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Metastasis is a major cause of cancer-related mortality, and it is essential to understand how metastasis occurs in order to

overcome it. One relevant question is the origin of a metastatic tumor cell population. Although the hypothesis of a single-cell

origin for metastasis from a primary tumor has long been prevalent, several recent studies using mouse models have

supported a multicellular origin of metastasis. Human bulk whole-exome sequencing (WES) studies also have demonstrated a

multiple “clonal” origin of metastasis, with different mutational compositions. Specifically, there has not yet been strong

research to determine how many founder cells colonize a metastatic tumor. To address this question, under the metastatic

model of “single bottleneck followed by rapid growth,” we developed a method to quantify the “founder cell population size”

in a metastasis using paired WES data from primary and metachronous metastatic tumors. Simulation studies demonstrated

the proposed method gives unbiased results with sufficient accuracy in the range of realistic settings. Applying the proposed

method to real WES data from four colorectal cancer patients, all samples supported a multicellular origin of metastasis and

the founder size was quantified, ranging from 3 to 17 cells. Such a wide-range of founder sizes estimated by the proposed

method suggests that there are large variations in genetic similarity between primary and metastatic tumors in the same

subjects, which may explain the observed (dis)similarity of drug responses between tumors.

Introduction
Metastasis is the main cause of cancer-related death. Although it
is essential to understand its mechanisms and the dynamics of
distant site colonization in order to properly treat it, until recently
little has been known. The founder cell population size of a meta-
static tumor is one of the most important parameters for metasta-
sis dynamics, which involves the change of mutational
compositions from the primary to metastatic tumors (Fig. 1). The
drastic genetic changes in the metastatic tumor from the primary
one, brought by the limited cell migration, that is, “bottleneck

effect,”might result in a difference in drug response between both
tumors in the same patient.

Although the hypothesis that ametastatic tumor originates from
a single tumor cell has been long prevalent,1–3 several recent studies
using mouse models of cancer have demonstrated multicellular
seeding.4–6 In humans, bulk whole-exome sequencing (WES) stud-
ies of metastatic tumors, often including primary tumors from the
same individuals, demonstrated metastases to have originated from
multiple clones, where a “clone”was a cluster of tumor cells belong-
ing to the same phylogenetic clade estimated by the variant allele
frequency information.7,8While founder “cells,” but not “clones,” in
the metastatic tumor have another clear meaning in understanding
metastatic dynamics, the quantification of multicellular coloniza-
tion has not been attempted so far in humanmetastatic tumors.

Here, we model metastatic colonization as “single bottleneck
followed by rapid growth” for tumor cell populations and pro-
pose a method to quantify the founder cell population size of a
metastatic tumor using a paired WES data from the primary and
metachronous metastatic tumors. This method uses the outputs
from commonly used mutation callers, that is, variant allele fre-
quencies (mutant allele counts and sequence depths), and quickly
estimates the founder size unbiasedly in a realistic range. We
applied our proposedmethod to the high-depthWES data from a
study of four colorectal cancer (CRC) patients.

Additional Supporting Information may be found in the online

version of this article.
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Methods
Overview for quantifying founder cell population size in
metastasis
We use paired WES data of a primary and metachronous met-
astatic tumors together with the data from normal tissue
(Fig. 1a). The input file is composed of sequence depths, D1

and D2, and the mutation read counts, m1 and m2 for each
called mutation in the primary and metastatic tumors,
respectively (Table 1 and Fig. 1b; See Supporting Informa-
tion Appendix and Supporting Information Fig. S1 for more
details of the input file). When the founder population size is
large, the variant allele frequencies (VAFs) for called muta-
tions in the metastatic tumor show high similarity to those in
the primary tumor (Fig. 1c, right). Conversely, when the
number of founder cells is small, the VAFs in the primary
and metastatic tumors are not so correlated (Fig. 1c, left). In
this case, due to the severe “bottleneck effect,” many variants
can become extinct or have significantly higher VAFs in the
metastatic tumor.

Model and estimation methods
Consider a diploid tumor cell population in a primary
tumor. One somatic variant in the population has the
VAF, p1, or the cancer cell fraction (CCF), 2p1 (see Table 1
for notations). The models assume no recurrence mutation
at the same sites and therefore the VAF is at most 0.5,
p1 ≤ 0.5. The VAF follows some distribution, p1~f(p1), as is
properly assumed in the present implementation assuming
a ‘neutral’ evolution with a high cell birth rate for tumor
population9,10 (see Implementation section in Supporting
Information Appendix; and see Results section for the
robustness of the assumptions). In the bulk-WES of the pri-
mary tumor, the sampled mutation read count, m1, at the
variant site with sequence depth, D1, follows a binomial dis-
tribution with parameters, D1 and p1,

m1 �Bin m1jD1,p1
� �

:

Metastatic colonization is modeled as follows. A single bot-
tleneck occurs during colonization and is followed by rapid
growth, so that the VAF in the full-blown metastatic tumor is
the same as that in the metastatic founder. We perform WES
on samples from the full-blown metastatic tumor. Then, in

the WES of the metastatic tumor, the sampled mutation read
count, m2, at the variant site with sequence depth, D2, is gen-
erated by a composite process of metastatic colonization and
exome sequencing as follows:

m2 �
XNb

Mb = 0
Bin MbjNb, 2p1

� �
Binðm2jD2, p2Þ

� �
,

where the Nb, Mb and p2 are the number of founder cells
(founder population size) in metastatic colonization, the num-
ber of mutant cells in the Nb founder cells, and the VAF in
the metastatic tumor, respectively. In the above distribution
for m2, the Nb founder cells are assumed to be randomly
selected from the primary tumor and colonize a metastatic
site. Thus, the Mb mutant cells in the metastatic site follows a
binomial distribution with parameters Nb and 2p1 (mutant cell

fraction), where p2 is given by p2 =
Mb
2Nb

. In the bulk-WES of

the metastatic tumor, the sampled mutation read count, m2,
follows a binomial distribution with parameter D2 and p2.

Taken together, the probability of observing m1 and m2

mutations in the primary and metastatic exome with depths
D1 and D2, respectively, is given by

ð1
p1 = 0

f p1
� �

Bin m1jD1,p1
� �XNb

Mb = 0

Bin MbjNb, 2p1
� �

Binðm2jD2,
Mb

2Nb
Þ

� �
dp1:

For quality control, we use only the sites with m1(min) (>0)
or more mutant reads in the primary tumor. Note that, in the
metastatic tumor, all mutations called in the primary tumor
are tracked in order to use greater information on VAF
change from the primary to the metastatic tumor. Finally, the
probability of observing m1(≥m1(min)) and m2(≥0) mutation
reads in the primary and metastatic tumors, respectively, is
expressed as

Ð 1
p1 = 0

f p1
� �

Bin m1jD1,p1
� �PNb

Mb = 0
Bin MbjNb, 2p1

� �
Binðm2jD2,

Mb
2Nb

Þ
n o

dp1PD1i
m0

1 =m1 minð Þ

Ð 1
p1 = 0

f p1
� �

Bin m0
1jD1,p1

� �
dp1

,

where m0
1 is possible read counts in the primary tumor.

Explicitly, let p1i, D1i, m1i, D2i and m2i denote p1, D1, m1, D2

What’s new?
The founder cell population size of a metastatic tumor is one of the most important parameters for metastasis dynamics.

However, multicellular colonization has not yet been quantified in human metastatic tumors. Using the ‘single bottleneck

followed by rapid growth’ metastatic model and whole-exome sequencing data from primary and metastatic tumors in

colorectal cancer patients, this quantification method supports the multi-cellular origin of metastasis, with founder population

sizes ranging from 3 to 17 cells. The wide-ranging population sizes suggest large variations in genetic similarity between

primary and metastatic tumors within individual patients, possibly explaining variations in drug responses between the

tumors.
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and m2 for the specific ith variant site, respectively. Assuming
independencies among all R variants, each with m1i(≥m1(min))
mutation reads in the primary tumor, the likelihood of the
founder size, Nb, is given by

By maximizing the likelihood (1), we obtain the maximum
likelihood estimate (MLE) of Nb (for implementation details,
see Supporting Information Appendix). In reality, the inde-
pendence assumption among variants does not hold since the

Figure 1. A schematic view of the proposed methodology. (a) Exome data from paired primary and metastatic tumors, and normal tissue. (b)
Input of the method. (c) Illustration of basic premise for the estimation of founder sizes by computer simulations. Low correlation of observed
VAFs in exome between the primary and the metastatic tumors in the small founder size, Nb = 2 (left). High correlation of observed VAFs
between the primary and metastatic tumors in the large founder size, Nb = 50 (right).

Likelihood Nbð Þ=
Y

i∈R

Ð 1
p1i = 0

f p1ið ÞBin m1ijD1i,p1ið ÞPNb
Mb = 0

Bin MbjNb, 2p1ið ÞBin m2ijD2i,
Mb
2Nb

� 	n o
dp1iPD1i

m0
1i =m1 minð Þ

Ð 1
p1i = 0

f p1ið ÞBin m0
1ijD1i, p1ið Þdp1i

: ð1Þ
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unit of the tumor evolution is the cell, and mutations in
the same cell evolve and colonize a metastatic site together.
The effect of the independence assumption on the estimation
of Nb is investigated below using simulations.

The tumor purities, the fraction of cancer cells, in the
primary (γ1) and metastatic tumor tissue samples (γ2), are
incorporated into the model simply by replacing p1i in the term

Bin(m1i| D1i, p1i) and Bin(m0
1i| D1i, p1i) with γ1p1i, and

Mb
2Nb

in the

term Bin m2ijD2i,
Mb
2Nb

� 	
with γ2

Mb
2Nb

, respectively.

Data availability
The data that support the findings of our study were derived
from Supporting Information Tables S5–S12 in the reference 8.
The modified data will be made available upon reasonable
request. The code to estimate the founder size used for the study
is available from the github repository: https://github.com/
jonishino/MetaCellNum.

Results
Validation of our proposed method: pure birth tumor
evolution model
We assessed our proposed method using simulated data, gen-
erated by a “pure birth model” for tumor evolution (see
Methods and Supporting Information Appendix for details;
see also Table 1 for notations). Briefly, a single tumor cell with
K mutations generates two daughter cells, each with average μ
new mutations, and cell divisions repeat until the population
has grown to the final primary tumor size, N1. Nb cells are
randomly sampled from the N1 cells to make up a metastatic
tumor. Note that the above K mutations result in clonal muta-
tions in the primary and metastatic tumors. Exome samples in
the primary and metastatic tumor have mean depth �D and
purity γ. Our proposed method was applied to sites with ≥m1

(min) mutant reads in the primary tumor. We ran 100 simula-
tions for each parameter set. Mouse models have suggested
that metastasis occurs via colonization of one circulating
tumor cell (CTC) cluster rather than serial arrivals of CTC
clusters (or single CTCs) and that the most CTC clusters con-
tain between 2 and 20 tumor cells, with median of 6.6 We
mainly focused on this range of founder sizes in the
simulations.

In Figures 2a–2d, all simulations were performed under the
conditions of N1 = 100, 000, μ = 2.5. First, the effect of varying
mean depth, �D , on the estimation of Nb, was investigated
under K = 50, γ = 1 and m1(min) = 2 (Fig. 2a). The number of
variants generated in the exome samples in the simulations
were realistic, ranging from 1 to around 500 (Supporting
Information Fig. S2B). In cases of Nb = 2, 5, 10 and 20, when
�D≥ 50 , the medians of estimates were very close to the true
values, that is, the estimator is median-unbiased, and the esti-
mation accuracy is good. For example, when the depth was
50, the medians of the estimates (and interquartile ranges;
IQRs) were 5.0 (4.0, 6.0), 10.0 (8.0, 13.0) and 20.0 (15.0,
28.25) for the true Nb = 5, 10 and 20, respectively. The unbi-
asedness with �D≥50 held for larger Nb (for Nb = 1–100, see
Supporting Information Fig. S2a). The estimation accuracy
increased as sequence depth increased. Even when the depth
was �D = 30 , the precision and accuracy were acceptable, and
the medians of estimates (IQRs) were 5.0 (4.0, 6.0), 12.0 (8.0,
18.25) and 21.0 (14.0, 35.0) for the true Nb = 5, 10 and
20, respectively. Under �D= 30 , and particularly for larger
Nb≥30, Nb was biasedly estimated and a reliable estimation
was difficult to obtain (for Nb = 1–100, see Supporting

Table 1. Notations in the model and the simulation study

Notation Description

Nb Founder cell population size, to be estimated.

R Number of mutations used for estimation of Nb.

m1, m2 Mutation read counts for the primary (m1) and
metastatic tumors (m2) at a site.

m1(min) Minimum mutation read count in WES data from the
primary tumor. For estimating Nb, we use only the
sites with m1(min) or more mutant reads.

D1, D2 Sequence depths for the primary (D1) and metastatic
tumors (D2) at a site.

p1, p2 Population VAFs in the primary (p1) and metastatic
tumor (p2) at a site.

f(p1) Probability distribution of p1.

Mb Number of mutant cells among Nb founders.

γ1, γ2 Tumor purity in the WES samples from the primary
(γ1) and metastatic tumors (γ2).

Additional notations in the simulation study

K Number of clonal mutations inherited from the initial
primary tumor.

μ Mutation rate per tumor-cell division in the primary
tumor.

N1 Cell population size in the final primary tumor.

�D Mean sequence depth in the primary and metastatic
tumor.

γ Tumor purity in the WES samples from the primary
and metastatic tumors (γ1 = γ2).

Simulation for selection in the primary tumor

b Birth rate of cells in the primary tumor.

d Death rate of cells in the primary tumor.

Nsub. occ. Primary tumor size at which one advantageous
mutation occurs.

a Coefficient for birth rate. Birth rate of a cell with k
non-neutral mutations is (1 + a)k.

Simulation for selective colonization

psmet
Proportion of mutations with advantage in metastatic
colonization

smet Coefficient for ability of metastatic colonization
(smet > 0). Ability of metastatic colonization of a cell
with l advantageous mutations is (1 + smet)

l.

Simulation for stochastic evolution of metastatic tumor

bmet Birth rate of cells in the metastatic tumor.

dmet Death rate of cells in the metastatic tumor.

Nmet Cell population size in the final metastatic tumor.
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Information Fig. S2a). Note that, for all depth settings, the rel-
ative estimation errors were better for smaller Nb, as you can
see from the smaller log-scaled boxplots of the estimated Nb

in Figure 2a (see also Supporting Information Fig. S2a).
Next, the effects of the tumor purity, γ, on the estimation were

investigated under K = 50, �D = 100 and m1(min) = 2 (Fig. 2b).
When γ≥50%, the estimation was median-unbiased and the
accuracy was acceptable. For example, when γ = 50%, the
medians of the estimates (IQRs) were 5.0 (4.0, 6.0), 10.0 (9.0,
13.0) and 22.0 (17.0, 33.5) for the true Nb = 5, 10 and
20, respectively. In conjunction with the result of Figure 2a,
defining the “effective sequence depth” as the depth multiplied
by tumor purity, the proposed method gave unbiased results

with acceptable accuracy when the effective sequence depth
was 50. In the case of less purity, and large founder size, for
example, γ ≤ 40% and Nb≥30, a reliable estimation was diffi-
cult obtain (for Nb = 1–100, see Supporting Information
Fig. S3).

In the algorithm for Nb estimation, the proportion of clonal
mutations in the primary tumors is fixed at 10% (Implementation
section in Supporting Information Appendix). Practically, how-
ever, clonal mutations vary among tumors. Thus, the impact of
the number of clonal mutations was investigated under
�D= 100, γ = 1 and m1(min) = 2 (Fig. 2c). The number of clonal
mutations in the population, K, had no effect on both the
unbiasedness and the accuracy of estimation of Nb. The same

Figure 2. Valid quantification of founder size, Nb, confirmed by simulations. All simulations used “pure birth model” with the primary tumor
population size, N1 = 100,000, and mutation rate per cell division per exome, μ = 2.5. For each parameter set, number of simulations is 100.
The lower and upper hinges correspond to the first and third quartiles. Boxplots show medians, 25th and 75th percentiles (hinges). The
upper/lower whiskers extend to the largest/smallest value at most 1.5 times of IQR from the upper/lower hinges. (a) Varying mean
sequencing depth, �D for K = 50, γ = 1 and m1(min) = 2. (b) Varying tumor purity, γ, for K = 50, �D = 100 and m1(min) = 2. (c) Varying number of
clonal mutations, K, for �D =100, γ =1 and m1(min) =2. (d) Varying minimum number of mutation reads, m1(min), for K =50, �D =100 and γ = 1.
(Variants with m1(min) or more mutation reads were used.)
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is true for larger Nb with various number of variants in WES
samples (for Nb = 1–100, see Supporting Information Fig. S4).

For the input of the proposed method, we use variants with
m1(min) or more mutation reads in the primary tumor. Then,
the effects of various values of m1(min) on the estimation of
Nb were investigated under K = 50, �D = 100 and γ = 1
(Fig. 2d). The estimation results for up to Nb = 100 were
also assessed (Supporting Information Fig. S5). In the case of
m1(min) = 5, the estimation accuracy was worse than those for
m1(min) < 5. The decreased accuracy was not due to lower
numbers of variants used for input (for the case of larger
number of variants, see Supporting Information Fig. S6
replacing μ = 2.5 with μ = 12.5). For the case of including sin-
gletons in the input (m1(min) = 1), a small upward bias can
occur (for more clear bias in the large Nb, see Supporting
Information Figure S5). Thus, we recommend the criteria of
“at least 2 or 3 mutation read counts,” m1(min) = 2 or 3, for the
input of the proposed method.

The simulations above were performed mainly under the con-
ditions of the primary tumor size,N1 = 100, 000 andmutation rate,
μ = 2.5. When values of N1 ranging from 1,000 to 300,000 were
used under �D = 100, μ = 2.5, K = 50, γ = 1, and m1(min) = 2,
the behavior of estimates were generally the same as that
under N1 = 100, 000 (Supporting Information Fig. S7). When
values of μ ranging from 0.5 to 10 were used under �D = 100,
N1 = 100, 000 , K = 50, γ = 1 and m1(min) = 2, the behavior
of estimates were generally the same as that under μ = 2.5
although the estimation accuracy was a little lower as the
mutation rate is small (Supporting Information Fig. S8).

Robustness for cell death and selection in the primary
tumor evolution
So far, in the development of primary tumor, it was assumed
there was no cell death and no difference in cell division rates.
The violation of the assumptions might make estimation of Nb

difficult, since VAF distribution, f(p1), can potentially deviate
from the postulated distribution under “neutral” evolution with
high cell birth rate of tumor population. Here, we investigated
the consequences of this violation, keeping �D = 100 and the all
other settings as in Figures 2a, that is, μ = 2.5, K = 50, γ = 1
and m1(min) = 2, N1 = 100, 000. We ran 100 simulations for
each parameter set.

First, to investigate the effect of “cell death,” a death rate, d
and a birth rate, b, per unit time were introduced. Limiting the
case to d < b, which means growth of the tumor population, vari-
ous values, d = 0.01, 0.1, 0.2, 0.5, 0.7, 0.9 and 0.99 against unit
birth rate, b = 1, were assumed (the ratio of d to b define the
evolutional system). High death rates, that is, d > 0.7, might
be more realistic.11,12 Exceptionally, N1 = 10,000 was used for
d = 0.99 due to computer capacity limitations. For all death
rates, the estimator for the founder size, Nb, is median-unbiased
and the estimation accuracy is sufficient, as with the case of no
death (d = 0; Supporting Information Fig. S9a). This is due to the

fact that VAF distribution for d 6¼ 0 does not vary greatly from
that of the no death case (Supporting Information Figs. S9b–S9d).

Second, we considered the case that one positively selective
subclone in the primary tumor appears in the WES samples.13

One starting primary tumor cell with b = 1, d = 0.1 are assumed
to evolve and at the time when the population reaches a particular
population size, Nsub. occ., one selectively advantageous mutation
occurs. The subclone with the advantageous mutation will have a
larger birth rate, b = 2, 5 or 10. The values of Nsub. occ. are deter-
mined so that corresponding frequencies of the selective muta-
tion are low (~2%), middle (~16%) and high (~30%) at the WES
sampling point. Although distributions of VAF were shifted to
the frequency of the selective mutation (Supporting Information
Figs. S10–S12b,S12c, S12d), the estimator of the founder size, Nb,
is median-unbiased and the estimation accuracy is sufficient, as
in the case of no selective subclone (Supporting Information
Figs. S10–S12a).

Finally, we considered the case that many mutations with small
effects are accumulated in the developmental process of the pri-
mary tumor. Neutral mutations and non-neutral mutations occur
with the probabilities of 0.3 and 0.7, respectively, which mimics
synonymous and nonsynonymousmutation rates in exon regions.

The birth rate of a cell with k non-neutral mutations is given
by (1 + a)k, where a is a coefficient for birth rate and set as
a = � 0.01, � 0.05, � 0.1, � 0.15 and � 0.2. A positive and
negative value of a denotes advantageous and deleterious muta-
tions, respectively. The death rate is always set to be one-tenth of
population mean of birth rates. Advantageous mutations, partic-
ularly when a≥0.1, shift VAF distribution toward intermediate
frequency (Supporting Information Figs. S13b–S13k). For delete-
rious or advantageous mutations with a ≤ 0.1, the estimator for
the founder size,Nb, is median-unbiased and the estimation accu-
racy is sufficient, as in the case of no selection, a = 0 (Supporting
Information Fig. S13a). When strong selection is observed
(a≥0.15), the estimator is biased upwards and the accuracy is low.
However, it is unrealistic that 70% of all mutations would have
effects as strong as a≥0.15.

Robustness for selective colonization in the metastasis
tumor
The proposed method assumes that the founders of metastatic
tumor are randomly sampled from the primary tumor popula-
tion during the process of metastatic colonization. Practically,
however, some mutations might be preferentially selected.
Here, we investigated the consequences of selective coloniza-
tion (Supporting Information Fig. S14). The proportion psmet

of all mutations in the primary tumor populations are advan-
tageous for metastatic colonization and increase metastatic
ability of cells multiplicatively by (1 + smet) (see Supporting
Information Appendix for more details). The other parame-
ters were set as in Figure 2a, that is, μ = 2.5, K = 50, γ = 1 and
m1(min) = 2, �D= 100, N1 = 100, 000. We ran 100 simulations
for each parameter set.
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When psmet
= 0:1%, which corresponds to around 530 selec-

tive mutations in the primary tumor population, the estimator
for Nb is almost median-unbiased and the estimation accuracy is
sufficient as is the case of neutral ones, even for very strong selec-
tion, smet = 100 (Supporting Information Fig. S14a). When
psmet

= 1%, which corresponds to around 5,300 selective muta-

tions in the primary tumor populations, and smet≤ 5, the esti-
mator for Nb is robust and comparable to the neutral case.
However, when selection is strong (smet > 5), the estimator for
Nb clearly underestimates the true founder size (Supporting
Information Fig. S14d). When substantial fraction of muta-
tions is advantageous, psmet

= 10% , which corresponds to

around 53,000 selective mutations in the primary tumor
populations, the estimator for Nb is robust and comparable to
the neutral case for smet≤ 1. However, when smet > 1, the esti-
mator for Nb again clearly underestimates the true founder
size (Supporting Information Fig. S14g). In summary, except
for the cases of numerous advantageous mutations and/or a
strong selection coefficient, the proposed method gave robust
estimates.

Behavior of the proposed estimator in the stochastic
evolution of the metastatic tumor
The proposed model attributes all genetic drift in metastatic
tumor evolution to a “single bottleneck,” and the estimate of “the
founder size” reflects those drifts. Nevertheless, genetic drift due
to stochastic evolution of the metastatic tumor should occur
during an early stage of development of the metastatic tumor.
Here, we investigated the behavior of the proposed estimator
in the birth and death processes for metastatic development
(Supporting Information Fig. S15). As with the primary tumor, a
metastatic founder population consisting of Nb cells are assumed
to develop according to the birth and death process, with birth
rate, bmet and, death rate, dmet, per unit time. Cell divisions repeat
until the metastatic tumor has grown to the final primary tumor
size, Nmet, at which exome sequencing is done. Limiting the case
to dmet < bmet, whichmeans growth of the tumor population, var-
ious values, dmet = 0.0–0.9 against unit birth rate, bmet = 1 and
Nmet = 10,000 were assumed (the ratio of dmet to bmet defines the
evolutional system). The other parameters were set as in
Figure 2a, that is, μ = 2.5, K = 50, γ = 1 andm1(min) = 2, �D= 100,
N1 = 100,000. We ran 100 simulations for each parameter set.

In the case of dmet = 0 (i.e., the birth only process),
although the estimation accuracy gets worse compared to the
case of no stochastic metastatic evolution (Fig. 2a), the estima-
tor for the founder size, Nb, remains nearly median-unbiased
(Supporting Information Fig. S15). In addition to cell birth, if
slight to moderate cell death is introduced (dmet ≤ 0.1), Nb

remains nearly median-unbiasedly estimated. For example,
when dmet = 0.1, the medians of the estimates (IQRs) were
6.0 (5.0, 7.0), 9.0 (8.0, 11.0) and 16.0 (14.0, 18.0) for the true
Nb = 5, 10 and 20, respectively. However, in the case of

substantial cell death (dmet > 0.1), the estimator for Nb clearly
underestimates the true founder size. For example, when
dmet = 0.5, the medians of the estimates (IQRs) were 3.0 (2.0,
5.0), 7.0 (5.0, 8.0) and 11.0 (9.0, 12.25) for the true Nb = 5,
10 and 20, respectively. This is expected as substantial genetic
drift due to cell death occur during early stage of development
of metastatic tumor. Actually, when the death rate is large
(e.g., dmet > 0.1), substantial founder cells drop out of the met-
astatic population in the early stage (~100-cell stage;
Supporting Information Fig. S16). Note that a small amount
of founder cells drop out in sufficiently large populations and
the proposed method gives the same results irrespective of the
final primary tumor size for Nmet≥1,000 (data not shown).

Real data analysis for CRC patients
We used high-depth WES data from a study of four CRC
patients, which included at least one primary and metachronous
metastatic tumor sample per patient.8 For each patient, the meta-
static tumor(s) were sampled 1–3 years after the removal of the
primary tumor(s). Information for called mutations of each
tumor were derived from the article.8 As follows, we estimated
the founder population size ofmetastatic (or lymph node) tumors
using all pairs of primary and metastatic or lymph node tumors
in each patient.

We applied quality-controls to each tumor exome data.
Only called mutations with a sequencing depth of 300 or less
and no copy number aberrations were considered. The second
criterion ensured diploid tumor sequences, which is assumed
in the current model. Copy number aberrations were retrieved
from the article.8 For mutation data meeting the criteria, we
estimated tumor purities using PurBayes.14 Purity estimates
ranged from 0.147 to 0.821 (Supporting Information
Table S1). Next, we conducted quality-controls on the exome
data of each primary and metastatic (or lymph node) tumor
pair. Mutation sites with at least two mutation reads in the
primary tumor, that is, m1(min) = 2 and no mutation read in
the normal sample were considered for further analysis. After
quality-control, the number of mutations ranged from 70 to
220 and an average sequence depth of 75.61–127.64 and
90.96–144.37 in the primary and metastatic tumor exomes,
respectively (Supporting Information Table S2). The observed
VAFs were somewhat correlated between the primary and
metastatic tumors in each patient (Supporting Information
Fig. S17, left).

For exome pairs with sufficient purity estimates (averaged
purity estimate ≥0.3) that passed quality control, we estimated
the founder population size of the metastatic (or lymph node)
tumors using the proposed method (Fig. 3). Founder popula-
tion sizes were estimated to be from 3 to 17 as MLEs,
supporting the “multi-cellular origin” of metastatic tumors.
Although founder sizes varied from sample pair to sample
pair, similar estimates were obtained for each patient, which
supported our implicit assumption of well-mixed tumors to
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some extent. All pairs of exomes from patient A01 gave con-
sistently large founder sizes, ranging from 11 to 17. Exception-
ally, for A04 the pairs “P1 and M1” and “P1 and M2” also
had relatively larger founder estimates of 10, while other pairs
from the patient ranged from 3 to 5. Although estimates of
founder sizes for exome pairs with low purity estimates (aver-
aged purity estimate <0.3) were also obtained (Supporting
Information Fig. S18 for estimates using all exome pairs; for
VAFs, Supporting Information Figure S17, right), those were
not considered reliable because of the low purities.

Sensitivity and validation analysis for CRC data
We conducted three types of sensitivity analysis and one vali-
dation analysis to examine the stability/validity of our main
results (Fig. 3). First, to see the impact of copy number aber-
rations, we estimated the founder population size using muta-
tions in the all WES data (summarized in Supporting
Information Table S3) without limiting diploid region. The
number of all mutations averaged ~20% higher than those
limited to diploid regions (see “# of mutations” of Supporting
Information Tables S2 and S3). The estimates using all WES
data (Supporting Information Fig. S19) were consistent with

the main results (Fig. 3) and the impact of a small portion of
copy number aberrations was very small.

In the main results, only mutations with two or more than
mutation reads in the primary tumor were considered, that is,
m1(min) = 2. However, potential mutation sites supported with
only a small number of mutation reads may be false positives.
For example, the somatic mutation caller, Mutect,15 with the
default settings, does not call sites supported by <5 mutation
reads as true mutations at a sequence depth of 100 since the
“tumor LOD scores” (log-10 likelihood ratios of a model hav-
ing mutations to no mutation model in the tumor population)
fails to reach its default threshold of 6.3. To examine the
impact of this uncertainty, we assumed that 5–20% of poten-
tial mutation sites supported by 2, 3 or 4 mutation reads in
the primary tumor were calling errors (erroneous sites). In the
case that the erroneous sites in the metastatic tumor were
forced to have zero mutation read, the estimates did not differ
greatly from the main results, although lower estimates were
obtained as the error rates increased (Supporting Information
Fig. S20). Next, the erroneous sites in the metastatic tumor
were assumed to have the same number of mutation reads as
the primary tumor. In this case, the (point) estimates were the
same as the main result at any error rates (Supporting Infor-
mation Fig. S21). Even when the erroneous sites in the meta-
static tumor had double the number of mutation reads in the
primary tumor, the estimates changed very little compared to
the main results (Supporting Information Fig. S22).

As a third sensitivity analysis, since the proposed method
uses changes in VAF from the primary to metastatic tumor,
clonal mutations are not informative on the founder size
could bias the estimate. In the simulation study, the number
of clonal mutations was shown not to affect the estimate
(Fig. 2c; Supporting Information Fig. S4) even when we arbi-
trarily assumed 10% of mutations in the primary tumor were
clonal. Defining mutations with observed VAFs > purity esti-
mate × 0.5 × 0.9 as clonal, we confirmed that the estimates
without using clonal mutations were similar to the main
results, except for the estimates for A02 which were larger
than the main results (Supporting Information Fig. S23).

There are mutations that are absent in the primary tumor
sample but are present in the metastatic one. For each primary
and metastatic tumor pair, we compared such VAFs in the
metastatic tumor samples to those from the corresponding sim-
ulation based on the “pure birth tumor evolution model”
described above (Supporting Information Fig. S24). If the pro-
posed model is relevant, the distributions of observed and sim-
ulated VAFs should correspond well with each other. For
matched primary and metastatic pairs, the simulations were
conducted using the estimated purities (Supporting Information
Table S1) and founder size (Fig. 3; Supporting Information
Fig. S18), and randomly assigning the depths from matched
pairs for each mutation (for the summary of depths, see
Supporting Information Table S2), keeping the all other settings
as in Figure 2a, that is, μ = 2.5, K = 50 and m1(min) = 2,

Figure 3. Estimated founder sizes (Nb) for the four colorectal cancer
reported by Wei et al. (2017). Results using only diploid regions
(excluding copy number aberrations) are shown. “P”, “M” and “L”
means primary, metastatic and lymph node tumors. Circles with bars
indicate maximum likelihood estimates of Nb and these 90%
confidence intervals, based on 1,000 nonparametric bootstrap
samples.
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N1 = 100,000. We ran 100 simulations for each parameter set.
For many pairs, the distributions were relatively similar to each
other: medians of the observed VAFs are generally close to sim-
ulated ones (Spearman’s ρ = 0.534, p = 1.6 × 10–4). However,
in many cases, the variations of observed VAFs were different
from simulated ones, and the observations tended toward
larger VAFs.

Discussion
We developed a method to quantify the founder population size
of metastasis using paired WES data from primary and
metachronous metastatic tumors. This method, implicitly using
the fact that higher (lower) genetic similarity between the primary
and metastatic tumors results from a larger (smaller) founder size
(Fig. 1c), unbiasedly estimates the founder population size with
sufficient accuracy in the range of realistic founder sizes and set-
tings, for example, sequencing depth, purity and number of clonal
mutations (Fig. 2 and Supporting Information Figs. S2–S8). The
method is also robust to the realistic model of primary tumor evo-
lution, including cell death, selection among cells in primary
tumor evolution and moderate selective colonization (Supporting
Information Figs. S9–S14). Note that in the cases of numerous
advantageous mutations and/or a strong selection coefficient, the
proposed method underestimates the true founder size for the
following reason: Cells with many advantageous mutations,
which have high probabilities of colonization, tend to be close rel-
atives of each other and have similar mutational composition;
Thus, “effective” number of founder cells should be smaller than
“actual” number.

Although relative estimation errors becomeworse as the foun-
der size increases, this weakness is overcome by deeper sequenc-
ing, that is, WES data with ×150 depth give sufficient accuracy
even for a founder size of 100 (Supporting Information Fig. S1).
As several advanced studies have shown,7–9,13,16,17 the proposed
method also shows the advantage of using VAF information
(mutation read counts and depths) rather than using only the
presence or absence of mutations, to infer the tumor evolutionary
process.

In real data analysis of four CRC patients, we restricted the
analysis to pairs of primary and metastatic (or lymph node)
tumors with averaged purity ≥0.3 (Fig. 3) since while the esti-
mation is unbiased, variance becomes large when purity ~0.3
(Fig. 2) and further increases when purity <0.3. In fact, the
90% confidence intervals for the tumors with averaged purity
<0.3 tended to be large, for example, for the pairs of P1 and
L1 (L2) for the patient A2 (Supporting Information Fig. S18).

Our method supports the multi-cellular origin of metastatic
tumors, which is consistent with the observations of recentmouse
model studies4–6 andWES studies.7,8 Our method further quanti-
fied the founder population sizes to ranging from 3 to 17 cells for
CRC subjects (Fig. 3).8 The wide-range of founder sizes in metas-
tasis might result in large variations of genetic similarity between
primary and metastatic tumors and cause variation in drug

response between primary and metastatic tumors. In particular,
when the founder population size is small, variants with drasti-
cally increased VAFs in the metastatic tumors might lead to diffi-
culty in treatment.

In the context of population genetics, demographic history
is a confounding factor for detecting and quantifying natural
selection acting on the genome.18,19 The same should be true
for the evolution of a tumor population. A potential advantage
of the proposed method is to identify selectively recruited
mutations in the metastatic tumors under the inferred demo-
graphic model for tumor populations, that is, the estimated
founder size.

The limitations of our method are that it assumes the
model of single bottleneck occurs just after WES in the pri-
mary tumor and is followed by rapid growth for metastatic
colonization. However, genetic drift (randomly fluctuation of
VAFs) may occur in the period between the first exome sam-
pling and metastatic occurrence or between metastatic occur-
rence and the second exome sampling. Particularly in the
latter, genetic drift may substantially shift the VAFs, or a sub-
stantial fraction of founder cells might die off due to genetic
drift early after metastatic colonization. Our model attributes
such genetic drifts to a “single bottleneck,” and the estimate of
“the founder size” reflects those drifts. In the simulation for
stochastic metastatic tumor evolution showed that for a death
rate ≦0.1 against unit the birth rate, the proposed method
gives nearly unbiased estimates of founder size (Supporting
Information Fig. S15). For death rate >0.1, the true founder
size was underestimated due to non-negligible genetic drift
(resulting in reducing the metastatic founder cells) during the
early stages of development of metastatic tumor (~100-cell
stage; Supporting Information Fig. S16). In addition, with
respect to mutations that are absent in the primary tumor
sample but are present in the metastatic tumor sample, while
the central tendencies of the observed VAF distributions in
the metastatic tumors were close to the simulated ones, the
observed variabilities were larger than simulated ones
(Supporting Information Fig. S24). This may show that there
is room for improvement on the present simple model, for
example, we should incorporate the stochastic metastatic evo-
lution into the present model. Furthermore, there are possibly
more complex cell migration patterns, including reseeding or
multisource seeding,17,20 which are also beyond the present
study, but worth investigating.
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