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Abstract: Tuberculosis (TB) caused by Mycobacterium tuberculosis infection is responsible for the
most deaths by a single infectious agent worldwide, with 1.6 million deaths in 2017 alone. The
World Health Organization, through its “End TB” strategy, aims to reduce TB deaths by 95% by 2035.
In order to reach this goal, a more effective vaccine than the Bacillus Calmette-Guerin (BCG) vaccine
currently in use is needed. Subunit TB vaccines are ideal candidates, because they can be used as
booster vaccinations for individuals who have already received BCG and would also be safer for
use in immunocompromised individuals in whom BCG is contraindicated. However, subunit TB
vaccines will almost certainly require formulation with a potent adjuvant. As the correlates of vaccine
protection against TB are currently unclear, there are a variety of adjuvants currently being used in
TB vaccines in preclinical and clinical development. This review describes the various adjuvants in
use in TB vaccines, their effectiveness, and their proposed mechanisms of action. Notably, adjuvants
with less inflammatory and reactogenic profiles that can be administered safely via mucosal routes,
may have the biggest impact on future directions in TB vaccine design.
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1. Introduction

Tuberculosis (TB) is responsible for the most deaths by a single infectious agent worldwide, with
1.6 million deaths in 2017 alone [1]. The causative agent, Mycobacterium tuberculosis, is a slow growing
organism that is equipped with many immune evasion strategies, making it difficult to treat. The
vaccine currently in use, Bacillus Calmette-Guerin (BCG), protects children against disseminated TB and
meningitis, but provides incomplete and variable protection against pulmonary TB, the most common
form of the disease [2]. The World Health Organization through its “End TB” strategy, aims to reduce TB
deaths by 95% by 2035, and to reach this goal, a more effective vaccine will need to be developed.

The current pipeline of TB vaccine candidates is highly varied and includes live, whole cell inactivated,
viral vector and subunit vaccines [3,4]. A new TB vaccine will ideally work as an effective booster to
BCG vaccination, as it is unlikely that BCG will be completely replaced in many countries, given its
efficacy against severe childhood forms of TB and its apparent ability to reduce pediatric infectious
disease deaths more generally, through nonspecific mechanisms [5,6]. Ideally, a new TB vaccine would
also be suitable as both a pre-exposure preventative and therapeutic post-exposure vaccine, the latter
boosting the existing immunity in order to control ongoing infection or preventing the reactivation of
latent TB. As M. tuberculosis infection is a major cause of death in HIV infected individuals, ideally the
vaccine should be suitable for immunocompromised individuals for whom BCG is contraindicated [2].
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The vaccine strategies most advanced in the TB vaccine clinical pipeline are killed whole-cell
bacterial formulations, namely M. vaccae and M. indicus pranii, which are currently undergoing phase
III trials [7]. Antigen expression dynamics may be crucial for generating effective immunity and
whole-cell killed vaccines, and while they express many antigens, they may nevertheless not express
enough of the right antigens for robust protection [8]. Live vaccines, such as viral vectored, modified
BCG, and attenuated M. tuberculosis, are also being trialed. Live vaccines have the advantage of a
sustained antigen expression, and non-replicating vectors such as adenovirus may be safe for use
in HIV-infected individuals [9]. However, while the use of viral vectored vaccines often promotes
strong Th1 responses, which, as exemplified by the outcomes of the phase IIb MVA85A trial, does not
necessarily correlate with protection against M. tuberculosis [10].

Subunit approaches provide flexible design, allowing for the targeting of all stages of M. tuberculosis
infection, whilst being safe for use in immunocompromised populations. The major downside to
subunit vaccines is their low immunogenicity, which requires that they be combined with an appropriate
adjuvant and delivery system in order to make them effective. This review focuses on adjuvants and
delivery systems for use in novel subunit TB vaccines, their mode of action, and likely impacts on the
anti-TB immune response.

1.1. Subunit TB Vaccine Candidates

Subunit vaccines rely on the selection of an appropriate protective antigen. Antigen selection
for TB vaccines is complex, because of the intricacy of multi-staged infection and the large size of
the M. tuberculosis genome. The most commonly used antigens in subunit TB vaccines are conserved
secreted proteins, such as ESAT6 and Ag85B, which have been shown to be immunogenic in animal
models [11]. However, a multitude of other antigens, including non-secreted immune targets [12],
have also been tested as vaccines [13]. One such antigen is CysD, an essential protein in the sulphur
assimilation pathway of M. tuberculosis that is upregulated during latent infection and is highly
conserved across strains, which has been utilized in our novel subunit vaccine CysVac2 [12]. CysVac2
combines CysD with Ag85B, a secreted early stage antigen, and the vaccine has been shown to be
effective both as a preventative and therapeutic vaccine, including when formulated with the Advax™
polysaccharide adjuvant [14]. This illustrates the advantage of a subunit vaccine design, which allows
for the targeting of different infection stages.

1.2. TB Vaccine Adjuvants

The administration of the TB antigen alone generally fails to generate a sufficiently strong
protective adaptive immune response. T-cells require secondary co-stimulatory signals, usually
provided by innate immune activation and cytokines, in addition to binding the of the antigen by
the T-cell receptor (TCR). Subunit vaccines require a second component, therefore, known as an
adjuvant, to adequately stimulate and activate the immune response to the vaccine. Adjuvant selection
is critical, as different adjuvants stimulate the immune system in different ways, some of which
may not be protective, making adjuvant choice pivotal to vaccine success. The adjuvant shapes the
adaptive immune response, depending on which innate immune receptors it activates (Figure 1). Thus,
adjuvants may be used to generate the appropriate type of immune response needed for protection
against a specific pathogen. For example, adjuvants may activate pattern recognition receptors (PRRs),
such as a toll-like receptors (TLRs; e.g., nucleic acid analogues and bacterial cell wall components),
nucleotide-binding oligomerisation domain (NOD)-like receptors, or retinoic acid-inducible gene-I
(RIG-I)-like receptors, each of which initiate different downstream cytokine signaling [15]. However, the
precise mechanisms of many adjuvants are still unclear and may not necessarily involve a specific PRR.
One of the most broadly used adjuvants, alum, was believed to be reliant on antigen depot formation for
its adjuvanticity [16], but also activates the inflammasome and induces the secretion of inflammatory
cytokines, including interleukin (IL)-1β, which enhances dendritic cell (DC) activation [16,17]. The
physiological outcome of formulating vaccines with alum is the enhancement of the antibody response
in association with a major Th2-bias to the immune response.



Microorganisms 2019, 7, 255 3 of 16

Microorganisms 2019, 7, x FOR PEER REVIEW 3 of 16 

 

which enhances dendritic cell (DC) activation [16,17]. The physiological outcome of formulating 
vaccines with alum is the enhancement of the antibody response in association with a major Th2-bias 
to the immune response. 

 
Figure 1. Proposed mechanism of action of adjuvants used in subunit tuberculosis vaccine candidate 
formulations. Many compounds exploit structural features to achieve adjuvanticity (A–C). 
Liposomal formulations, particularly cationic liposomes (A), protect and retain anionic vaccine 
antigens whilst creating a depot effect that potentiates slow antigen release. Adjuvant components 
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pathway. The novel polysaccharide adjuvant, Advax™, (C) potentiates phagocytosis and recruits 
immune cells to the site of vaccination, despite minimal inflammatory effects. Other adjuvants rely 
on distinct molecular pathways known to induce inflammation, such as the activation of pattern 
recognition receptors, both intracellular (Poly:IC (toll-like receptor (TLR)3, TLR7/8, or CpG 
oligonucleotides (TLR9)) or extracellular (TLR2, 3-O-desacyl-4′-monophosphoryl lipid A (MPLA; 
TLR4), and Mincle). Chitosan and cyclic dinucleotides (CDNs) activate the cytoplasmic DNA sensor 
STING. 

A key focus of the TB vaccination has been to generate strong Th1 responses. Many strategies 
have focused on the activation of TLRs and downstream IL-12 secretion to promote Th1 
polarization. This has been achieved by the use of adjuvants that bind various TLRs, such as Poly:IC 
(TLR3), 3-O-desacyl-4′-monophosphoryl lipid A (MPLA; TLR4), or CpG oligonucleotides (TLR9) 
[18,19]. A common adjuvant in many preclinical TB vaccines has been the combined formulation of 
dimethyldioctadecyl-ammonium (DDA) with MPLA, resulting in an effective but highly 
inflammatory combination not suitable for human use [20]. 
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vaccine administration, as mucosal vaccine administration steers towards Th17 responses [22,23]. 
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Figure 1. Proposed mechanism of action of adjuvants used in subunit tuberculosis vaccine candidate
formulations. Many compounds exploit structural features to achieve adjuvanticity (A–C). Liposomal
formulations, particularly cationic liposomes (A), protect and retain anionic vaccine antigens whilst
creating a depot effect that potentiates slow antigen release. Adjuvant components such as QS21,
found in AS01, interact with and disrupt the liposomal membranes (B), enhancing cross presentation to
CD8+ T cells and inflammatory cytokine production via the Syk tyrosine kinase pathway. The novel
polysaccharide adjuvant, Advax™, (C) potentiates phagocytosis and recruits immune cells to the site of
vaccination, despite minimal inflammatory effects. Other adjuvants rely on distinct molecular pathways
known to induce inflammation, such as the activation of pattern recognition receptors, both intracellular
(Poly:IC (toll-like receptor (TLR)3, TLR7/8, or CpG oligonucleotides (TLR9)) or extracellular (TLR2,
3-O-desacyl-4′-monophosphoryl lipid A (MPLA; TLR4), and Mincle). Chitosan and cyclic dinucleotides
(CDNs) activate the cytoplasmic DNA sensor STING.

A key focus of the TB vaccination has been to generate strong Th1 responses. Many strategies
have focused on the activation of TLRs and downstream IL-12 secretion to promote Th1 polarization.
This has been achieved by the use of adjuvants that bind various TLRs, such as Poly:IC (TLR3),
3-O-desacyl-4′-monophosphoryl lipid A (MPLA; TLR4), or CpG oligonucleotides (TLR9) [18,19].
A common adjuvant in many preclinical TB vaccines has been the combined formulation of
dimethyldioctadecyl-ammonium (DDA) with MPLA, resulting in an effective but highly inflammatory
combination not suitable for human use [20].

More recent studies have identified that a balance of Th1 and Th17 immunity may be more effective
to protect against M. tuberculosis [21]. Notably, this balance may be altered by the route of vaccine
administration, as mucosal vaccine administration steers towards Th17 responses [22,23]. However,
T-cell differentiation is also influenced by the choice of adjuvant; for example, TLR4 and TLR7/8
agonists can promote Th17 responses by inducing IL-23 expression [24]. CAF01, a liposomal adjuvant
formulation comprising DDA mixed with a glycolipid immunomodulator (trehalose 6,6-dibehenate,
TDB), a synthetic variant of the mycobacterial cord factor, was shown to induce Th17 responses via the
activation of the C-type lectin receptor, Mincle [25]. Similarly, cyclic dinucleotides generate long-lived
immunity by activating the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes)
pathway, a strategy that is hypothesized to mimic M. tuberculosis intracellular infection [26].

The role of mucosal immunity in infection by M. tuberculosis may be of crucial importance
to TB vaccine design, with anatomic features of the lung integral to the generation of effective
immunity [13,27]. For example, M-cells (microfold cells) are a mucosa specific cell type that, in the
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respiratory tract, are located in the nasal associated lymphoid tissue (NALT) and inducible bronchial
associated lymphoid tissue (iBALT). Their transcytosis abilities and close proximity to DCs beneath the
mucosal epithelium allows M-cells to quickly transport antigens and stimulate an immune response,
so they have been investigated as potential target sites for vaccine antigen administration [28,29].
Adjuvants such as polyethyleneimine and chitosan have also been used as penetration enhancers and
immunostimulants for nasally administered vaccines, because of their ability to bind and cross the
mucosal epithelium, with a high efficiency to access resident antigen presenting cells (APCs) [30].

2. Adjuvants in Clinical-Stage TB Vaccines

Whilst the clinical pipeline of TB vaccines is highly diverse, subunit vaccines seem ideal TB
candidates, particularly for use in boosting BCG-induced immunity. There are four subunit vaccines
aimed at the prevention of disease currently in clinical testing, and three aimed at therapeutic use [4].
In these vaccines, the adjuvants used include TLR agonists, liposomal formulations and combinations
of both, thereby targeting different immune pathways and utilizing different delivery vehicles.

2.1. Liposomal Formulations and Emulsions—AS01, CAF01, and GLA-SE

A strategy employed by many candidate TB vaccines is the use of liposomes and emulsions
as a delivery vehicle. Liposomes are lipid-based vesicles that self-assemble through hydrophobic
interaction, forming microparticles able to carry different vaccine or adjuvant formulations [20]. One
of the benefits of microparticle formation is that, depending on the size of the particles, antigens will
either be targeted to the lymph nodes via drainage through the lymphatic system, or will be actively
transported by APCs [31]. Liposomes are effective as adjuvants, partially because after injection,
loaded antigens are slowly released, with their vesicular structure protecting enclosed antigen from
degradation whilst forming a depot [19,32]. Additionally, liposomes formulated to be negatively
charged (cationic liposomes) aggregate, and are also able to bind positively charged antigens, enhancing
this depot effect further [33,34]. Cationic liposomes have also been shown to raise the lyososomal
pH following DC antigen internalization, reducing antigenic degradation and enhancing the level of
cross presentation to CD8+ T-cells via major histocompatibility complex (MHC)-I [35–37]. However,
liposomal and emulsion formulations are often associated with local site reactogenicity, and many
formulations have had to be revised to improve their safety profile prior to use in humans [38,39].

One of the most advanced subunit vaccines, M72:AS01, was recently shown to have 54% efficacy
in HIV-negative individuals with latent TB when administered intramuscularly (M72:AS01E) [40]. The
adjuvant in this vaccine, AS01, consists of a mixture of the TLR4 ligand, MPLA, together with the
saponin fraction QS21 in a liposomal formulation [41]. MPLA is a derivative of the lipopolysaccharide
from Salmonella minnesota modified to reduce its toxicity and is commonly used in adjuvant formulations
for its ability to bind TLR4 and induce NF-κB activation [42,43]. QS21 is a mixture of two isomeric
triterpene glycosides, arabinose (QS-21A) and xylose (QS21X), isolated from the tree Quillaja saponaria
Molina [44]. Saponins are amphiphilic glycosides, of which the most commonly researched are isolated
from Q. saponaria, namely Quil A, and its derivative, QS-21 [45]. The mechanism of action of AS01 in
M72:AS01 is proposed to be via rapid interferin (IFN)-γ production by resident natural killer (NK)
cells and CD8+ T cells in the draining lymph nodes promoting strong cellular Th1 responses [46],
a theory supported by the robust Th1 and IFN-γ responses observed during human trials of the
vaccine [40,47,48].

Similarly to M72:AS01, the adjuvant used in H1:CAF01, a phase I candidate TB vaccine, is a
liposomal formulation consisting of DDA and TDB [49]. DDA is a synthetic amphiphilic lipid capable
of self-assembling into vesicles. Alone, DDA is unstable and will form aggregates, however TDB
incorporates into DDA bilayers and stabilizes the liposomes [50]. TDB is also highly immunostimulatory,
activating Mincle. Upon the recognition of TDB, Mincle interacts with Fc receptor common γ-chain
(FcRγ) inducing intracellular signaling via Syk, causing CARD9 dependent NF-κB activation and
downstream proinflammatory cytokine production [25,51]. Adjunctive to NF-κB activation, CAF01 also
relies on Mincle-dependent IL1 production and the subsequent MyD88 signaling to generate Th1/Th17
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polarized responses [52]. In preclinical trials of the H1:CAF01 vaccine, the CAF01 adjuvant generated
significant parenchymal IFN-γ producing T-cells, and induced Th17 dependent memory and protection
when the vaccine was used either pre- or post-M. tuberculosis exposure [53–55]. In humans, H1:CAF01
induced multi-functional antigen specific T-cell responses lasting up to three years post vaccination [49].

The synthetic TLR4 agonist, glucopyranosyl lipid adjuvant in squalene oil in water emulsion
(GLA-SE), is the adjuvant used in the ID93/GLA-SE vaccine currently in phase II trials [56]. GLA is a
synthetic TLR4 agonist that promotes polyfunctional responses via MyD88 and TIR-domain-containing
adapter-inducing interferon-β (TRIF)-dependent activation [57]. The delivery vehicle of GLA-SE is
crucial to its adjuvanticity, with a recent study demonstrating that GLA alone promotes IgG2 responses,
as does squalene emulsion alone, whereas GLA-SE combined induces a Th1 response [58]. Squalene
oil in water emulsions are found in multiple adjuvants including MF59, which is licensed for use with
influenza vaccines for the elderly, although their mechanism of action remains unclear [38].

2.2. Other Adjuvants in Clinical Trials: IC31 and GamTBVac

Whilst liposomes and oil-in-water emulsions are a popular adjuvant strategy for inducing
cell-mediated immunity, IC31, an adjuvant employed in two TB vaccines currently undergoing clinical
trials, utilizes a cationic peptide as a delivery vehicle. IC31 is used both in post exposure vaccine
H56:IC31 and the preventative vaccine H4:IC31, the latter in a recent phase II trial found to have 30%
efficacy in the prevention of M. tuberculosis infection [59]. IC31 consists of the antimicrobial peptide
KLKL5KLK (KLK) combined with a single stranded oligonucleotide, ODN1a, which is thought to
bind TLR9, thereby activating the MyD88 pathway and IL-12 production by APCs [19,60]. KLK is also
immunostimulatory and is hypothesized to allow for translocation into cells without cell membrane
permeabilization, thus making access to intracellular TLRs more efficient [61]. Counterintuitively,
however, KLK has also been investigated for its anti-inflammatory potential whereby it reduces nitric
oxide, IL-1β, and TNF production caused by LPS exposure [62]. In a vaccine setting, KLK when
administered alone with antigen induced a Th2 type immune response, however, when combined
with ODN1a, it induced a stronger Th1 and Th2 immunity [60,63].

Finally, GamTBVac, a subunit vaccine under phase I clinical development, utilizes a dextran and
CpG adjuvant along with an antigen fusion protein containing a dextran binding domain [64]. Dextran
has a history of medical usage and has the advantage of being classified as “generally recognized as
safe” (GRAS) by the FDA. In an adjuvant setting, dextran may induce inflammation by interacting
with the DC-SIGN family receptors, the mannose receptor, and langerin, all of which may induce
innate immune activation [65].

3. Novel TB Vaccine Adjuvants

While only a few adjuvants have so far been used in TB clinical trials, there are a vast number of
delivery vehicles and adjuvant strategies in preclinical research (see Table 1). The majority of these
adjuvants may be broadly divided into three groups, namely: nano- or micro-particulate, delivery
system-based and plant or microbial derived. Many strategies are specifically aimed at activating PPRs
with downstream inflammatory effects and immune cell recruitment, while others potentiate vaccine
protection through currently unknown mechanisms. There is a growing body of research exploring
the adjuvants suitable for pulmonary or intranasal administration, given the potential advantages
of mucosal delivered TB vaccines [13,66,67]. In this setting, adjuvants must avoid damaging the
sensitive lung tissue. It is also increasingly obvious that the magnitude of cytokine release following
the re-stimulation of antigen specific T cells may be an inaccurate measure of vaccine protectiveness
against TB infection [68–70]. In response to this paradigm shift, there has been increasing interest in
the design of adjuvants with less inflammatory mechanisms of action, which should thereby be safer
for pulmonary administration.
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Table 1. Summary of adjuvant strategies in human TB vaccine clinical trials or in preclinical animal testing. MPLA:3-O-desacyl-4′-monophosphoryl lipid A;
DDA:dimethyldioctadecyl-ammonium; TDB:trehalose 6,6-dibehenate; GLA:glucopyranosyl lipid adjuvant; KLK:KLKL5KLK; TLR:toll-like receptor.

Adjuvant/Delivery
System Components Antigen Proposed Mechanism of Action Immune

Readout Testing Status References

Advax Delta inulin particles Ag85B, CysD (CysVac2) Enhanced phagocytosis, immune cell
recruitment, low reactogenicity Th1, Th17 Preclinical [12,14]

AS01 MPLA and QS21 Mtb32, Mtb 39 (M72)

TLR4 activation (MPLA), liposomal
disruption and Syk activation, CD2

activation on T-cells, NLRP3
inflammasome (QS21)

Th1 Phase IIb (54%
efficacy) [40,71,72]

B. subtilis spores MPT64; Acr-Ag85B
Mucoadhesive, resistant to enzymatic

degradation, suitable for mucosal
administration

Th1, IgA, low
Th17 Preclinical [73,74]

CAF01 DDA and TDB Ag85B, ESAT-6 (H1)

TDB activates Mincle, MyD88-dependent
Th1/Th17 polarising cytokines. DDA

forms cationic liposomes that are
stabilised by TDB.

Th1, Th17 Phase I [49,52,75,76]

Chitosan and
derivatives Ag85B, ESAT-6 (H1)

Activates cGAS-STING pathway,
mucoadhesive and mucosal epithelial

penetration properties, suitable for
mucosal administration

Th1, low Th17 Preclinical [77,78]

Cyclic dinucleotides
Synthetic dinucleotide

analogue of cyclic
diguanylate

Ag85B, ESAT-6, Rv1733c,
Rv2626c, RpfD (5Ag)

STING activation (IRF-3 type I IFN
production, NFkB, STAT-6 chemokine

expression)
Th17, low Th1 Preclinical [26]

Dextran Ag85A, ESAT-6-CFP10 Activates DC-SIGN receptor family,
mannose receptor, langerin Th1/Th2 Phase I [64,65]

GLA-SE GLA in squalene
emulsion

Rv2608, Rv3619, Rv3620,
Rv18183 (ID93)

GLA is a synthetic TLR4 agonist, in
squalene in water emulsion activates

NLRP3 inflammasome
Th1 Phase IIa [56–58,79]

IC31 KLK and ODN1a

Ag85V, ESAT-6 (H1);
Ag85B, ESAT-6 and

Rv2660c (H56) and Ag
85B, TB10.4 (H4)

ODN1a binds TLR9, KLK forms
aggregates with ODN1a and enhances

translocation into cells
Th1

Phase IIa
(H56:IC31;

30.5% efficacy)
[46,59,80,81]
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Table 1. Cont.

Adjuvant/Delivery
System Components Antigen Proposed Mechanism of Action Immune

Readout Testing Status References

ISCOMs

Immune stimulatory
complexes (saponin,

cholesterol and
phospholipid)

Ag85B, ESAT-6 (H1);
Ag85A

TLR independent, may be inflammasome
mediated (under investigation) Th1/Th2 Preclinical [82–84]

Lipokel PamCys2 and 3NTA Culp 1, Culp 6
PamCys2 is a TLR2 ligand and 3NTA is a

chelating entity that allows antigen
binding

Th1 Phase I [85]

Nanoemulsion
Soybean oil phase

mixed into aqueous
phase

ESAT-6, Ag85B Mucoadhesive, highly tolerated, suitable
for mucosal administration Th17, Th1 Preclinical [86,87]

PLGA
(poly(lactic-co-glycolic

acid))

Microsphere delivery
system

Ag85B, ESAT-6 (H1);
MPT83

Antigen protection, depot formation,
controlled release, enhanced phagocytosis,

biodegradable, suitable for mucosal
administration

Th1, Th17 Preclinical [88,89]

PolyI:C dsRNA BCG; Ag85B, HspX TLR3 agonist Th1, Th2 Preclinical [90,91]

Yellow carnauba wax
nanoparticles

Incorporated with
heparin-binding
hemagglutinin

adhesion (HBHA)
protein

Ag85B

Enhanced adherence to alveolar
epithelium (HBHA), highly tolerated

(particles), suitable for mucosal
administration

Th1 Preclinical [92]
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3.1. Nanoparticles and Microparticles: Travelling Different Immune Pathways to Reach the Lymph Node

Both nanoparticles and microparticles, including the use of liposomes, are very popular strategies
because of their ability to specifically target cell populations based on the size, surface chemistry, and
administration site of these particles [93]. A common polymer that is used is poly(DL-lactic-co-glycolic
acid; PLGA) which, like dextran, has a long history of medical usage prior to its adjuvant applications,
and has already been approved for parenteral use for sustained drug delivery by the FDA [94,95].
PLGA can be manufactured into either nanoparticles (<1 µm) or microparticles (>1 µm), depending on
many factors, including the concentration of surfactants and polymers, as well as the homogenization
speed [95]. There has been much interest in the use of PLGA microparticles for the delivery of anti-TB
vaccines and treatments [88,89,95–98]. The mycobacterial Hsp65 protein along with KLK encapsulated
in PLGA microspheres of ~7 µm in size was highly protective when administered intramuscularly as
a single dose [97]. Surprisingly, this vaccine induced high levels of IL-10 and lower levels of IFN-γ
compared to a similar vaccine where KLK was replaced with CpG, indicating, as in other studies,
that high inflammatory cytokine readouts and particularly IFN-γ are not necessarily correlates of TB
vaccine efficacy. However, this study did not characterize the role of Th17 polarized CD4+ T cells,
which have been recently shown to be important in the generation of resident immune memory [53].
Whilst PLGA microspheres may induce robust antibody and Th17 responses, vaccines incorporating
PLGA particles do not appear to improve the efficacy of TB vaccine formulations utilizing DDA and
TDB liposomes (CAF01) [88,89]. Thus, the effectiveness of PLGA particles as TB vaccine carriers
remains to be confirmed.

Other vaccine strategies that have been utilized against TB include the use of particles suitable for
pulmonary delivery. Often, the micro- or nano-particles intended for use in the mucosa are of biological
origin, because of their ability to induce IgA antibody responses, enhance movement through the
mucosa, heightened mucoadhesion and resistance to enzymatic degradation [73,92,99]. Reljic et al.
demonstrated that inert Bacillus subtilis spores promote DC maturation, recruit NK cells to the lungs and
activate the NK-κB pathway [100]. Based on these observations, they tested mice spores approximately
1 µm in size coated with a TB antigen administered either intranasally or subcutaneously as a BCG
booster, whereby they observed a protective response against M. tuberculosis, which was associated with
the generation of IFN-γ expressing CD4+ T cells [73]. Derivatives of chitosan, a linear polysaccharide
that forms part of the exoskeleton of shellfish, have also been utilized to create immunostimulatory
carrier vehicles for antigens [78]. Chitosan derivatives enabled DC activation and Th1/Th17 polarization
via type-I IFN production with their effects on DC activation abrogated in STING knockout mice.
It is hypothesized that upon internalization, chitosan derivatives induce mitochondrial stress and
reactive oxygen species production, causing the release of mitochondrial DNA that may trigger the
cGAS-STING pathway resulting in a Th1/Th17 response [26,77]. Thus, natural polymers and particles
provide a vast array of sources for adjuvant particulate delivery systems.

3.2. Adjuvants Derived from Nature: Plant and Microbial

Many particulate adjuvants are derived from natural sources. Polysaccharides are gaining attention
as adjuvants because of their biocompatibility, biodegradability, and innate immune modulation
capacities [101]. Natural polysaccharides have the ability to activate many immune cells, including
macrophages and T- and B-lymphocytes, and subsequently cause the downstream expression of
chemokines and cytokines [101]. Advax™ is a novel plant-derived polysaccharide that, when
formulated into delta inulin particles, has been shown to enhance vaccine immunity against many
diseases. Advax™ is made from inulin particles isolated from the roots of Compositae plants [102]. Inulin
has long been used in medicine to measure glomerular filtration; however it was also observed that
insoluble fractions of inulin were capable of activating complement [103], leading to the identification of
an alternative complement pathway [104]. In its delta isoform, inulin forms cationic particles of ~2 µm
in diameter that remain highly insoluble in water at 50 ◦C, and when administered subcutaneously or
intramuscularly with the CysVac2 antigen induced robust multifunctional CD4+ T cell responses and
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protection against M. tuberculosis challenge [14]. Amongst its immunological effects, Advax™ induces
a strong chemotactic effect, resulting in the recruitment of leukocytes to the site of vaccination, and
stimulates a broad-based immune response to co-administered antigens, including both humoral and
Th1, Th2, and Th17 T-cell responses [14,105,106].

An advantage of Advax™ as a candidate for the TB vaccine clinical development pipeline is its
demonstrated high tolerability and safety in previous human trials, when included in vaccines against
influenza, hepatitis B, and allergy [107–110]. As a part of an influenza vaccine assessed in phase I trials,
Advax™ provided antigen dose-sparing with low reactogenicity, a positive outcome repeated in all of
the human trials in which it has been tested [107,108,110]. Furthermore, in mouse models, Advax™ has
been shown to be a safe and effective adjuvant for pulmonary administration, enhancing the protection
of the mice from a lethal influenza challenge via the enhancement of both humoral and cell mediated
immunity [111]. Thus, the comprehensive engagement of multifaceted immune pathways combined
with its demonstrated safety in humans, makes Advax™ a strong adjuvant candidate for use in TB
vaccines entering clinical trials.

An adjuvant system comprised partially of plant derived factors is the ISCOM, or immune
stimulating complex, a group of adjuvants that consist of saponin, cholesterol, and phospholipid,
organized into cage-like structures 40–50 nm in diameter. ISCOMs recruit NK cells, lymphocytes,
DC, and granulocytes to the draining lymph node following administration, and generate a Th1/Th2
response [82]. It has been suggested that the action of ISCOMs is TLR independent, but MyD88
dependent [82,112]. Andersen et al. tested an intranasal BCG booster vaccine, in which they utilized
ISCOMs in combination with CTA-1/DD, a cholera toxin derived fusion protein with adenylate cyclase
activity leading to cAMP accumulation [83,113,114]. The response induced by this vaccine was both
humoral- and cell-mediated, with a high IFN-γ production both systemically and locally.

4. Future Strategies and Developments

The design of a more effective vaccine against TB will require filling of the “knowledge gaps”
regarding true correlates of protective immunity to M. tuberculosis infection. Currently, there are
no completely reliable correlates making adjuvant selection for novel vaccine candidates largely
empiric. A further challenge to the understanding of TB vaccine efficacy is the time it takes for
M. tuberculosis infection to progress to symptomatic stages, the ability of M. tuberculosis for latent
infection, and the lack of efficient and accurate diagnostic tools easily translatable to rural and
developing settings [115]. The generation of multi-functional cytokine secreting Th1 cells expressing
IFN-γ, IL-2, and TNF were previously considered the critical subset that correlated with protective
immunity, thus the induction of these multi-functional CD4+ T cells has been the goal of most TB
vaccine adjuvants [116]. However, recent studies have challenged this notion, as good multi-functional
T-cell generation by various vaccines did not lead to significantly better protection against TB [68].
Furthermore, excessive Th1 differentiation may even inhibit the development of T cell subsets that
actually mediate protection [8,117]. Excessive antigen doses in post-exposure vaccines reduced the
longevity of protection against TB in mice, and in a pre-exposure setting, a 1000-fold lower antigen
dose gave better long term protection [118].

There has been recent renewed interest in mucosal vaccines, and, in particular, pulmonary
vaccination. The reasoning is that immunity should be generated at the site of infection for maximal
effectiveness [13,119,120]. Th17 cells induced by mucosal vaccination develop into long-term resident
memory cells, and the efficacy of many mucosal vaccines surpasses the efficacy of the same vaccines
administered parenterally [66,67]. There are currently no adjuvants specifically designed for pulmonary
administration, but such adjuvants would need to have low inflammatory capacity and elicit strong
mucosal immunity [30,53]. Advax™ adjuvant fits these criteria, given its high safety profile and lack of
inflammatory reactogenicity, and its ability to induce a broad T cell response including Th1, Th2, and
Th17 CD4+ subtypes, together with memory CD8 T-cells.
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We speculate that the development of an effective TB vaccine to meet the ambitious goals set
out in the World Health Organization “End TB” strategy will require a radical change in thinking,
away from traditionally accepted immune correlates of protection, parenteral administration, and
traditional highly inflammatory adjuvants. A move towards mucosal administration and avoiding
excessive immune stimulation and inflammation will necessitate the development of adjuvants that
are immune-stimulatory without being inflammatory. Advax™ is a highly effective adjuvant, despite
its benign sugar composition, and in partnership with CysVac2 antigen, may be effective when given
either parenterally or though the intrapulmonary route.
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