archived and can be downloaded.

Certain parts of the system’s software are available from
a tab on the cisRED home page. Sockeye (21) permits, for
example, a user to assess details of conserved regions relative
to genomic annotations in multiple sequence alignments. The
HitPlotter visualizer displays large sets of discovered motifs
from multiple-method discovery runs, and is available on


http://www.bcgsc

D72 Nucleic Acids Research, 2006, Vol. 34, Database issue

request as a beta release. The database infrastructure is
designed to facilitate installing cisSRED locally.

FUTURE WORK

Database contents will be extended to include large-scale
results for human, mouse, rat, Caenorhabditis elegans and
Drosophila melanogaster. A new schema design supports
these species. For example, ciSRED human v2 will contain
~18 000 human genes. The input sequence sets for this data-
base were based on human TSSs that were identified by con-
sidering Ensembl (7) and RefSeq (23) annotations. To address
the limitations of gene and transcript annotations for non-
human species, corresponding vertebrate search regions
were taken from UCSC (11,12) and ENCODE multiple
sequence alignments (13). We are extending our ability to
take advantage of unannotated and low-coverage genome
sequence data.

We are continuing to improve motif post-processing and
scoring. Optimizing the scoring function depends on having a
large library of known motif sites; we anticipate that a newly
created web database for submitting and curating binding
sites from the literature may help us to enlarge and improve
this resource (www.oreganno.org; S. B. Montgomery and
O. L. Griffith, manuscript in preparation).

Given a scalable clustering method, we continue to assess
motif similarity metrics and how best to use the hierarchical
information output from OPTICS. Given groups of similar
motifs, we are applying group labels to atomic motifs, then
identifying overrepresented co-occurring motif patterns using
hypergeometric statistics, imposing separation constraints on
neighbouring motifs, and searching in two stages for patterns
larger than pairs (24,25). We are implementing methods for
annotating discovered motifs as known or novel against known
site resources. Given annotated motifs, we will annotate
overrepresented co-occurring patterns of human motif pairs
as known versus novel using the TRANSCompel resource
(26). We are applying genome-scale motif clustering and
co-occurrence as filters for predicted motifs that may improve
the predictive reliability and the resulting catalogue of con-
served regulatory elements.

We have assembled a large multi-species coexpression
resource that contains public microarray and SAGE data from
diverse sources (22) (Table 1). We have shown that combining
global coexpression data from multiple platforms improves
confidence in coexpression predictions when assessed against
the Gene Ontology (GO) (27). From this, we established
GO-based Pearson correlation thresholds that identified

Table 1. Contents of coexpression database (22)

Species Platform Experiments Unique genes
H.sapiens SAGE (short) 272 20312

Oligo microarray 1640 12452

c¢DNA microarray 2852 13111
M.musculus SAGE (short) 85 12715

Oligo microarray 1802 8164

c¢DNA microarray 366 8102
C.elegans SAGE (long/short) 26 15685

c¢DNA microarray 1059 15956
Total 8102 54434

high-confidence globally coexpressed gene pairs. The coex-
pression database makes results available from this global
analysis and from two other recent analyses (28,29). Although
coexpressed genes can have similar regulatory elements, the
system’s predictive performance improved only marginally
when inputs included coexpressed genes in addition to ortho-
logous genes (data not shown). Given these results, currently
we are assessing an approach that includes no coexpressed
genes in motif discovery inputs, but uses coexpression
information to assess groups and co-occurring patterns iden-
tified in genome-scale sets of atomic motifs.

We will extend the database user interface to offer more
complex user filtering, as well as motif searches based on
consensus strings or matrices. For work with classes of regu-
latory elements that are defined by wet lab data types based
on, for example, ChIP or DNase I hypersensitivity (e.g. see
ENCODE tracks within the UCSC genome browser) (11,13),
we have designed a new schema that is based on search regions
rather than on genes, and will extend the user interface to
support this.

We will continue to assess the contributions to regulatory
element predictions of different genomes and sets of genomes.
We will integrate and assess new motif discovery methods,
and will identify a best minimal set of methods on an ongoing
basis.
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