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ABSTR ACT
BACKGROUND: DNA methylation of the differentially methylated regions (DMRs) of imprinted genes is relevant to neurodevelopment.
METHODS: DNA methylation status of the DMRs of nine imprinted genes in umbilical cord blood leukocytes was analyzed in relation to infant behav-
iors and temperament (n = 158).
RESULTS: MEG3 DMR levels were positively associated with internalizing (β = 0.15, P = 0.044) and surgency (β = 0.19, P = 0.018) behaviors, after 
adjusting for birth weight, gender, gestational age at birth, maternal age at delivery, race/ethnicity, education level, smoking status, parity, and a history of 
anxiety or depression. Higher methylation levels at the intergenic MEG3-IG methylation regions were associated with surgency (β = 0.28, P = 0.0003) and 
PEG3 was positively related to externalizing (β = 0.20, P = 0.01) and negative affectivity (β = 0.18, P = 0.02).
CONCLUSION: While the small sample size limits inference, these pilot data support gene-specific associations between epigenetic differences in 
regulatory regions of imprinted domains at birth and later infant temperament.
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Introduction
Early childhood social–emotional functioning and tempera-
ment reflect stable, biologically based individual differences in 
behavioral tendencies.1 These behavioral tendencies have been 
linked to subsequent childhood externalizing, internalizing, 
and emotional problems.2–5 Prenatal environmental influ-
ences, such as smoking, dietary factors, and maternal stress, 
have all been linked to early childhood social–emotional 
functioning and temperament.6–8 Many of these environmen-
tal influences have also been related to variation in epigen-
etic processes.9–13 While variation in epigenetic processes is 
hypothesized as a potential biological mechanism explaining 
associations between prenatal exposures and early childhood 
temperament and social–emotional functioning,14 it is not 
clear to what extent epigenetic processes relate to these early 
behavioral tendencies. Understanding the degree to which 
epigenetic processes relate to these behavioral tendencies is 

important as it may help inform the etiology of more complex 
childhood neurodevelopmental and psychiatric outcomes.15

Epigenetic studies of behavioral and mental health have 
largely focused on DNA methylation in promoter regions 
of candidate genes that regulate the hypothalamic–pitu-
itary axis implicated in stress modulation, as well as genes 
involved in dopaminergic and serotonergic systems that 
modulate reward and emotion.16–18 Imprinted genes, how-
ever, may also be relevant. Many imprinted genes are highly 
expressed in the brain and are critical in regulating neuro-
development.19–27 The parent-of-origin-dependent manner in 
which this subset of genes is expressed is tightly regulated 
through epigenetic processes, including DNA methylation 
at differentially methylated regions (DMRs), which directly 
affects the genes’ expression.28 The ways in which imprinted 
gene regulation might affect brain development could be 
either by disrupting regulation of nutrient acquisition, 
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hormones, or fetal growth, or, more directly, by influenc-
ing neuronal growth and pruning, or axonal sprouting and 
interconnections.29 IGF2, eg, plays a major role in balancing 
nutrients for growth across the placental membranes,30 and 
altered regulation may indirectly affect brain development 
by influencing the supply of nutrients during critical stages 
of development. Other imprinted genes, such as neuronatin 
(NNAT), may play a more direct role, as this imprinted gene 
has been implicated in regulation of ion channels during 
brain development.31

DNA methylation and altered expression of imprinted 
genes have been associated with clinical neurodevelopmen-
tal disorders in children, such as the Rett, Angelman, and 
Beckwith-Wiedemann syndromes,27 but studies of quantita-
tive behavioral phenotypes are limited. Some exceptions are 
recent studies of neurological functioning in newborns. In an 
initial study, researchers demonstrated that altered expres-
sion of 22 imprinted genes in the placenta was correlated with 
neurological outcomes shortly after birth (ie, prior to hospital 
discharge) using the Neonatal Intensive Care Unit Network 
Neurobehavioral Scale (NNNS).32 In a follow-up study with 
this same cohort, this same group found that higher mean 
DNA methylation of the serotonin receptor 2A (HTR2A), 
which may also be subject to genomic imprinting,33 was asso-
ciated with a less desirable score on the NNNS measurement 
of infant quality of movement and a more desirable score on 
measurement of infant attention.34

Identifying the extent to which DNA methylation is 
related to early childhood temperament and social–emotional 
functioning could point to potential biological markers useful 
in risk assessment or as targets for interventions that aim to 
ameliorate exposure-induced methylation changes. Consider-
ing previous findings linking neurological outcomes shortly 
after birth to imprinted gene expression, as well as the rel-
evance of imprinted genes to prenatal growth and brain 
development, we investigated the associations between early 
childhood temperament and the DNA methylation status of 
umbilical cord blood leukocytes with reference to the nine 
DMRs in the imprinted genes that are important for embry-
onic growth regulation (H19, IGF2, MEST, PLAGL1, and 
SGCE) or brain development (MEG3, MEG3-IG, NNAT, and 
PEG3).32,34 These were selected because they have been highly 
characterized and extensively studied. Because temperament 
may differ by gender35 and because epigenetic perturbations 
may be gender specific,36 we also examined these associations 
separately by gender.

Methods
Cohort and study sample. Participants were from a pop-

ulation-based birth cohort in the southeastern United States 
(the Newborn Epigenetics STudy [NEST]).37 This  research 
complied with the principles of the Declaration of Helsinki. 
All participants provided informed consent and the study was 
approved by Duke University’s institutional review board.13,37 

Pregnant women were recruited from prenatal clinics serv-
ing Duke University Hospital and Durham Regional Hos-
pital Obstetrics facilities from April 2005 to June 2011. The 
analyses focused on participants recruited between 2009 
and 2011 when measures of infant temperament were added 
to the survey and administered at one year after the child’s 
birth. Eligibility criteria were as follows: age $18 years, Eng-
lish speaking, pregnant, and intention to use one of the two 
obstetrics facilities for the index pregnancy to enable collec-
tion of umbilical cord blood.

Of the 2,548 women approached, 1,700 (66.6%) were 
enrolled. Of the 1,700 women, 347 were withdrawn due to 
miscarriage (n = 117), infant death (n = 3), or refusal for fur-
ther participation prior to delivery or at the follow-up at age 
one year (n = 227). Of the remaining 1,353 eligible women, 
605 (46%) completed a one-year follow-up survey that included 
assessment of temperament.

Bisulfite pyrosequencing for determining DNA meth-
ylation was conducted using umbilical cord blood samples 
in the cohort. The analyses were limited to participants with 
singleton births for whom both DNA methylation had been 
measured and data on child outcomes between 12 months 
and 24 months had been reported. This ranged from 158 to 
198 individuals depending on the particular DMR being 
evaluated.

The analysis cohort differed from the enrollment cohort 
with respect to educational attainment (χ2 = 17.2, P  0.01) – 
in that there was a greater percentage of women with a college 
degree (44% versus 32%)—and with respect to race (χ2 = 33.1, 
P  0.001), with a greater percentage of Caucasians (39% 
versus 33%), fewer African Americans (27% versus 44%), and 
greater percentage of Hispanics (30% versus 17%). The anal-
ysis cohort also differed from the enrollment cohort in that 
fewer reported smoking during pregnancy (10% versus 12%; 
χ2 = 9.44, P  0.01) and children had a higher birth weight 
(3,283.5 g versus 3,149.7 g; F = 7.27, P  0.01) and longer 
gestation period (38.96 weeks versus 38.4 weeks; F = 8.67, 
P  0.01). These two cohorts were similar with respect 
to infant gender (χ2 = 0.06, P = 0.80) and maternal age at 
delivery (F = 1.47, P = 1.47). Mean levels for the measures of 
temperament and social–emotional regulation were not statis-
tically significantly different between the analysis cohort and 
enrollment cohort (all F  1.96 and P  0.25).

Measures. The Infant–Toddler Social–Emotional 
Adjustment (ITSEA) questionnaire was used to assess infant 
social–emotional behavior and temperament.38 The ITSEA 
instrument is a parent report questionnaire that measures 
four internalizing domains (General Anxiety, Separation 
Distress, Depression–Withdrawal, and Inhibition to Nov-
elty) and three externalizing domains (Peer Aggression, 
Aggression–Defiance, and Activity–Impulsivity). All ques-
tions are rated on a three-point scale: zero = not true or rarely, 
one = somewhat true or sometimes, and two = very true or 
often. Scales of the ITSEA questionnaire have demonstrated 
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acceptable test–retest reliability and interrater reliability.39 
Cronbach’s alpha coefficients for the internalizing and exter-
nalizing domains were 0.80 and 0.86, respectively.

The very short form of the Early Childhood Behavior 
Questionnaire (ECBQ )40 was used to assess three broad fac-
tors of temperament related to reactivity and self-regulation, 
including negative affectivity, effortful control, and sur-
gency. The ECBQ has been shown to have good test–retest 
reliability, is internally consistent, and demonstrates satisfac-
tory interrater agreement.40 Indicators such as low frustration 
tolerance, sadness, fearfulness, and low soothability mark 
the negative affectivity factor. The effortful control factor is 
marked by indicators such as attention, inhibitory control, 
and low-intensity pleasure. The surgency factor is marked by 
indicators such as impulsivity, high activity level, and high-
intensity pleasure. Cronbach’s alpha coefficients for negative 
affectivity, effortful control, and surgency were 0.75, 0.75, and 
0.80, respectively.

Other variables. At enrollment (median gestation 
age: ~12 weeks), a self- or interviewer-administered question-
naire solicited information about maternal age, race, marital 
status, educational status, psychiatric history (ever diagnosed 
or treated for depression or anxiety), parity, and smoking his-
tory (whether they smoked prior to or during pregnancy). Birth 
weight, gestational weeks, and infant gender were obtained 
from medical records.

DNA methylation. Umbilical cord blood was collected via 
umbilical vein puncture into ethylenediaminetetraacetic acid-
containing vacutainer tubes. Genomic DNA (500–800 ng) 
was treated with sodium bisulfite using the EZ DNA Meth-
ylation Kit as per the manufacturer’s instructions (Zymo 
Research). Bisulfite-converted DNA (~40 ng, assuming com-
plete recovery after bisulfite modification) was amplified by 
polymerase chain reaction (PCR) using the PyroMark PCR 
Kit (Qiagen). PCR and pyrosequencing primers, genomic 
coordinates, PCR amplification conditions, and assay valida-
tion experiments have been described in detail elsewhere.41–43 
Assay validation experiments included duplicate DNA 
methylation measurements of all DMRs with a methyla-
tion profile ± two standard deviations (SDs), as well as gene 
expression studies in support of the functional significance of 
the identified methylation marks. Supplementary Table 1 and 
Supplementary Figure 1 display details of the function and 
location of the select genes.

Statistical analyses. Multivariate multiple regression 
models were used to test the association between methyla-
tion status and the five temperament outcomes, controlling 
for birth weight, gestational weeks, infant age at follow-up, 
gender, maternal race, maternal education level, smoking sta-
tus during pregnancy, maternal age at delivery, parity, and 
maternal reported history of anxiety or depression, as these 
factors have been associated with DNA methylation at this 
or other genomic regions and infant temperament. Analy-
ses utilized the mean methylation value for each of the nine 

DMRs in nine separate models to predict the response mea-
sures for the five temperament domains: two primary domains 
of the ITSEA (internalizing and externalizing) and the three 
factors of the ECBQ (negative affectivity, effortful control, 
and surgency). Mean methylation values less than or greater 
than three SDs s from the mean were treated as outliers and 
removed. Cronbach’s alphas for individual CpGs within each 
DMRs were all 0.88. Supplementary Table 2 displays the 
mean methylation values for the nine DMRs in the analy-
sis sample in relation to the sample excluded from analyses 
because of lack of temperament data. Potential moderation 
by gender was examined by including an interaction term 
(gender × DMR) in the models. Secondary analyses exam-
ined each subdomain of the behavioral or temperament mea-
sures when a significant association between a DMR and one 
of the temperament outcomes was observed. This was per-
formed to determine the subdomain of temperament likely to 
contribute to the association observed in the primary analyses. 
To facilitate interpretation of effect size, standardized regres-
sion coefficients are presented.

Results
The distribution of the study sample characteristics is presented 
in Table 1. Mean maternal age at delivery was 29 years; 44% of 
the study sample had a college degree or higher; non-Hispanic 
Blacks, non-Hispanic whites, and Hispanics comprised 27%, 
39%, and 30%, respectively. Table 2 displays means and SDs 
for the ITSEA summary and subscales and ECBQ scale.

We evaluated the association between DNA methylation 
at the regulatory DMRs for nine imprinted genes. The regression 
residuals for the nine models were normally distributed. 
Results of multivariate multiple regression indicated significant 
associations between ITSEA and ECBQ domains and the 
DRMs regulating MEG3-IG [F(5,144) = 2.96, P = 0.014] 
and PEG3 [F(5,152) = 2.49, P = 0.033] and a trend toward 
significance for MEG3 [F(5,157) = 2.17, P = 0.059].

The results of the regression analyses (Table 3) further 
indicated significant associations between MEG3 and two of 
the behavioral indicators: internalizing (β = 0.15, P = 0.044) 
and surgency (β = 0.19, P = 0.018). A significant association 
between MEG3-IG and surgency (β = 0.28, P = 0.0003) was 
also revealed. PEG3 was associated with externalizing (β = 0.20, 
P = 0.010) and negative affectivity (β = 0.18, P = 0.022). Fit-
ted regression plots of these significant results can be seen in 
Figure 1 (panels A–E). The adjusted regression models for the 
other DMRs were not statistically significant (P  0.05).

The interaction term (gender × DMR) for gender and 
H19 yielded P = 0.04. These analyses indicated a signifi-
cant effect for negative affectivity (P = 0.01) and surgency 
(P = 0.045). Stratifying the analysis by gender indicated that 
the associations were in the opposite directions for males 
and females; however, analyses stratified by gender were 
not statistically significant (negative affectivity: in males, 
β = -0.13, P = 0.20; and in females, β = 0.13, P = 0.24; 
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surgency: in males, β = -0.08, P = 0.41; and in females,  
β = -0.14, P = 0.21).

The relation between the MEG3 DMR and the 
internalizing domain was significant. To further examine this 
relation, we evaluated the association between the MEG3 
DMR and each of the following internalizing subscales: 
depression, anxiety, separation distress, and inhibition to nov-
elty. Results indicated that the MEG3 DMR was significantly 
related to inhibition to novelty (β = 0.22, P = 0.004) but not 
to any of the other internalizing subscales (Supplementary 
Table 3). The relation between PEG3 DMR and externaliz-
ing domains was significant; thus, we examined the associa-
tion between the PEG3 DMR and each of the externalizing 
subscales: peer aggression, aggression–defiance, and activity–
impulsivity. The PEG3 DMR was significantly related to 
activity–impulsivity (β = 0.17, P = 0.035) but not to any of the 
other externalizing subscales (refer Supplementary Table 4).

In three separate regression models, maternal self-reported 
smoking was not significantly associated with MEG3, 
MEG3-IG, or PEG3 DMRs controlling for maternal race, 
age, education, parity, and gender as covariate variables 
(all P  0.05).

Discussion
In this study, we found that (1) higher DNA methylation at the 
intragenic MEG3 DMR was positively related to greater expres-
sion of internalizing symptoms and surgency temperament, (2) 
higher DNA methylation at the intergenic MEG3-IG was related 
only to greater surgency, and (3) higher DNA methylation of 
the PEG3 DMR was related to greater externalizing and nega-
tive affectivity. Follow-up analyses showed that the association 
between MEG3 and internalizing was related more directly to 
inhibition to novelty and that the association between PEG3 and 
externalizing was related more directly to activity–impulsivity. 
Of note, similar methylation patterns at these DMRs have been 
associated with altered gene expression.41,42 Because early child-
hood temperament and related behavioral tendencies predict 
subsequent childhood externalizing, internalizing, and emo-
tional problems,5 the associations observed here may be relevant 
to elucidating the epigenetic factors related to psychiatric and 
behavioral health problems later in childhood.

Investigating epigenetic processes, especially in DMRs of 
imprinted genes, may offer insights into the genesis of child-
hood temperament and social–emotional development.44 Epi-
genetic regulation of imprinted genes has been associated with 
clinical neurodevelopmental disorders,20 but to our knowledge, 
this is the first study to show a relationship between prenatal 
epigenetic regulation of imprinted genes and infant tempera-
ment. Using a different methodological approach and devel-
opmental stage (newborn functioning), others have shown 

Table 2. Mean values and standard deviations (SDs) for the ITSEA 
summary scales and subscales, as well as ECBQ summary scales.

MEAN SD POSSIBLE 
RANGE

ITSEA 
Internalizing 0.45 0.25 0–2

General anxiety 0.15 0.23 0–2

Separation distress 0.85 0.45 0–2

Depression-withdrawal 0.12 0.19 0–2

Inhibition to novelty 0.66 0.52 0–2

Externalizing 0.35 0.26 0–2

Peer aggression 0.10 0.23 0–2

Aggression-defiance 0.25 0.28 0–2

Activity-impulsivity 0.69 0.45 0–2

ECBQ
Effortful control 4.93 0.86 1–7

Negative-affectivity 2.79 1.03 1–7

Surgencey 5.09 1.00 1–7
 

Table 1. Characteristics of the samples.

CATEGORICAL CHARACTERISTICS N %

Infant gender

Male 105 53.0

Female 93 47.0

Infant race

Non-Hispanic white 77 38.9

Hispanic 60 30.3

Non-Hispanic black 54 27.3

Other 7 3.6

Mother’s education

Less than high school 44 22.2

High school or equivalent 43 21.2

Some college 25 12.6

College graduate or higher 87 43.9

Maternal depression or anxiety

No reported history 168 84.9

Reported history 30 15.1

Maternal smoking 

Never 156 78.8

Quit before periconception 24 12.1

Smoked during periconception 18 9.1

Parity at enrollment 

Nulliparous (0) 93 47.0

Primiparous (1) 58 29.3

Multiparous (=2) 47 23.7

CONTINUOUS CHARACTERISTICS MEAN SD

Maternal age at delivery (years) 28.8 5.8

Birth weight (g) 3284.5 648

Gestational weeks 39.0 2.0

Infant age at follow-up (months) 14.4 2.6

Abbreviation: SD, standard deviation.
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that altered placental tissue DNA methylation in a cluster 
of imprinted genes, including MEG3, was associated with 
reduced quality of movement in newborn infants.32 In another 
study, researchers did not find associations between meth-
ylation of imprinted genes (H19, IGF2, and KCNQ1OT1) in 
DNA obtained from umbilical cord blood and subsequent 
attention deficit hyperactivity disorder symptoms at six years 
of age.18 The outcomes being assessed and the developmental 
stage are likely highly important to studies of associations 
between imprinted genes and behavior. During early develop-
ment, temperamental differences such as inhibition to novelty 
or anxiety may be easier to observe. Other types of outcomes, 
such as impulsivity or externalizing behaviors, differentiate 
during later development (eg, ages three years and older). 
Thus, it will be important for future research to corroborate 
our findings, as well as evaluate other related neurobehavioral 
outcomes in relation to imprinted genes at subsequent stages of 
development.

DNA methylation in the DMRs of imprinted genes could 
serve as biosensors reflecting a response to a range of environ-
mental exposures.45 In these data, we did not find that mater-
nal self-reported smoking was significantly related to any of 
the DRMs that were also related to neurobehavioral outcomes. 
However, in an epigenome-wide association study, prenatal 
exposure to tobacco smoke, which is linked to neurodevelop-
mental differences in attention and impulsivity in children, 
has been found to be related to methylation of regions in the 
MEG3 DMR.46 Continued research involving both human 
and animal models could help further clarify pathways linking 
prenatal environmentally induced alterations in DNA methyla-
tion and subsequent neurobehavioral outcomes. For instance, 
as shown in preclinical studies, maternal diet quality, such as 
protein insufficiency or high fat intake, is linked with anxiety-
like behaviors in the offspring.47,48 Likewise, a recent study 
using data from the Avon Longitudinal Study of Parents and 
Children cohort showed that prenatal “unhealthy diet” (high fat 
and sugar diet) was associated with offspring IGF2 methylation 
as well as early onset and persistent conduct problems.49 Future 
preclinical and clinical epidemiologic studies that are aligned 
to investigate similar exposures and DNA methylation regions 
would help to further clarify potential pathways.

Notable findings in this study were the relationships 
observed between temperament domains and DNA meth-
ylation of MEG3 and PEG3 DMRs. Paternally expressed 
DLK1 and maternally expressed MEG3 are reciprocally 
imprinted in humans and located at chromosome 14q32.2.50 
Loss of epigenetic information at the MEG3 DMR leads 
to widespread disruption of imprinting and expression of 
the entire imprinted domain, including DLK1.51 DLK1 
has multiple functions, including neurodevelopment, as 
shown in mice,21 and is known to promote the differen-
tiation of both mouse and human neural progenitor cells.52 
It is also implicated in differentiation of midbrain dopami-
nergic neurons,53 and imprinting dysregulation at 14q32 is Ta
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implicated in schizophrenia54 and general anxiety in adult 
populations.55 Thus, there is evidence that the DLK1-MEG3 
imprinted domain is important in brain development, which 
may affect emotional regulation and behavior. Likewise, 
paternally expressed PEG3 is located at chromosome 19q13.4 
and is expressed in neuronal cells as well as in placental 

tissue.56,57 In knockout mouse models, it has been associated  
with altered offspring rearing behaviors, low birth weight, 
and altered male reproductive behavior.58,59 Given our results 
and previous preclinical research linking DLK1-MEG3 and 
PEG3 to brain development and social–behavioral function-
ing, these imprinted genes deserve further study in relation 

Figure 1. Fitted regression lines and 95% confidence intervals (shaded) for relationship between PEG3 and ECBQ negative affectivity (A), PEG3 and 
ITSEA externalizing (B), MEG3 and ECBQ surgency (C), MEG3 and ITSEA internalizing (D), and MEG3-IG and surgency (E). Regression models 
were adjusted for child’s birth weight, gestational weeks, age at follow-up, and gender, as well as maternal race, education level, smoking status during 
pregnancy, age at delivery, parity, and history of anxiety or depression.
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to variation in prenatal exposures and child neurobehavioral 
and social–emotional outcomes.

It is widely known that for most regions, DNA methylation 
is a tissue- and cell-specific process. Because studies involv-
ing otherwise-healthy humans must assess DNA methylation 
using accessible biological specimens, such as peripheral blood 
leukocytes, as a surrogate for the brain, mechanistic links 
between DNA methylation and neurobehavioral outcomes 
cannot be inferred with certainty. Nonetheless, recent stud-
ies do suggest that there are significant correlations in DNA 
methylation at some imprinted genes between peripheral blood 
leukocytes and fetal brain tissue.41 Further, methylation marks 
are shown to be stable over time at some genomic regions.41 
Thus, DNA methylation from peripheral tissue may have util-
ity in epidemiologic studies of cognitive and neurobehavioral 
phenotypes in children, but results from such studies should be 
interpreted within the context of these caveats.45

It is also important to note that the overall effect of the 
association between DNA methylation and temperament 
outcomes in this study was small. The significant standard-
ized regression coefficients for the multivariate models ranged 
from 0.15 to 0.28, which indicate that these accounted for 
a small proportion of the variance in temperament domains 
(~0.02%–0.08%). Notably, however, small effect sizes are 
often observed in epigenetic studies in otherwise-healthy 
human populations, and the effect sizes observed in these data 
are comparable to those reported in other studies.60–62

A limitation of this study was the use of parent report to 
assess childhood outcomes. Although, this is standard prac-
tice in clinical assessment, future studies may benefit from the 
inclusion of direct observation. Another limitation is the mod-
est sample size. Replication in larger samples is warranted to 
more definitively confirm these findings. Finally, we tested a 
multivariate response set of temperament and social–emotional 
functioning in relation to mean DNA methylation in nine gene 
DMRs and the likelihood of finding a significant association 
may be inflated by multiple testing. Correction for multiple 
testing would render the effects we observed here nonsignifi-
cant, with the exception of the association between MEG3-
IG and surgency. Nevertheless, the associations observed here 
between infant behavioral outcomes and MEG3, MEG3-IG, 
and PEG3 are of interest because these genes are known to 
be involved in brain development. Further study of these 
imprinted genes could provide insight into possible epigenetic 
loci related to child neurobehavioral function.

In sum, these early data support gene-specific associa-
tions between epigenetic differences in the regulatory regions 
of two imprinted domains at birth and later infant tem-
perament, further justifying follow-up work on the role of 
imprinted genes in neurodevelopmental outcomes in children. 
Investigating imprinted genes in relation to neurodevelop-
mental outcomes may be a useful approach to understanding 
the role of DNA methylation on neurodevelopment because 
it is known that this set of genes is tightly regulated through 

epigenetic mechanisms, and environmentally induced effects 
can have a significant impact on gene expression. Further, 
identifying epigenetic marks associated with temperament 
could be useful in risk assessment, thus providing a window of 
opportunity for prevention. Epigenetic signatures are poten-
tially reversible. Therefore, it may also be possible to discover 
ways to correct DNA methylation profiles, restore gene func-
tion, and optimize neurodevelopmental growth. Although 
such strategies are possible, they require significant advance-
ment in our understanding of the epigenetic programming 
involved in children’s neurodevelopment.
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