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Abstract

Glut1 deficiency syndrome is caused by SLC2A1 mutations on chromosome

1p34.2 that impairs glucose transport across the blood–brain barrier resulting

in hypoglycorrhachia and decreased fuel for brain metabolism. Neuroglycopenia

causes a drug-resistant metabolic epilepsy due to energy deficiency. Standard

treatment for Glut1 deficiency syndrome is the ketogenic diet that decreases the

demand for brain glucose by supplying ketones as alternative fuel. Treatment

options are limited if patients fail the ketogenic diet. We present a case of suc-

cessful diazoxide use with continuous glucose monitoring in a patient with

Glut1 deficiency syndrome who did not respond to the ketogenic diet.

Introduction

Glut1 deficiency syndrome (Glut1DS) is caused by

mutations in SLC2A1 on chromosome 1p34.2, which

impairs transmembrane glucose transport across the

blood–brain barrier resulting in hypoglycorrhachia and

decreased glucose availability for brain metabolism.1

The consequence is a drug-resistant metabolic epilepsy

due to energy deficiency.2 Standard treatment for

Glut1DS is the ketogenic diet (KD) but treatment

options are limited if patients fail the KD.3 Diazoxide,

which inhibits insulin release, was used sparingly in the

past (De Vivo, unpublished observations) for five

Glut1DS patients to increase blood glucose levels and

thus intracerebral glucose levels. Unfortunately, their

treatment was complicated by unacceptable persistent

hyperglycemia with blood glucoses in the 300–500 mg/

dL range. However, chronic hyperglycemia as treatment

for Glut1DS remains sensible as it has been shown that

acute hyperglycemia produces transient neurological

improvement in Glut1DS patients.4

Continuous glucose monitoring (CGM) was first

approved by the FDA in 1999. However, it was not widely

used in pediatrics until 2015 after significant technological

advances were made. CGM is commonly used by individu-

als with diabetes mellitus and studies have shown reduc-

tions in hemoglobin A1c and hypoglycemia with consistent

use.5–16 CGM works through a small sensor inserted sub-

cutaneously. The sensor measures interstitial glucose levels

every 5–20 min. Interstitial glucose measurements generally

correlate well with blood glucose levels, although interstitial

values can lag behind blood levels if the latter are changing

rapidly. CGM is also being investigated for use in congeni-

tal hyperinsulinism, and early studies show benefit in

trending glucose levels and guiding the need for supple-

mental meter checks.17,18 Given these potential benefits, we

employed the use of CGM to enable initiation and titration

of diazoxide in a patient with KD-resistant Glut1DS.
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Case Report

Diazoxide initiation using CGM

A 14-year-old girl with Glut1DS (c.398_399delGCinsTT:p.

Lys133Phe) presented with absence seizures at age 2 years.

At initial presentation, she had a developmental and

epileptic encephalopathy dominated by continual absence

seizures and mild cognitive impairment. She also had dys-

arthria, hyperreflexia, and wobbly legs as a measure of

paroxysmal exertional dyskinesia, often precipitated by

athletic activities. Laboratory tests revealed a CSF glucose

of 36 mg/dL when blood glucose was 93 mg/dL (CSF/

blood glucose ratio 0.39). A classic KD was initiated with

a 4:1 ratio and transitioned to a modified Atkins diet with

a carbohydrate allowance as high as 50 g/day. Neverthe-

less, she could not tolerate the KD due to severe nausea,

vomiting, abdominal pain, and hypertriglyceridemia. Tri-

als of levetiracetam, zonisamide, valproic acid, carba-

mazepine, lacosamide, alpha lipoic acid, and triheptanoin

also failed to control seizures. At age 14 years, diazoxide

was started with target blood glucoses of 120–180 mg/

dL. She was on no other anti-seizure medication at that

point. Serial EEG seizure counts documented a seizure-

free state after 6 months of diazoxide (Table 1). Seizures

were identified as generalized 3-Hz spike-and-slow wave

discharges >5 s; pre-diazoxide studies had indicated such

discharges were clinically correlated with impaired

responsiveness. CGM was placed at month 2 of diazox-

ide and showed an average interstitial glucose of

157 mg/dL with glucose variability of 20.8% (goal

<36%) while on diazoxide 7.3 mg/kg/day. This diazoxide

dose was within the typical range of 5–20 mg/kg/day

used for the treatment of hypoglycemia due to congeni-

tal hyperinsulinemia. At home, CGM was used to adjust

diazoxide doses 2–4 times a week to achieve target inter-

stitial glucoses of 140–180 mg/dL (Fig. 1). Repeat labo-

ratory tests at month 8 of diazoxide revealed a CSF

glucose of 55 mg/dL when the blood glucose was

118 mg/dL (CSF/blood glucose ratio 0.47). Current dia-

zoxide dose is 7.6 mg/kg/day, targeting interstitial glu-

coses of 90–110 mg/dL (glucose variability 17.1%). Most

recent hemoglobin A1c was 5.7%.

Prior to diazoxide, the patient performed 3 grade levels

below chronological age. At month 5 of diazoxide, at the

start of grade 9, she performed at a 5.8 grade level in

reading comprehension. By month 12 of diazoxide, read-

ing comprehension improved to the 6.9 grade level. She

continues to be seizure-free and EEG tracings remain nor-

mal. She routinely reports her day is a 10 on a scale of 1

to 10. She is now more physically active and participates

in Special Olympics basketball, softball, swimming, golf,

and track (Fig. 2).

Adverse events

Management of diazoxide-induced fluid retention

The patient’s clinical course has been complicated by

fluid retention, a known side effect of diazoxide.19 She

developed this complication soon after diazoxide initia-

tion. Diazoxide causes fluid retention by increasing

sodium reabsorption at the distal tubule of the kidney.20

This mechanism was addressed using thiazide diuretics,

which inhibit sodium reabsorption at the distal tubule.

The patient began daily hydrochlorothiazide 1 month

after diazoxide initiation.

At month 8 of diazoxide, the patient developed head-

ache, malaise, and a stiff neck. She did not have papille-

dema. Lumbar puncture showed opening pressure of

22 cm H2O with benign cell counts. Because there was

immediate relief of headache after the lumbar puncture,

she was started on acetazolamide empirically for sus-

pected low-pressure intracranial hypertension. At month

9 of diazoxide, she developed hypokalemia (lowest potas-

sium 2.8 mmol/L) and renal insufficiency (peak creatinine

1.11 mg/dL) necessitating transient discontinuation of

hydrochlorothiazide. Hydrochlorothiazide was restarted

later at a low dose with amiloride (potassium-sparing

diuretic). Daily sodium intake was decreased to

<2400 mg/day. Serum electrolytes and renal function were

followed closely. Acetazolamide was discontinued after

normalization of serum sodium and renal function.

Weight gain and nutritional therapy on
maintenance diazoxide

To achieve hyperglycemia in the range of 140–180 mg/dL,

cornstarch was supplemented at 7 tbsp/day. Simple

Table 1. Glucose, diazoxide, and EEG data of the patient with Glut1

deficiency syndrome at time points relative to initiation of diazoxide

therapy. Based on electroclinical correlation, seizures were identified

as generalized 3-Hz spike-and-slow wave discharges longer than

5 sec.

Time point Glucose levels

Diazoxide

dose EEG seizure count

�2 months – – 84 per 24 h (2 day

study)

3 weeks 92–145 mg/dL

(blood)

9.0 mg/kg/day 6 per 24 h (3 day

study)

2 months 124–190 mg/dL

(interstitial)

7.3 mg/kg/day 4 per 24 h (3 day

study)

6 months 140–284 mg/dL

(interstitial)

7.9 mg/kg/day 0 per 24 h (5 day

study)

8 months 80–201 mg/dL

(interstitial)

8.4 mg/kg/day 0 per 24 h (1 day

study)
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carbohydrates were given, when necessary, to raise blood

glucose levels. Weight gain (13.7 kg) resulted from this

regimen, complicating the fluid retention. Nutrition

assessment revealed an average intake of 3193 kcal/day

composed of carbohydrates (426 g/day), protein

(121 g/day), and fat (108 g/day), which exceeded daily

requirements of ~2000 kcal/day. Her nutrition plan was

restructured. The family was counseled regarding daily

dietary intake to meet the patient’s energy, sodium, and

carbohydrate goals. Daily cornstarch dose was decreased

and eventually discontinued. To prevent relative “hypo-

glycemia”, the patient and family were educated about

pairing complex carbohydrates with protein at meals and

snacks to help sustain blood glucose levels. If relative “hy-

poglycemia” did occur, defined as blood glucose <90 mg/

dL for more than 3–4 h, the patient and family were

instructed to correct with 15 g of simple carbohydrates.

Three weeks later, average daily caloric intake had

decreased over 400 kcal/day. The patient’s nutritional sta-

tus continues to be monitored closely as her neurological

state continues to improve.

Discussion

This is the first report demonstrating CGM as a tool facil-

itating safe initiation and real-time titration of diazoxide

in the management of Glut1DS patients who have failed

the KD. Diazoxide addresses neuroglycopenia physiologi-

cally by raising blood glucose levels. The reasons and ben-

efits for this are twofold. First, the Glut1 transporter

facilitates glucose diffusion across tissue barriers including

the blood–brain barrier. Reported Km values for the

transporter range from 4 to 8 mmol/L (72–144 mg/

dL).21–23 By increasing resting blood glucose values from

75 to 150 mg/dL, one can anticipate increasing brain glu-

cose levels by an equivalent amount and attenuating the

fuel mismatch that exists between brain glucose supply

and demand in Glut1DS. It is critical to address this mis-

match early in life when neurological growth and devel-

opment are rapid as the cerebral metabolic rate for

glucose reaches its peak between ages 3 and 8 years. Sec-

ond, ketones enter the citric acid cycle at the acetyl-CoA

pool in the mitochondria. Pathways upstream of this pool

that feed into or are fed by the glycolytic pathway, such

as glycogen synthesis, pentose phosphate pathway, and

lactate-pyruvate metabolism, are not benefitted by the

KD. This highlights glucose as the natural, preferred fuel

for brain metabolism with ketones serving as a supple-

mental fuel source.

We observed previously that the higher blood glucose

levels we achieved with chronic diazoxide administration

only correlated with transient benefit (unpublished data).

Ultimately, the Glut1DS patients lost the initial clinical

benefits and regressed to baseline levels of neurological

performance. We speculated chronic hyperglycemia (300–
500 mg/dL) caused downregulation of SLC2A1 adding

“insult to injury”. This molecular sequence has been doc-

umented in poorly controlled diabetes mellitus.24–26 CGM

use has allowed us to avoid such complications as wit-

nessed by the success in this case study. Thus, CGM

introduces the possibility of diazoxide becoming an alter-

native standard of care for Glut1DS and also may provide

a valuable tool for long-term management of other disor-

ders of carbohydrate metabolism.

Figure 1. First day with home continuous glucose monitor.

Figure 2. Recent day with home continuous glucose monitor.
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A multidisciplinary team approach has been central to

the success of this patient’s care. The specialized team

includes neurologists, endocrinologists, genetic counselor,

nephrologist, and nutritionist. Diazoxide initiation was

coordinated by neurologists and endocrinologists well

versed in Glut1DS and diazoxide, respectively. Side effects

caused by diazoxide were discussed among the endocri-

nologists managing the diazoxide, the neurologists follow-

ing the developmental/epileptic encephalopathy and

headache symptoms, a nephrologist managing the diuret-

ics, and the nutritionist managing the dietary therapy.

Team meetings were conducted regularly to assess treat-

ment efficacy and re-evaluate treatment goals. Fortu-

nately, the parents and patient were able to assume

increasing responsibility for the CGM and dietary adjust-

ments. The outcome has been beneficial and resulted in

optimal control of neurological symptoms and unprece-

dented quality of life.
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