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Abstract: Diabetic cardiomyopathy (DCM), as a common complication of diabetes, is characterized
by chronic low-grade inflammation. The NLRP3 inflammasome is a key sensor mediating innate
immune and inflammatory responses. However, the mechanisms initiating and promoting NLRP3
inflammasome activation in DCM is largely unexplored. The aim of the present review is to describe
the link between NLRP3 inflammasome and DCM, and to provide evidence highlighting the impor-
tance of exercise training in DCM intervention. Collectively, this evidence suggests that DCM is an
inflammatory disease aggravated by NLRP3 inflammasome-mediated release of IL-1β and IL-18. In
addition, chronic exercise intervention is an effective preventive and therapeutic method to alleviate
DCM via modulating the NLRP3 inflammasome.
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In 2017, about 451 million adults lived with diabetes worldwide, and this number
was predicted to increase to 693 million by 2045 [1]. In addition, it is estimated that almost
half of people living with hyperglycemia are undiagnosed. Diabetic cardiomyopathy
(DCM) is one of the main causes of death among the various complications of diabetes.
The molecular mechanisms of DCM include hyperglycemia, insulin resistance, fatty acids,
oxidative stress, mitochondrial dysfunction, endothelial dysfunction, etc. [2]. Furthermore,
it is believed that inflammation is already present in the early phase of diabetes and is a
key promoting factor of DCM [3].

Recent evidence showed that the NLRP3 inflammasome was highly expressed in
cardiac cells. However, the factors initiating NLRP3 inflammasome activation remain
elusive. In addition, increasing evidence has revealed that the signaling pathway of the
NLRP3 complex is influenced by different regimens of exercise [4]. DCM is also known to
be alleviated by chronic exercise training [5,6]. This evidence together points to the fact
that the NLRP3 inflammasome is a promising molecular complex mediating the protective
effect of exercise in DCM.

1. NLRP3 Inflammasome Biology and Pyroptosis

Activation of the innate immune system starts with recognition of pathogen-associated
molecular patterns (PAMPs) and damage/danger-associated molecular patterns (DAMPs) [7].
In response to pathogens or stressful stimuli, pattern recognition receptors (PRRs) that are
expressed on macrophages, monocytes, neutrophils and epithelial cells are activated [8].
Nod-like receptors (NLRs) are one family of PRRs that are involved in identifying PAMPs
and DAMPs [9]. NLRs are divided into four subfamilies. The NLRP subfamily is mainly
involved in the development of the inflammasome complex, and NLRP3 is the most
characteristic one.

The NLRP3 inflammasome consists of NLRP3, apoptosis-associated speck-like protein
containing a CARD domain (ASC) and pro-caspase-1 [10]. NLRP3 is the receptor protein,
serving as a sensor of various activators [7]. ASC is the adaptor protein, working as a
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bridge between NLRP3 and pro-caspase 1. The ASC protein is actually not considered to
have inflammatory activities outside the NLRP3 inflammasome [11]. The activation of the
NLRP3 inflammasome includes two steps [12]. In the first step, upon priming signal (mi-
crobial or endogenous molecules such as LPS or oxLDL), production of NLRP3, pro-IL-1β
and pro-IL-18 are enhanced by NF-κB transcription. In the second step, several substances
such as ATP, toxins, mitochondrial DNA, and uric acid crystals work as activating signals.
Upon activation, NLRP3 is oligomerized and forms an interaction with ASC. ASC then
interacts with pro-caspase-1, triggering autocleavage of pro-caspase-1 to become active
caspase-1 and ultimately leading to cleavage and maturation of pro-IL-β and pro-IL-18 to
become IL-β and IL-18 [13].

Besides involvement in cytokine maturation, the NLRP3 inflammasome also plays
a central role in a novel form of cell death, called pyroptosis. Pyroptosis is a newly
discovered form of programmed necrosis, and is characterized by cellular lysis and release
of proinflammatory cytokines including IL-1β and IL-18 [14]. The two proposed pathways
of pyroptosis include the canonical pathway and noncanonical pathway [15]. In the
canonical pathway, caspase-1 is activated, leading to cleavage of pyroptosis executioner
gasdermin D (GSDMD). The N-terminal (p30 fragment) of GSDMD is the active part,
exhibiting membrane pore-forming activity by binding to phosphoinositides in the plasma
membrane [16]. Cell swelling and lysis occur next, causing release of IL-1β and IL-18. In
the noncanonical pathway, lipopolysaccharide (LPS) is delivered to the cytosol to activate
mouse caspase-11 [17]. Caspase-11 then interacts with LPS, cleaving GSDMD to generate
active GSDMD-N. Besides mouse caspase-11, human caspase-4 and -5 also contribute to
the noncanonical pathway of pyroptosis by binding to LPS [18]. Meanwhile, caspase-11
also triggers NLRP3 inflammasome activation as well as caspase-1-dependent release of
IL-1β and IL-18.

2. The NLRP3 Inflammasome in the Development of DCM

Glucose has been shown to be a potent activator of the NLRP3 inflammasome [10].
In addition, as proinflammatory cytokines, IL-1β and IL-18 are actively involved in the
initiation and progression of diabetes and diabetic complications [3].

2.1. DCM, a Severe Complication of Diabetes

Diabetes mellitus (diabetes, DM) is a group of metabolic disorders characterized by
elevated blood glucose levels [1]. Diabetic patients suffer from a series of life-threatening
complications affecting the heart, eyes, kidneys and nerves. Heart failure is the most com-
mon cardiovascular complication of diabetes and is the major cause of mortality for diabetic
patients [19]. However, heart failure in diabetic patients could not be solely explained by
increased incidence of atherosclerosis, hypertension or coronary heart disease. Therefore,
Lundbaek introduced a new disease in 1954, named diabetic cardiomyopathy [20].

DCM is defined as abnormalities of myocardial structure and function in diabetic
patients that are not solely attributed to hypertension, congenital heart diseases or coronary
artery diseases [2,21]. DCM patients usually exhibit left ventricular hypertrophy, myocar-
dial cell death and myocardial fibrosis. It is generally accepted that diastolic dysfunction
happens in the early stage of DCM. Diastolic dysfunction is considered a predictor of bad
prognosis in heart failure with reduced ejection fraction [22,23]. Combined systolic and
diastolic dysfunction start to show up in the second stage of DCM [19]. The molecular
mechanisms accounting for DCM include hyperglycemia, hyperlipidemia, insulin resis-
tance, oxidative stress, low-grade inflammation, mitochondrial dysfunction, endoplasmic
reticulum stress (ERS) and endothelial dysfunction [24].

2.2. The NLRP3 Inflammasome and Diabetes

The innate immune system is the initial barrier to protect the body from infection
and injury. The inflammatory response is aimed to clear stressors and restore tissue
homeostasis [25]. However, prolonged and overwhelmed activation of the immune system
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by nutrient overload promotes metabolic diseases. Numerous studies have shown that
the NLRP3 inflammasome is involved in the pathogenesis and progression of both type 1
diabetes (T1DM) and type 2 diabetes (T2DM). Upon activation of NLRP3, a large amount
of proinflammatory cytokines including IL-1β and IL-18 are secreted, aggravating glucose
intolerance and insulin resistance [10]. Studies have shown that the mRNA expressions
of NLRP3, ASC and pro-IL-1β as well as protein levels of NLRP3 and IL-1β were all
increased in the pancreatic lymph nodes of T1DM mice [26]. The fact that IL-1R−/− mice
were protected more from developing T1DM upon streptozotocin (STZ) treatment also
suggested that NLRP3-IL-1β signaling contributed to pancreatic islet inflammation, β
cell damage, and ultimately T1DM development [26]. With regard to T2DM, increasing
evidence has indicated the association between chronic low-grade inflammation and
T2DM, especially highlighting the essential role that the NLRP3 inflammasome plays in
the development of obesity, insulin resistance and T2DM. The fact that NLRP3−/− and
Pycard−/− mice both had lower blood glucose and insulin levels suggested that absence
of the NLRP3 inflammasome was linked to improved glucose homeostasis [27]. A study
with db/db mice and the NLRP3 selective inhibitor MCC950 also indicated that NLRP3 and
pro-inflammatory cytokines contributed to vascular dysfunction in T2DM [28]. A detailed
review on the role of the NLRP3 inflammasome in diabetes can be found in Ding et al. [10].

2.3. NLRP3 Inflammasome and DCM

Numerous studies have shown that the progression of DCM is associated with chronic
inflammation and cardiac cell death, and might ultimately lead to heart failure [29]. Cardiac
inflammation is an early and notable response in diabetes and is involved in the develop-
ment of DCM. The progression of DCM has been linked to the NLRP3 inflammasome [3].
The mRNA expressions of NLRP3, ASC, caspase-1 and IL-1β were all found to be higher
in the hearts of diabetic mice [30].

NLRP3 gene silencing alleviated cardiac inflammation and fibrosis, in addition to
improving cardiac function in diabetic rats [31]. To be more specific, the protein levels of
cardiac NLRP3, active caspase-1, and IL-1β were reduced in the NLRP3-miRNA group. An
in vitro study on H9c2 cells showed that the increase of NLRP3, ASC, caspase-1 and IL-1β
mRNA expressions followed a glucose concentration-dependent pattern, confirming that
glucose was a potent activator of the NLRP3 inflammasome [3,31]. A further study showed
that NF-κB and thioredoxin-interacting protein (TXNIP) mediated NLRP3 inflammasome
activation, which was caused by high glucose-induced ROS generation (Figure 1) [31].
Cardiomyocytes are terminally differentiated cells. Therefore, death of cardiomyocytes
is a deadly molecular event in the progression of DCM, leading to loss of contractile
units [6]. As a type of inflammation-mediated cell death, pyroptosis is considered to
precede cardiac remodeling and dysfunction, and is induced by mitochondrial damage
and cardiac lipotoxicity [6]. Inhibiting NLRP3 expression in H9c2 cells caused a decrease in
protein expressions of caspase-1 and IL-1β under high glucose, as well as lower cell death
rate [31].

Because of the essential role of the NLRP3 inflammasome in DCM progression, studies
have been performed to examine the effect of drug administration on DCM via regulat-
ing the NLRP3 inflammasome. For example, TXNIP expression, NLRP3 inflammasome
activation, IL-1β and IL-18 were all found to be suppressed in DCM mice after twelve-
week administration of the anti-aging protein Klotho. At the same time, cardiac fibrosis,
apoptosis and dysfunction were all improved [32]. Similarly, rosuvastatin alleviated en-
hanced expressions of TXNIP, NLRP3, ASC and IL-1β in left ventricular tissue of diabetic
rats [33]. However, the cardioprotective effect of rosuvastatin was abrogated with NLRP3-
miRNA treatment, confirming that rosuvastatin alleviated cardiac dysfunction in DCM
rats via suppressing NLRP3 inflammasome [33]. Besides the NLRP3 inflammasome, other
inflammasomes are also involved in the inflammatory pathway of DCM as well as in
cardiomyocyte pyroptosis [2]. AIM2 is a member of the HIN200 protein family. AIM2
could form a platform with ASC, activate caspase-1, and cause the maturation of IL-1β and
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IL-18. Wang et al. found that AIM2, ASC, caspase-1p10 + p12, IL-1βp17 and GSDMD-N were
all elevated in the hearts of diabetic rats, and the above-mentioned parameters were all
reduced upon inhibition of AIM2 [34]. Therefore, like the NLRP3 inflammasome, AIM2
also plays an important role in DCM via the GSDMD pathway.
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then binds NLRP3 directly, leading to assembly of the NLRP3 inflammasome.

2.4. The NLRP3 Inflammasome as the Link between Diabetes, DCM and Heart Failure

As a leading cause of death, heart failure has been shown to be related to chronic
systemic and cardiac inflammation. Inflammation is considered to be the cause and driver
of alterations in the extracellular matrix, cardiac fibrosis, and contractile dysfunction [35].
Circulating levels of pro-inflammatory cytokines such as TNF-α were shown also to cor-
relate with disease severity [36]. However, most studies attempting to treat heart failure
directed at reducing inflammation ended up with failure, possibly due to the complex
immune and inflammatory responses during the late stages of heart failure [35]. Therefore,
it is essential that inflammation-related heart conditions should be seriously treated before
symptoms of heart failure show up. Evidence has shown that diabetic patients have more
than twice the risk of developing heart failure than patients without diabetes [37]. In
addition, cardiac inflammation has been implicated in the pathophysiology of DCM too.
Therefore, considering the essential role that the NLRP3 inflammasome plays in DCM [3],
targeting the NLRP3 inflammasome pathway might be a plausible treatment to reduce the
risk of developing heart failure in diabetes [10,37]. Indeed, IL-1β is a key pro-inflammatory
mediator of β-cell damage in T2DM [38]. A recent large-scale clinical trial showed that
the IL-1β inhibitor canakinumab caused a dose-dependent reduction in the risk of hos-
pitalization for heart failure [39]. Similarly, dapansutrile, as the inhibitor of the NLRP3
inflammasome was shown to be effective in improving left ventricular EF and exercise
time after 14 days of treatment in patients with heart failure [40].

2.5. The P2X7 Receptor, NLRP3 Inflammasome and DCM

It has long been noticed that phosphorylated compounds play a role in inflammation
and immunity via stimulating intracellular second messengers such as Ca2+. A later
investigation showed that the P2X7 receptor (P2X7R) might be a mediator in extracellular
ATP-induced inflammation [41]. The P2X7 receptor, originally known as the P2Z receptor,
is a member of the purinergic receptor families. P2X7R has a low affinity for ATP. Therefore,
the activation of the P2X7 receptor requires a high level of ATP, usually up to millimolar
range [41,42]. Ligation of P2X7R to ATP causes channel opening, influx of Ca2+/Na+ and
efflux of K+ [43]. As the most well-studied purinergic receptor, P2X7R is also involved in the
activation of the NLRP3 inflammasome [41]. Following cellular stress or tissue injury, ATP,
as a DAMP, is released by cells. ATP was shown to be a strong stimulus for IL-1β release
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from macrophages in mice [44]. Further study showed that activation of P2X7R caused K+

efflux, which induced NLRP3 inflammasome assembly and the subsequent maturation and
secretion of IL-1β and IL-18 [41,45]. Confocal microscopy and immunoprecipitation assays
confirmed that P2X7R and NLRP3 physically interacted with each other [46]. Mice deficient
in P2X7R showed compromised IL-1β production in response to LPS [47]. P2X7R also
induced ROS production through activation of NAPDH oxidase [48]. Fontanils et al. also
pointed out that influx of Ca2+ could explain the P2X7R-dependent ROS generation [49].
Moreover, the P2X7R antagonists caused inhibition of ATP-induced cation uptake by
75–100%, as well as a complete inhibition of ATP-induced ROS production [50].

There are two types of ATP release mechanisms, via exocytosis or through ion channels
on plasma membrane [51]. During the resting state, the low amounts of extracellular ATP
are rapidly degraded by ecto-ATPases. However, under hypoxia, mechanical stress or
cell death, a large amount of ATP is released through pannexin-1, activating P2X7. The
ligation of ATP and P2X7R in turn triggers pannexin-1 to come into a large, ATP-permeable
conformation [52]. Because of the low affinity of P2X7R to ATP, pannexin-1 and P2X7R also
physically interact with each other, revealed by proximity ligation assay [53].

The P2X7R-NLRP3 axis (Figure 2) actively participates in the pathogenesis of many
diseases, including diabetes [54], atherosclerosis [55], glomerulonephritis [41] and emphy-
sema [56]. In white adipocytes, ATP release via pannexin-1 is stimulated by high extra-
cellular glucose and is inhibited by insulin [51]. Tozzi et al. proposed that during T2DM
when insulin action was compromised, an abnormally high amount of ATP was released
from white adipocytes, affecting cell functions [51]. Similarly, pannexin-1 expression and
enhanced ATP release were also observed following myocardial ischemia-reperfusion [57].
An in vitro study utilizing H9c2 cells suggested that inhibition of P2X7R significantly de-
creased the expressions of NLRP3, caspase-1, and IL-1β secretion [58]. The P2X7R inhibitor
also improved cardiac fibrosis and apoptosis induced by palmitic acid. In addition, Zhang
et al. showed that high-glucose medium caused collagen synthesis via activation of ROS
and P2X7R in rat cardiac fibroblasts [59]. Collectively, P2X7R could be a potential target for
alleviating cardiac fibrosis in DCM via modulating the NLRP3 inflammasome.
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In the first (priming) step, recognition of inflammatory stimuli by the membrane receptor TLR4
triggers the activation of NF-κB, which then induces transcriptions of NLRP3, pro-IL-1β and pro-IL-
18. In the second (activation) step, an activation signal triggers assembly of the NLRP3 inflammasome.
Caspase-1 then mediates the maturation and secretion of IL-1β and IL-18. In addition, caspase-1
cleaves GSDMD to release GSDMD-N, which generates membrane pores. The release of IL-1β
and IL-18, as well as pyroptosis, together contribute to the pathogenesis of DCM. In DCM, the
NLRP3 inflammasome is possibly activated via P2X7R. A high level of ATP released from Pannexin-1
channels activates P2X7R, generating excessive ROS and promoting NLRP3 assembly.

3. Exercise Intervention for Diabetic Cardiomyopathy

If hyperglycemia is not corrected, diabetic patients might end up with cardiac hypertro-
phy and myocardial dysfunction [60]. Physical activity is a basic treatment recommended
for diabetic patients [61]. A meta-analysis based on twelve aerobic training studies and
two resistance training studies revealed that exercise training could effectively lower the
HbA1c level, even when body mass was not significantly altered [62]. Moreover, exercise
training of more than 150 min per week was associated with greater HbA1c decline [63].

3.1. Exercise Intervention to Regulate the NLRP3 Inflammasome

It is well known that regular physical activity exerts many health benefits, partly
through regulating inflammation. The NLRP3 inflammasome plays an important role in
innate immunity by responding to various microbial and endogenous products, and its
structure and function is also tightly modulated by exercise intervention (Table 1).

The NLRP3 inflammasome seems to be activated during the early stage of acute
exercise, as well as during the recovery period. The expressions of NLRP3 and IL-1β in
mice myocardium were increased following 45 min acute exercise, and at 12 h and 24 h
post exercise [64]. However, NLRP3 and IL-1β were not different from the resting level
following 90 min or 120 min exercise, or at 36 h or 48 h post exercise. It is generally accepted
that mitochondrial ROS is a potent activator of the NLRP3 inflammasome. However, the
fact that upregulations of NLRP3 and IL-1β take place early during acute exercise, and that
a surge of ROS generation comes next suggest that ROS and NLRP3 might form a vicious
cycle of inflammatory response [64,65]. The expression of NLRP3 following exercise also
depends on the exercise regimen and intensity. The effects of acute and chronic exercise of
different intensities on NLRP3 expression in young men have been compared. It turned
out that acute aerobic exercise of high intensity increased NLRP3 mRNA expression and
serum IL-1β and IL-18, while acute exercise of moderate intensity did not change the above
parameters. When it comes to chronic exercise, decreased and increased expressions of
NLRP3 gene, serum IL-1β and IL-18 were observed with moderate and high intensity
exercise, respectively [4]. Similarly, even though acute exercise did not affect IL-18 mRNA
expression in the adipose tissue at 0 h, 2 h or 10 h post-exercise in non-obese subjects,
eight-week exercise training caused reduced IL-18 mRNA content in the adipose tissue
in obese subjects [66]. Compared to studies on NLRP3, there have been very few studies
regarding the ASC gene response to exercise intervention. In one study, the combined
effect of hypocaloric diet and moderate exercise training on inflammation level in the obese
individuals was investigated. The study showed that a diet-exercise intervention decreased
ASC mRNA expression [67]. In addition, a negative correlation was observed between
the delta of ASC mRNA expression and IL-10 levels. Therefore, it was proposed that the
ASC gene might be a molecular marker in response to exercise intervention for the obese
individuals. The expression of the NLRP3 inflammasome is also regulated by resistance
training. For elderly people, eight-week resistance training reduced NLRP3 expression
and the caspase-1/procaspase-1 ratio in peripheral blood mononuclear cells (PBMCs),
suggesting that NLRP3 inflammasome activation was prevented by resistance training [68].
The effects of aerobic vs. resistance training on inflammasome activation in mice were also
compared. It turned out that resistance training attenuated the increased NLRP3 expression
in adipose tissue and IL-18 serum level, which were induced by HFD [69]. In comparison
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to resistance training, aerobic training was more effective in lowering TNF-α, IL-1β and
IL-18 level in the adipose tissue. Therefore, it seems that endurance training was more
effective in suppressing macrophage and lymphocyte activation.

Table 1. The effects of different types of exercise intervention on NLRP3 inflammasome pathway.

Subjects Model Exercise Regimen Main Findings Ref

Rats SD, male Acute treadmill running,
45, 90 or 120 min

Myocardium
NLRP3↑, IL-1β↑
following 45 min
exercise and
during recovery

[64]

Human Healthy, young,
male

(1) Acute moderate
intensity: 50% HRmax for
30 min + 70% HRmax for
40 min, Nordic walking;
(2) Acute high intensity,
70% HRmax for 30 min +
90% HRmax for 40 min,
Nordic walking.

(1) No change in
PBMCs NLRP3
mRNA, or serum
IL-1β and IL-18;
(2) PBMCs NLRP3
mRNA↑, serum
IL-1β and IL-18↑.

[4]

Human Non-obese,
female/male

(1) 2-h exercise, 60%
VO2max, cycling
(2) 1.5-h exercise, 70%
VO2max, cycling

No change in
adipose IL-18
mRNA following
exercise, or 2 h/10 h
during recovery

[66]

Mice C57BL/6, male,
HFD

80% VO2max, treadmill
running, 30 min/day,
5 times/week, 10 weeks.

Adipose mRNA of
IL-1β↓, TNF-α↓,
IL-18↓

[69]

Human Healthy, young,
male

(1) Moderate intensity:
50% HRmax for 30 min +
70% HRmax for 40 min,
Nordic walking,
3 days/week, 3 months;
(2) High intensity, 70%
HRmax for 30 min + 90%
HRmax for 40 min,
Nordic walking,
3 days/week, 3 months.

(1) PBMCs NLRP3
mRNA↓, serum
IL-1β and IL-18↓;
(2) PBMCs NLRP3
mRNA↑, serum
IL-1β and IL-18↑.

[4]

Human Obese, male and
female

High-intensity, 70%
VO2max, rowing,
30 min/day, 3 days/week,
8 weeks.

Adipose IL-18
mRNA↓ after
training.
No change in
plasma IL-18 after
training.

[66]

Human Obese, male and
female

Hypocaloric diet &
moderate-intensity,
65–75% HR, aerobic and
resistance, 3–5
days/week, 16 weeks.

peripheral blood
ASC mRNA↓,
MCP-1↓, MIP-1β↓

[67]

Human Elderly, male
and female

Resistance exercise (leg
press, biceps curl, pec
deck), 60–80% 1RM,
2 sessions/week, 8 weeks.

PBMCs NLRP3↓,
caspase-1/pro-
caspase-1↓

[68]

Mice C57BL/6, male,
HFD

Isometric strength
training, 3 min, 3 series
with 1 min break,
5 times/week

Adipose NLRP3↓,
serum IL-18↓ [69]
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3.2. Exercise Intervention to Alleviate DCM

Exercise is established as an effective approach for management of diabetes and
DCM [70]. The American Diabetes Association (ADA) and cardiovascular rehabilitation
experts from 11 European countries recommend that diabetic patients perform aerobic and
resistance exercise regularly, with a total of more than 150 min/week of moderate intensity
exercise spread over 3–5 days per week [71,72]. The anti-inflammatory effect of exercise
training is partly achieved by decreasing circulating inflammatory mediators. Twelve-
week combined aerobic and resistance exercise was shown to lower insulin resistance
index, expressions of TLR4, NF-κB p65 in monocytes, and serum IL-18 level in diabetic
patients [73].

According to a cohort study, low cardiorespiratory fitness and physical inactivity
were independent predictors of mortality in T2DM male patients [61]. Similarly, higher
physical activity level was associated with reduced risk of coronary heart disease and
ischemic stroke in diabetic women [74]. Interestingly, even faster walking pace by itself
was associated with lower cardiovascular risks [74]. In fact, exercise is effective in reducing
cardiac mortality in diabetic patients and increasing cardiac output and contractibility [75].
Exercise also normalized diastolic function in HFD-induced obese and T2DM mice [76,77].
Like DCM patients, obese subjects also showed diastolic dysfunction, which could be
reversed by eight-week low intensity aerobic training (walking/cycling) [78]. For elderly
heart failure patients with reduced ejection fraction, four-week endurance training was also
highly effective in improving left ventricular diastolic function [23]. Long-term endurance
training was generally considered effective in improving cardiac function in DCM patients.
In one study, five out of eleven subjects recovered with normalized left ventricular diastolic
function after twelve-month cycling training at 60–70% VO2max [79]. In another study,
one-year gym- and home-based exercise intervention failed to improve the myocardial
function of DCM patients [5]. However, the subjects that spent more time in moderate
and vigorous activity did show improvement in myocardial tissue velocity and strain rate.
Therefore, it seems that a greater exercise load higher than recommended by the current
guideline is required to rescue myocardial function for DCM patients.

3.3. Exercise Intervention for DCM through the NLRP3 Inflammasome

It has long been noticed that supervised exercise training can improve T2DM by
alleviating the expression of cytokines, such as resistin, IL-6 and IL-18 [80]. Recent studies
indicated that the NLRP3 inflammasome was actively involved in exercise-mediated
alleviation of DCM (Figure 3).

Obesity is a key contributor to the development of cardiovascular diseases and DCM,
and chronic low-grade inflammation is considered a hallmark of obesity. Lee et al. found
that expressions of NLRP3, caspase-1p20, caspase-1p20/caspase-1 and IL-1β were increased
in the myocardium of HFD-induced obese mice, and were significantly inhibited by
12–14 weeks of voluntary running [81]. In an animal study, HFD for 20 weeks was suffi-
cient to induce the DCM phenotype in mice, shown by impaired diastolic function. At the
same time, the pro-fibrotic molecules TGFβ (transforming growth factor β-1) and β-MHC
(β-myosin heavy chain) were also found to be elevated with HFD [6]. Evidence showed
that NLRP3 inflammasome formation and activation in the left ventricles of mice was
induced by HFD, revealed by increased expressions of NLRP3, ASC, pro-caspase-1, and
IL-1β, and the above parameters were all inhibited by treadmill exercise [6]. Therefore,
treadmill training was effective in preventing the development of DCM and alleviating
cardiac pyroptosis. However, in the same study, treadmill training did not improve struc-
tural remodeling pathways, suggesting that correction of cardiac inflammation preceded
cardiac structural alterations. The effect of exercise preconditioning on cardiac function in
normal rats submitted to exhaustive exercise has also been investigated [82]. Compared to
the exhaustive exercise group, expressions of TXNIP, NF-κBp65 and caspase-1 were lower
with exercise preconditioning. At the same time, ejection fraction was significantly higher
with exercise preconditioning, and NLRP3 was found to be negatively correlated with
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ejection fraction [82]. Aerobic exercise might reverse cardiac dysfunction partly through the
P2X7R-inflammasome axis. HFD caused fibrosis and apoptosis in rat hearts, revealed by
increased collagen deposition, disordered cells and the number of TUNEL-positive cells. At
the same time, cardiac expressions of P2X7R, NLRP3, caspase-1 and serum IL-1β were also
enhanced [58]. Twelve-week treadmill running effectively improved collagen deposition
and cell disorder, and also inhibited the expressions of NLRP3, caspase-1, P2X7R and IL-1β
in rat hearts [58].
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Figure 3. Schematic summary of the effect of exercise training on DCM. Exercise training causes
alleviation of hyperglycemia and insulin resistance, which result in improvements of system and
cardiac inflammation as well as reduced oxidative stress level. Therefore, cardiac output, cardiac
contractility and diastolic function are improved, and pyroptosis and cardiac fibrosis are rescued.

4. Conclusions and Perspectives

It is now evident that the NLRP3 inflammasome is highly involved in the pathogenesis
and progression of DCM. Targeting the NLRP3 inflammasome pathway in DCM is a poten-
tial therapeutic approach to manage the disease. However, the molecular mechanisms for
activation of the NLRP3 inflammasome remain to be elucidated. As a recommended inter-
vention method for DCM, exercise training has been proven to be effective in preventing
cardiac inflammation, reversing cardiac structural changes and recovering cardiac function.
However, the role that the NLRP3 inflammasome and P2X7R play in exercise-mediated
alleviation of DCM remains to be explored. Further investigation in this area would help us
better understand the underlying connection between exercise, inflammation, and DCM.
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