
Research Article
0022-2836/� 2021 The Author
licenses/by-nc-nd/4.0/).
Extracellular matrix gene expression
signatures as cell type and cell state
identifiers
Fabio Sacher a, Christian Feregrino a, Patrick Tschopp a⇑ and Collin Y. Ewald b⇑

a - Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland

b - Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences
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Abstract

Transcriptomic signatures based on cellular mRNA expression profiles can be used to categorize cell
types and states. Yet whether different functional groups of genes perform better or worse in this process
remains largely unexplored. Here we test the core matrisome – that is, all genes coding for structural pro-
teins of the extracellular matrix – for its ability to delineate distinct cell types in embryonic single-cell RNA-
sequencing (scRNA-seq) data. We show that even though expressed core matrisome genes correspond
to less than 2% of an entire cellular transcriptome, their RNA expression levels suffice to recapitulate
essential aspects of cell type-specific clustering. Notably, using scRNA-seq data from the embryonic limb,
we demonstrate that core matrisome gene expression outperforms random gene subsets of similar sizes
and can match and exceed the predictive power of transcription factors. While transcription factor signa-
tures generally perform better in predicting cell types at early stages of chicken and mouse limb develop-
ment, i.e., when cells are less differentiated, the information content of the core matrisome signature
increases in more differentiated cells. Moreover, using cross-species analyses, we show that these cell
type-specific signatures are evolutionarily conserved. Our findings suggest that each cell type produces
its own unique extracellular matrix, or matreotype, which becomes progressively more refined and cell
type-specific as embryonic tissues mature.
� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CCBY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/4.0/).
Introduction

How to define and identify different cell types
remains a fundamental challenge in biology [1–4].
Cell types have traditionally been classified based
on their morphology and function, by the tissues
fromwhere they were isolated, their ontogenetic ori-
gin, or their molecular signatures [3]. In recent
years, gene expression data from single-cell tran-
scriptomic studies (scRNA-seq) have been used
to characterize and fine-tune different cell type clas-
sification systems [2,3,5].
(s). Published by Elsevier B.V.This is an open ac
Cellular fate and cell-type-specific gene
expression programs are thought to be largely
regulated by transcription factors and their
corresponding cis-regulatory networks [2,4,6].
Accordingly, transcription factor expression profiles
can be useful in identifying cell types from scRNA-
seq data [2,7,8]. Yet other cellular properties can
also vary dynamically, in a cell type-specific man-
ner. Hence, we looked for additional sets of putative
‘biomarker’ genes to identify cell types and states.
The extracellular matrix (ECM) has traditionally

been thought of as a static protein network
surrounding cells and tissues. However, the ECM
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has recently emerged as a highly dynamic system
[9–13]. In fact, transcription and translation of some
ECM genes are even coupled to circadian rhythm,
highlighting the dynamic nature of ECM composi-
tion [14]. Experimentally, ECM composition has so
far been determined mostly by proteomics assays
[15]. More recently, in-silico approaches have
defined the ‘matrisome’ gene sets representing all
genes either forming or remodeling the ECM, as
present in a given species’ genome [15,16]. The
matrisome is divided into two main categories: the
corematrisome encompassing all proteins that form
the actual ECM (collagens, glycoproteins, proteo-
glycans) and the matrisome-associated proteins
that either bind to the ECM, remodel the ECM, or
are secreted from the ECM [15,16].
Importantly, it has been postulated that each cell

type produces its own unique ECM [16–19]. To cap-
ture this concept, we have recently defined the ‘ma-
treotype’, an extracellular matrix signature
associated with – or caused by – a given cellular
identity or physiological status [19]. For instance,
cellular status, including metabolic, healthy or
pathologic, or aging, have been associated with dis-
tinct ECM expression patterns (i.e., matreotypes)
[16,19–23]. Furthermore, cancer-specific cell types
can be identified based on their unique ECM com-
position [15,16,22,24]. This indicates that ECM
composition is plastic and adapts to cellular needs
or status. Since this is a highly dynamic process,
snapshots of unique ECM compositions are
reflected in distinct matreotypes.
Based on this, we hypothesized that ECM gene

expression is a dynamic parameter that could hold
predictive value to function as a biomarker for cell
type and state identification. To test our
hypothesis, we re-analyzed publicly available
scRNA-seq data and specifically examined ECM
gene expression signatures. Unsupervised
clustering of scRNA-seq data using the whole
transcriptome – or highly variable genes therein –
is a common strategy to classify cell types [2,3,5].
Here we use defined transcriptome subsets –
namely, expressed transcription factors, core matri-
some genes, and random transcriptome subsets of
equal size – to re-cluster scRNA-seq data and eval-
uate the resulting clusters in comparison to the per-
formance of the entire transcriptome. In embryonic
data coming from chicken and mouse limbs, we find
that the core matrisome has less predictive power in
undifferentiated cells, early during development, but
outcompetes transcription factors later in develop-
ment and in more differentiated cell types. Intrigu-
ingly, these cell-type-specific core matrisome
signatures appear to be conserved between homol-
ogous cell types of distantly related species. Conse-
quently, we propose matreotype gene expression
signatures as context-dependent proxies for identi-
fying cell types.
2

Results

Defining the chicken core matrisome

The matrisome has been defined for humans
(1027 genes), mice (1110 genes), zebrafish (1002
genes), planarian (256 genes), Drosophila (641
genes), and C. elegans (719 genes), where it
corresponds to roughly 4% of their protein-coding
genes [16,25–28]. In order to expand the number
of model organisms amenable to ‘matreotype’
investigation, we first decided to define the chicken
matrisome. Using the 1110mouse and 1027 human
matrisome gene lists to perform orthology and Inter-
Pro domain searches, we identified 631 and 656
chicken matrisome genes, respectively (Supple-
mentary Fig. 1, Supplementary Table 1). In sum-
mary, we define the chicken matrisome with 217
core-matrisome genes and 443 associated-
matrisome genes (Supplementary Table 1).

The chicken core matrisome as a molecular
signature with cell-type specificity

To evaluate the cell type clustering performance
of the ‘chicken core matrisome’, we re-analyzed
embryonic stage HH29 (stage 29 Hamburger and
Hamilton) [29] chicken hind limb scRNA-seq data
[30]. At this point of development, chicken limb pro-
genitor cells have already differentiated into tran-
scriptionally distinct tissue types [30], which is
reflected in the separation of our t-distributed
Stochastic Neighbor Embedding (t-SNE) dimen-
sionality reduction and the superimposed, color-
coded clustering information (Fig. 1A). We com-
pared the cell type clustering of the core matrisome
to the entire transcriptome and contrasted its perfor-
mance with highly variably expressed transcription
factors – representing a ‘traditional cell-type identi-
fier’ – and an equal number of randomly picked
genes to estimate baseline clustering. Of the 217
chicken core matrisome genes, 136 were
expressed in our limb scRNA-seq data (Data
Source File 1). Accordingly, we picked 136 genes
randomly, as well as the 136 most variably
expressed transcription factors, chosen by maxi-
mum variance across all cells in the sample. With
these three small subsets of genes – representing
only 1.26% of all expressed genes –, we re-
clustered our data using the Louvain-Jaccard algo-
rithm.We adjusted the resolution to obtain the same
number of clusters as for the entire transcriptome
and plotted the resulting clusters in an unsupervised
manner onto a t-SNE plot calculated from the entire
transcriptome (Fig. 1B–D). A qualitative inspection
of the plots showed that the clusters resulting from
a ‘Random’ gene set did not clearly coincide with
any clusters identified using the entire transcrip-
tome, suggesting that they failed as transcriptional
predictors for any given cell type (Fig. 1A, B). By
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Fig. 1. Core matrisome and transcription factors re-capitulate entire transcriptome cell clusters (A) tSNE
representation of 6823 HH29 chicken hindlimb autopod cells from Feregrino et al., 2019. Colors represent
unsupervised clustering results based on the transcriptome (A), a randomly sampled set of genes (B), transcription
factors (C), and the core matrisome (D). (E) Boxplot of Euclidean distances between clusters based on average
expression of 2000 variably expressed genes, calculated for ‘Transcriptome’, ‘Transcription Factor’, ‘Core
Matrisome’, and 10 sets of ’Random’ gene clusters. (F-H) Heatmap of the square root of negative log 10 probability
of cluster overlap by hypergeometric test between ‘Transcriptome’ and ‘Random’ clusters (F), ‘Transcription Factor’
(G), and ‘Core Matrisome’ (H). ‘Transcriptome’ clusters are grouped by tissue or cell type (nsCT = non-skeletal
connective tissue). For (A–F) details, see Data Source File 1.
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contrast, ‘Transcription Factor’ clusters showed
good correspondence to our whole transcriptome
clustering (Fig. 1A, C). Intriguingly, we found that
the ‘Core Matrisome’ was sufficient to identify sev-
eral cell type clusters (Fig. 1A, D). For example,
‘Core Matrisome’ clusters m-7, m-11, m-14, and
m-17 corresponded roughly to skeletal progenitors
(t-15), joint progenitors (t-3), skin (t-1), and vessel
(t-10) clusters, as identified by the entire transcrip-
tome (Fig. 1A, D). Thus, these core matrisome-
identified clusters largely reflected cell types of tis-
sues that are embedded in collagen-rich ECMs.
To quantify the separation among ‘Random’

genes-, ‘Transcription Factors’-, and ‘Core
Matrisome’-based clusters, we plotted the
distribution of all pairwise Euclidean distances,
i.e., distances between all pairs of clusters, and
compared them to the entire transcriptome result.
Both the ‘Core Matrisome’ and the ‘Transcription
Factor’ clusters clearly outperformed ten iterations
of ‘Random’ genes subsets of equal size
(Fig. 1E). Moreover, using a hypergeometric test,
we were able to demonstrate that the probability
of cluster overlap – between the entire
transcriptome clusters and the three subsets
clusters – was substantially higher for ‘Core
Matrisome’ and the ‘Transcription Factor’ clusters
(Fig. 1F–H). For the ‘Core Matrisome’, this was
particularly evident for clusters corresponding to
3

cell types known to produce a complex ECM,
such as skeletal cells or skin (Fig. 1G). Moreover,
even within the same cell type, the matrisome
seemed able to distinguish discrete cell states.
For example, ‘Core Matrisome’ clusters m-4 and
m-6 reconstituted ‘Transcriptome’ cluster t-8, the
distal mesenchyme, indicating that the highly
proliferative state of this mesenchymal sub-
population is reflected by distinct ‘matreotypes’
(Fig. 1G).
Taken together, our re-clustering analysis of

chicken limb scRNA-seq data – using only the
expression status of either core matrisome genes,
transcription factors, or a random control gene set
– indicates the potential of core matrisome gene
expression status as a cell type and cell state
identifier.
Clustering performance and cell type
identification by transcription factors and the
core matrisome

To further assess the potential of such limited
gene subsets to reliably identify cell types from
scRNA-seq data, we next sought to quantify their
ability to recreate our entire transcriptome cluster
composition. We did this on a cluster-by-cluster as
well as on a cell-by-cell basis. We first plotted –
ordered by percentage – the respective cellular
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contributions of individual gene subset clusters to
the 18 entire transcriptome clusters. As expected,
‘Random’ gene clusters contributed almost
uniformly to the different ‘Transcriptome’ clusters
(Fig. 2A). The median percentage contribution of
the single-largest ‘Random’ gene clusters –
highlighted in yellow – was 17%, again reflective
of that gene subset’s low information content
regarding cell type identification. Certain
‘Transcription Factor’ clusters, however,
contributed more than 90% of a given ‘entire
transcriptome’ cluster (Fig. 2B). For example,
‘Transcriptome’ cluster t-11, i.e., “muscle”, was
represented to 99% by ‘Transcription Factor’
cluster tf-17. However, the same “muscle” cluster
was only re-captured to 12% by the largest
‘Random’ cluster contributor r-3 (compare Fig. 2A
to B, ‘transcriptome’ cluster t-11). Likewise, the
‘Core Matrisome’ gene subset also performed
better than ‘Random’, with the ‘Muscle’ cluster
represented to 66% by ‘Core Matrisome’ cluster
m-0, or ‘Skin’ recaptured to 91% by cluster m-14
(Fig. 2C). However, when comparing the
‘Transcription Factor’ and ‘Core Matrisome’
clustering performances within the closely lineage-
related lateral plate mesoderm-derived cell types,
differences between the two gene subsets
emerged. Lateral plate mesoderm-derived tissues
in our sample included non-skeletal connective
tissue (cl. t-4, t-9), undifferentiated mesenchyme
(cl. t-13, t-5, t-16, t-8), interdigital mesenchyme (cl.
t-2, t-6, t-12) and skeletal progenitors (cl. t-14, t-
15, t-17, t-3). Amongst these, certain cell type
clusters contributing to mesenchymal tissues were
well defined by their ‘Transcription Factor’
signature, yet much less so by their ‘Core
Matrisome’ expression status (e.g. compare cl. t-
8, t-2, t-12, Fig. 2B and C). Again, some of these
discrepancies might relate to the fact that ‘Core
Matrisome’ signatures can also be indicative of
different cell states, whereas ‘Transcription Factor’
Fig. 2. Relative cluster contributions to transcriptome clus
‘Transcriptome’ clusters ordered by size. Cluster IDs are ind
transcriptome cluster is highlighted in color. (B) ‘Transcriptio
cluster contributions are indicated in the same manner
(nsCT = non-skeletal connective tissue).

4

profiles assign predominantly to cell types.
However, cell types contributing to more
differentiated tissues with complex ECM
composition were equally well defined by both
‘Transcription Factor’ and ‘Core Matrisome’ gene
expression signatures (e.g., cl. t-4, and t-14, t-15,
t-17, t-3).
The core matrisome predicts preferentially
ECM-rich cell types in early development

To quantify the ability of all our three gene-input-
subsets – ‘Random’, ‘Transcription Factor’, and
‘Core Matrisome’ – to correctly predict cluster
membership of our ‘Gold Standard’ transcriptome
clustering, we decided to use a binary
classification scheme based on pairs of cells
being in the same or different clusters [31]. Each
pair of cells was classified as either “true positive”
(TP: two cells are in the same cluster regardless
of the input data used), “true negative” (TN: two
cells are in different clusters regardless of input
data), “false positive” (FP: two cells are in the same
cluster although they are in different clusters in the
‘Gold Standard’), and “false negative” (FN: two cells
are in different clusters although they are in the
same cluster in the ‘Gold Standard’) (Fig. 3A).
Based on the cumulative numbers of TP, TN, FP,
and FN of these binary cell pair classifications, we
then calculated three different indices commonly
used to compare different clustering algorithms
[31]: the Rand index, also known as accuracy (R
index), which measured the percentage of correct
classifications; the Jaccard index of overlap (J
index), which was calculated as the intersection of
the two sets divided by the union of the two sets;
and the Fowlkes-Mallows index (FM index), which
represented the geometric mean of precision and
recall. The closer each of these indices scores to
1, the more similar the respective gene subset clus-
tering can be considered to the transcriptome ‘Gold
ters (A) Relative contribution of ‘Random’ clusters to the
icated where possible, and the biggest contribution per
n Factor’ cluster contributions and (C) ‘Core Matrisome’
. ‘Transcriptome’ clusters are grouped by cell type



Fig. 3. Binary classification and re-cluster indices (A) Each pair of cells in a given ‘Test’ clustering – i.e., ‘Core
Matrisome’, ‘Transcription Factor’ or ‘Random’ – is classified based on their relationship to the ‘Gold Standard’
clustering, as calculated from the entire transcriptome. (B) Based on those binary classifications, the quality of each
‘Test’ clustering is measured with the three indices following Kafieh and Mehridehnavi, 2013. ‘Test’ clustering indices
are calculated for ‘Transcription factor’ (purple), ‘Core Matrisome’ (green), and 10 ‘Random’ gene set clusterings
(yellow). TP: true positive, TN: true negative, FP: false positive, FN: false negative, R: Rand index, J: Jaccard index,
FM: Fowlkes-Mallows index. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Standard’ clustering. Regardless of the index used,
the ‘Core Matrisome’ and ‘Transcription Factor’
gene subsets clearly outperformed ten iterations
of ‘Random’ genes, with ‘Transcription Factor’ scor-
ing slightly higher than ‘Core Matrisome’ genes
(Fig. 3B).
Collectively, we demonstrated that both

‘Transcription Factor’ and ‘Core Matrisome’ genes
can be used as cell type identifiers in scRNA-seq
data. The extent to which this holds true, however,
seems to depend on the tissue type to which the
respective cell types contribute, differences in cell
state, as well as the ontogenetic state of their
differentiation.
Predictive power of ‘Core Matrisome’
signatures increases with developmental
differentiation

To determine the effect of developmental
progression on the cell type-predictive powers of
the matrisome, we next focused our attention on
5

an embryonic scRNA-seq times series. We
incorporated a previously published time series of
the developing mouse hind limb by Kelly and
colleagues into our analysis [32]. In their scRNA-
seq data sets, we found 244–254 out of the total
274mouse core matrisome genes expressed. Initial
clustering of single-cell transcriptomes showed – as
expected – similar tissue composition as in our
chicken hindlimb data, as well as an increase in cell
type complexity from the earliest stage E11.5–
E18.5 (Fig. 4A, Data Source File 1).
Using the clusters identified by the entire

transcriptome as a benchmark, we then
re-clustered the data using either ‘Random’,
‘Transcription Factor’ or ‘Core Matrisome’ gene
sets of equal size and compared their
performances using the previously introduced
indices. Over the course of the sampled
developmental time window, the predictive
powers of both ‘Transcription Factors’ and ‘Core
Matrisome’ increased, i.e., more cell pairs were
correctly attributed together in a way reflective of
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embryo limb data sets of increasing developmental stages (E11.5 to E18.5, E: embryonic day). Shared colors and
numbers indicate transcriptionally similar clusters (see ‘Equivalency matrix’, Data Source File 1). (B) Rand, Jaccard
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the entire transcriptome cell type clustering
(Fig. 4B). To quantify this effect and relate it to
the predictive powers of different fractions of
‘Random’ genes from the remaining
transcriptome (i.e., with transcription factors and
the core matrisome removed), we focused our
attention on the two temporal extremes of the
time series, E11.5 and E18.5. We randomly
sampled increasing numbers of ‘Random’ genes
– from 1% to 90% of the remaining
transcriptome, each sampled and re-clustered 5
times – and plotted the spread of their
performances in relation to the ‘Transcription
Factor’ and ‘Core Matrisome’ gene subsets
(Fig. 4C, D). At E11.5, both ‘Transcription
Factor’ and ‘Core Matrisome’ gene subsets
clusterings performed at about the rate of 2% of
all genes, randomly selected from the remaining
transcriptome (Fig. 4C). At E18.5, however, their
predictive powers had increased to a level of
more than 10% of the remaining transcriptome
(Fig. 4D). This is noteworthy, as the number of
6

expressed ‘Core Matrisome’ genes at that stage
corresponds to only 1.28% of the entire
transcriptome. Moreover, at these later stages,
the ‘Core Matrisome’ genes subset outperformed
‘Transcription Factors’ in these indices, likely a
reflection of the ongoing maturation of tissues
with high ECM content.
We concluded that as developing tissues and

their ECM mature, the expression status of the
core matrisome becomes progressively better at
delineating cell types.

Homologous cell types show evolutionary
conserved extracellular matrix gene
expression profiles across species boundaries

Next, we asked to what extent the cell type
information contained within the core matrisome
would hold up over evolutionary timescales. The
two lineages giving rise to the avian and
mammalian clades have been separated for over
300 million years. Given the similar tissue
composition of the two sets of samples used so
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far, we reasoned that a comparative mouse and
chicken analysis would allow us to probe the
information content of the core matrisome across
amniotes. To do so, we first averaged the
individual cellular normalized UMI counts on a
cluster-by-cluster basis into so-called ‘pseudobulk’
count matrices, to approximate cell type-specific
bulk gene expression levels (see Material and
Methods). Using the ‘Transcriptome’ clustering of
each sample as the common cell type delineator,
we calculated pseudobulk count matrices for the
four previously used gene sets – that is,
‘Transcriptome’, ‘Random’, ‘Transcription Factors’
and ‘Core Matrisome’. Taking into account only
one-to-one orthologs expressed in all samples,
and in both species, this resulted in pseudobulk
count matrices spanning 62 cell type clusters (18
from chicken and 44 from mouse) and 7512
genes for the ‘Transcriptome’, and 106 genes for
the ‘Core Matrisome’. We contrasted these 106
core matrisome genes with pseudobulk matrices
of 106 transcription factor genes – ordered and
selected by their sample-specific variance and
ranksum – and 106 randomly picked genes. After
combining chicken and mouse data sets, we
transformed the four pseudobulk count matrices
into gene specificity indices to resolve cross-
platform and -experiment differences [33]. We cal-
culated pairwise Spearman’s rank correlation coef-
ficients for all cell-type-specific pseudobulks and
performed unsupervised hierarchical clustering
based on Euclidean distances. Both ‘Transcrip-
tome’ and ‘Random’ heatmaps were dominated by
a strong ‘species signal’, i.e., transcriptional signa-
tures of pseudobulks coming from either chicken
or mouse samples showed strong negative correla-
tion to pseudobulks from the other species. More-
over, pseudobulk correlation within a given
species was uniformly high, without much differenti-
ation between distinct cell types or developmental
stages (Fig. 5A, B). Contrary to that, ‘Transcription
Factor’ and ‘Core Matrisome’ pseudobulks showed
much less pronounced species differences. In fact,
certain homologous cell types – like, e.g., those
contributing to skin, vessels or blood – even showed
strong positive pseudobulk correlation across spe-
cies boundaries (Fig. 5C, D). This became even
more evident when plotting the distribution of
Spearman’s rank correlation coefficients for all four
gene sets, separated by inter- versus intra-species
comparisons. On average, ‘Transcription Factor’
and ‘Core Matrisome’ pseudobulks showed less
negative correlations when contrasting chicken
and mouse samples, than it was the case for ‘Tran-
scriptome’ and ‘Random’ pseudobulks (Fig. 5E).
Lastly, the ability to delineate a given cell type using
Spearman’s q within a single species was also
superior using ‘Transcription Factor’ and ‘Core
Matrisome’ pseudobulks, compared to the ‘Tran-
scriptome’ or ‘Random’ gene subsets. Particularly,
while comparisons of the same cell type resulted
7

in a high Spearman’s q regardless of the gene sub-
set used, non-related cell type pairs within the same
species still had mostly strong positive correlations
with the ‘Transcriptome’ or ‘Random’ pseudobulks.
‘Transcription Factor’ and ‘Core Matrisome’ pseu-
dobulks, however, were better at differentiating
non-related cell types in the same species, which
on average manifested itself in a lower – or even
negative – Spearman’s q (Fig. 5A–D, F).
Collectively, using cell-type-specific pseudobulks

of homologous cell types in two distantly related
species, the chicken and the mouse, we showed
that ‘Transcription Factor’ and ‘Core Matrisome’
gene subsets suffer less from a ‘species signal’
than either the entire transcriptome or randomly
picked genes, and that they are better at
delineating cell type-specific transcriptional
signatures within a species.
Discussion

Understanding the molecular parameters that
define different cell types and states is
fundamental to developmental and regenerative
biology. Here we show that the expression status
of a small subset of genes, the core matrisome,
can suffice to identify cell types and states in the
developing chick and mouse limb. Even though it
corresponds to less than 2% of the entire
transcriptome, we demonstrate that core
matrisome expression encodes enough
information to cluster scRNA-seq data according
to cell types and cell states. Moreover, core
matrisome gene expression signatures are able to
identify homologous cell types across amniotes,
and can help to better delineate distinct cell types
within a given species. The predictive power of the
core matrisome increases with developmental
time and can even outperform transcription factors
in more differentiated cell and tissue types with
high ECM content.
These findings make sense with regards to

developmental progression and tissue maturation.
During ontogenetic development, transcription
factors are thought to guide early differentiation
trajectories and eventually specify terminally
differentiated cell types [2,4,6]. At later stages of
development, the ECM becomes increasingly
important, instructing stem cell differentiation and
regulating cell and tissue shape, morphogenetic
movements, and organogenesis [18]. This holds
especially true for tissues with complex ECM com-
position or high ECM turnover. Consistent with this,
we found that in our chicken limb data, skin cells,
muscle and skeletal progenitors clusters segregate
especially well using core matrisome expression
alone (Figs. 1 and 2). The lack of a clear ‘Core
Matrisome’-based clustering for some of the other
mesenchymal cell populations may indicate a less
specialized extracellular matrix, or, alternatively,
the presence of different cell states within a cell



Fig. 5. Gene subset correlations of cell type-specific pseudobulks across species (A-D) Heatmaps of pairwise
pseudobulk Spearman’s rank correlations of ’Gold Standard’ transcriptome clusters across both species and all time
points. Pseudobulk expression is scaled by mean expression across all samples, the so-called gene specificity index
(GSI) [33]. Pseudobulk of all expressed (in each sample, and species) orthologs (A, n = 7512), ‘Core Matrisome’
genes (B, n = 106), ‘Transcription factors’ ordered by variance and ranksum (C, n = 106), and a ‘Random’ gene subset
(D, n = 106, matrisome genes and TFs excluded). The first color bar indicates species and stage of pseudobulk
(green = chick, HH29; grey to black = mouse, E11.5 to E18.5), second bar the cell type (colors according to Fig. 1A
and Fig. 4A). (E–F) Boxplots of inter-species (E) and intra-species (F) correlation values for all four heatmaps.
Significance calculated by pairwise Wilcoxon rank sum test (*: P less than 0.05). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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type, each with its own putatively distinct ‘matreo-
type’. Moreover, the overall predictive power of
the core matrisome increases when comparing cell
populations in ECM-rich tissues at progressively
later stages of development (Fig. 4).
Previous work using scRNA-seq to determine

molecular changes during adipogenesis (day 1–7)
in vitro found that at day 3 the cell clustering was
mainly driven by ECM genes, and at day 7 the
core matrisome was one of the top ten most
differentially expressed gene ontology terms [34].
Beyond development, planarian scRNA-seq
revealed that muscles produce most of the matri-
some, and inhibiting one key matrisome gene
(hemicentin) resulted in severe epidermal ruffling
and displacement of cells during homeostatic tissue
turnover, suggesting an important role for tissue
regeneration [28]. Furthermore, in healthy human
lumbar discs, the core matrisome can be used to
8

distinguish primary annulus fibrosus and nucleus
pulposus cells based on 90 out of the 274 core
matrisome genes being differentially expressed in
the opposite direction using scRNA-seq [35]. Simi-
larly, 115 matrisome genes are characteristically
expressed in the six cell types that make up the
human cutaneous neurofibroma microenvironment
[36]. Beyond cell type distinction in tissues, a differ-
ential expression of matrisome genes can be
observed when cells change their state from a
healthy to a diseased cell. For instance, differential
expression of matrisome genes was onemain char-
acteristic of reprogramming from normal fibroblasts,
pericytes, and endothelial cells into tumor cells [37].
During cancer progression, deregulation of matri-
some genes is a crucial step observed in early
and late metastasis [38]. Moreover, core matrisome
genes help identify circulating tumor cells in the
blood using scRNA-seq [39,40]. These results sup-
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port our conclusion that matrisome gene expression
can serve as a key signature to determine individual
cell types, as well as cell states.
Intriguingly, using a comparative evolutionary

approach, i.e., by correlating transcriptional
pseudobulk signatures from both chicken and
mouse, we found that matrisome signatures can
even outperform the entire transcriptome at
identifying cell types across species boundaries
(Fig. 5). Namely, with the exception of blood,
whole transcriptome pseudobulks showed a
generally strong negative correlation between
chicken and mouse samples. This effect was
much less pronounced for matrisome pseudobulks
and, importantly, several cell types even showed
positive correlations to their homologous mouse
counterparts. While this may seem counterintuitive
at first glance, it most likely is a consequence of
so-called concerted transcriptome evolution, which
– over such extensive evolutionary timescales –
can result in a pronounced ‘species signal’ at the
level of the whole transcriptome [41]. In this scenar-
io, gene regulatory interactions shared amongst all
developing characters – or cell types, here – will
change in unison, once mutations in these circuiter-
ies occur. Accordingly, if stabilizing selection on the
expression levels of a particular dominant gene
subset (e.g., housekeeping genes) is weak or
near-neutral, this may result in drift and the distor-
tion of the overall transcriptome correlation between
species, especially over long evolutionary distances
[42–44]. This distortion effect can potentially mani-
fest itself even within a single species, as evidenced
by the overall higher correlation of the entire tran-
scriptome between non-related cell types
(Fig. 5A). Signatures of gene subsets whose
expression levels are under stabilizing selection,
however, will maintain their information content,
even for comparisons between distantly related
species [42,45]. Moreover, if directional selection
was involved in shaping the signatures of these
gene subsets in homologous cell or tissue types,
this can result in a better separation of such pesub-
ulks even within a single species. We observe this
effect for both ‘Transcription Factor’ pseudbulks
(Fig. 5C), in line with previous suggestions from
others [2,4], as well as for the core matrisome
(Fig. 5D).
This raises the question of why the core

matrisome is such a good predictor of cell type
and state. It is well known that cells can be
distinguished based on cell surface receptors [46].
However, it is less appreciated that each cell type
can synthesize its own ECM that entails it with
unique physical properties [17,47,48]. For instance,
placing primary preadipocytes into decellularized
ECMs derived from subcutaneous, visceral, or
brown adipose tissue influences the preadipocytes’
terminal differentiation [49]. Hence, the physical
properties of ECM seem to be able to dictate cellular
fate and drive stem cell differentiation into neurons,
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muscle, or bone cells [50]. Besides providing
instructive cues during development, ECMs can
also change cellular status. Placing senescent cells
or aged stem cells in a “younger ECM” rejuvenates
these old cells to regain proliferative capacities or
stem cell potential, respectively [51,52]. Similarly,
placing tumor cells into an embryonic ECM, repro-
grams them to non-tumorigenic cells [53]. Hence,
there is intrinsic crosstalk between the ECM and
the cells it encapsulates. ECMs, or niches, are
made and adapted according to the respective cel-
lular needs or states. Disrupting the crosstalk
between cancer and cancer-associated fibroblasts,
for instance, by a small molecule that inhibits chro-
matin remodeling and changes matrisome gene
expression (i.e., altering thematreotype), prevented
tumor growth in xenograft mouse models [54].
Although we lack a current understanding of these
underlying molecular crosstalk, these snapshots of
ECM compositions – or matreotypes – clearly can
reflect distinct cellular properties.
Accordingly, since matreotypes mirror cellular

status, they also hold potentially promising
prognostic value. For instance, 43 out of the 274
core matrisome genes are significantly
upregulated across multiple cancer types, and 9
ECM genes predicted cancer outcome [55].
Another classifier similar to the matreotype concept
is termed tumormatrisome index, which is based on
29 matrisome genes, reliably predicts low- and
high-risk groups and chemotherapy responses for
small cell lung cancer patients [56]. Matreotypes
reflecting chronological ages have been recently
used to predict drugs that promote healthy aging
[57]. Therefore, defining matreotypes has transla-
tional value for future biomedical research. More-
over, identifying different subpopulations of a
given cell type will be critical to overcome the prob-
lem of cellular heterogeneity and aid personalized
medical applications. In this regard, the fact that
we observed evolutionary conserved matreotypes,
in homologous cell types of mice and chicken high-
lights the potential of model organisms research.
Identification of conserved orthologous ECM-
based genotype-phenotype interactions might thus
inform human biology or delineate novel ECM-
related drug targets promoting healthy aging
[57,58].
In summary, with our scRNA-seq analyses, we

provide evidence for a previously postulated
concept, namely that ‘each cell type produces its
unique ECM’ [17,19]. While the best molecular
proxies for cell-type identification continue to be dis-
cussed [1–3], we made the unexpected discovery
that expressed core matrisome genes – corre-
sponding to less than 2% of a typical transcriptome
– hold enough information to re-cluster scRNA-seq
data as well as transcription factor signatures. For
more mature cells, the core matrisome embodied
substantial predictive value to identify cell types
and states, even across species boundaries.
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Hence, future work on defining matreotypes of dif-
ferent cell types and states might inform diagnostics
and personalized medicine.

Materials and methods

Matrisome gene lists

Curated matrisome gene lists for mouse and
human are available on ‘The Matrisome Project’
(http://matrisome.org/; [16]. To create a matrisome
list for chicken, a union of the human and mouse
matrisome lists was used to define chick one-to-
one orthologs in the ENSEMBL Galgal5.0
annotation.

Single-cell RNA-sequencing data

Previously published single-cell RNA sequencing
(scRNA-seq) datasets sampling the chicken
embryonic limb [30] and the mouse embryonic limb
[32]; stages E11.5 to E18.5) were used for all anal-
yses. The raw data is accessible at Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/), under accession numbers
GSE130439 (chicken) and GSE142425 (mouse).

Data pre-processing

Raw UMI count tables were used to initiate
‘Seurat objects’ for all mouse samples in R, using
package Seurat v3.1.4. Next, low quality cells and
outliers were filtered out. Chicken cells with an
UMI count higher than 4 times the average UMI
count, less than 20 percent of the median UMI
count or more than 10 percent mitochondrial or
ribosomal content were removed [30]. Mouse cells
expressing less than 200, more than 6000 genes,
or more than 10 percent mitochondrial RNA were
removed. All expressed genes were considered.
Normalization, identifying the top 2000 variable
genes and scaling of the data was applied with Seu-
rat’s built-in functions.

Dimensionality reduction

For all chicken and mouse seurat objects,
principal components analysis was performed on
all expressed genes, and significant components
were selected as such, if they were located
outside of the Marchenko Pastur distribution [59].
The same criterion for significance was applied on
all principal component analysis on ‘Core Matri-
some’, ‘Transcritpion Factor’ and ‘Random’ subset
genes. The cells were visualized with the dimen-
sionality reduction algorithm tSNE [60]. ‘Core Matri-
some’, ‘Transcription Factor’ and ‘Random’ clusters
for all datasets were represented on the same
tSNEs generated from the ‘Transcriptome’ principal
components. To define a ‘Gold Standard’ of
scRNAseq-based cell type clustering, k-nearest
neighbour (kNN) graphs and Jaccard indices of
overlap between a cell and its neighbours were
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used to create shared nearest neighbour (SNN)
graphs, with the Seurat ‘FindNeighbors’ function
using all expressed ‘Transcriptome’ genes. Clusters
of cells were then defined by ‘FindClusters’, by
applying Louvain modularity optimization algo-
rithms on SNN graphs. As the number of clusters
can be influenced by the resolution parameters,
please refer to the supplementary data for detailed
parameters of significant dimensions and resolu-
tions used in clustering for all samples. For ‘Core
Matrisome’-based clustering, all expressed core
matrisome genes were considered for clustering.
For ‘Random’-based clustering, for ten iterations,
randomly picked genes from the whole transcrip-
tomewere used such that theymatched the number
of expressed core matrisome genes, as well as
resulting in the same number of individual clusters
as the ‘Transcriptome’ and ‘Core Matrisome’ clus-
tering. The core matrisome genes and transcription
factors were excluded from the sampling. After
ordering the transcription factors by expression
variability, the set of top transcription factors match-
ing the size of the expressed core matrisome was
used to recluster the cells.
Cluster cell-type annotation

Differentially expressed genes between mouse
clusters with a minimum natural log fold change of
0.25 were identified using a Wilcoxon rank sum
test, and were then used to assign putative cell-
type identities of each cluster. Only genes
expressed in at least 25% of cells in one of the
two populations were considered. For all clusters,
all and the top five differentially genes per cluster
can be found in the Data Source File 1. Chicken
clusters had been previously annotated [30].
Distance Boxplots

To assess cluster-to-cluster proximity of
‘Transcriptome’-, ‘Core Matrisome’-, ‘Random’-,
and ‘Transcription Factor’-based clustering
approaches, Euclidean pairwise distances
between each cluster were calculated on the
averaged scaled expression per cluster of the top
2000 variably expressed genes. The same 2000
genes were used to compare all three clustering
approaches.
Hypergeometric test

Probabilities of overlap between clusters were
calculated with ‘phyper’. The hypergeometric test
takes into account the size of the reference cluster
(‘Transcriptome’) m, the size of the test cluster
(‘Core Matrisome’, ‘Random’, and ‘Transcription
Factor’) k, the number of non-tested cells (total
number of cells N � m) and the size of the overlap
x to calculate the probability of the overlap to
occur at random. Probabilities were calculated for
overlaps between all clusters. Probabilities equal

http://matrisome.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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to zero were replaced with the smallest non-zero
probability to prevent infinite values after
transformation, and probabilities bigger than 0.05
were set to 1 for plot aesthetics. ‘Heatmap3’ [61]
was used to plot square root negative log 10 trans-
formed probabilities.
Visualizing cluster contributions

Barplots were created with ‘ggplot2’ [62].
Indices

The Rand index, also known as Accuracy, was
calculated as following:

R ¼ TP þ TN

TP þ FP þ FN þ TN

It measures the percentage of correct
classifications.
The Jaccard Index of Overlap is calculated as

intersection over union. It does not take the TN
into account, which represents the most
classifications and might be confounding in the
Rand index:

J ¼ TP

TP þ FP þ FN

At last, the Fowlkes-Mallows Index is the
geometric mean of precision and recall. Precision
measures how many positive pairs (cells within
the same cluster in the test clustering) are true
positives (cells within the same cluster in the ‘Gold
Standard’). Recall is the percentage of true
positives identified by all actual positives:

FM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TP þ FP
� TP

TP þ FN

r

All indices range from 0 (no correct classification
by the test clustering) to 1 (identical clustering by
the test clustering).
Comparing ‘core matrisome’ and ‘transcription
factors’ against ‘random’ subsets of increasing
size

The information content of the ‘Core Matrisome’
and the ‘Transcription Factor’ subset was
compared to ‘Random’ subsets containing 1, 2, 4,
5, 10, 20, 40, 50, 75, and 90 percent of the
remaining E11.5 and E18.5 chicken
transcriptomes (i.e., with transcription factors and
the core matrisome removed). For each
percentage, five ‘Random’ subsets resulting in the
same number of clusters as the ‘Core Matrisome’
were sampled, clustered, and indices were
calculated. The core matrisome genes and
transcription factors were excluded from this
sampling.
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Spearman’s rank correlation of
‘Transcriptome’-based cluster pseudobulk
expression

‘Transcriptome’-based cluster pseudobulk
expression for each of the four gene sets
(‘Transcriptome’, ‘Random’, ‘Transcription Factor’,
‘Core Matrisome’) was calculated with Seurat’s
‘AverageExpression’ function using default
settings. The transcriptome gene set consists of
all one-to-one orthologs that were expressed in all
samples (n = 7512). The ‘Core Matrisome’ subset
of those orthologs consisted of 106 genes.
Expressed and orthologous transcription factors
were ranked for each sample by variance. Then,
an increasing rank sum was used to order them
across samples and the top 106 TFs were
selected. A ‘Random’ subset of 106 genes was
selected from all expressed orthologs, excluding
matrisome genes and transcription factors. After
fusing all sample pseudobulks into a table, each
gene’s pseudobulk expression was divided by its
average pseudobulk expression across samples
and clusters to calculate the gene specificity index
(GSI) [33]. Then pairwise Spearman’s rank correla-
tion coefficients for all GSI pseudobulks were calcu-
lated and plotted as a heatmap using pheatmap
(Kolde (2019) https://CRAN.R-project.org/pack-
age=pheatmap), clustering rows and columns with
hierarchical clustering based on euclidean
distances.
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