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ARTICLE INFO ABSTRACT

Keywords: Lower-grade gliomas (LGGs) have a good prognosis with a wide range of overall survival (OS) outcomes. An

Lower-grade gliomas accurate prognostic system can better predict survival time. An RNA-Sequencing (RNA-seq) prognostic signature

Imrf‘““e ) ) showed a better predictive power than clinical predictor models. A signature constructed using gene pairs can

Lvsrf:ti:jene co-expression network analysis transcend changes from biological heterogeneity, technical biases, and different measurement platforms. RNA-

ngngsis seq coupled with corresponding clinical information were extracted from The Cancer Genome Atlas (TCGA)
and the Chinese Glioma Genome Atlas (CGGA). Immune-related gene pairs (IRGPs) were used to establish a
prognostic signature through univariate and multivariate Cox proportional hazards regression. Weighted gene
co-expression network analysis (WGCNA) was used to evaluate module eigengenes correlating with immune
cell infiltration and to construct gene co-expression networks. Samples in the training and testing cohorts were
dichotomized into high- and low-risk groups. Risk score was identified as an independent predictor, and exhibited
a closed relationship with prognosis. WGCNA presented a gene set that was positively correlated with age, WHO
grade, isocitrate dehydrogenase (IDH) mutation status, 1p/19 codeletion, risk score, and immune cell infiltrations
(CD4 T cells, B cells, dendritic cells, and macrophages). A nomogram comprising of age, WHO grade, 1p/19q
codeletion, and three gene pairs (BIRC5|SSTR2, BMP2|TNFRSF12A, and NRG3|TGFB2) was established as a tool
for predicting OS. The IPGPs signature, which is associated with immune cell infiltration, is a novel tailored tool
for individual-level prediction.

Introduction Therapeutic options for glioma are continuously being evaluated and

novel surgical procedures are gradually being advanced. For example,

Glioma, the most common malignant brain tumor, derives from glial
or neural stem cells. Glial cells surround and support the neurons, trans-
mitting electric and chemical signals in the central nervous system. The
World Health Organization (WHO) classification grades glioma from I-
IV based on the extent of glioma cell resemblance to normal cells, mitotic
activity, microvascular proliferation, and necrosis among others. The
2016 WHO classification is more scientific in grading as it considered
the status of some molecular markers [1]. WHO grade I glioma cells cor-
respond to well-differentiated glial tumors, whereas WHO grade II and
111, together, are together known as lower-grade glioma. WHO grade IV
includes two types of glioblastoma (GBM): Secondary GBM originating
from lower-grade glioma and primary GBM [2]. Glioma symptoms vary
depending on tumor location and size. Common symptoms are seizures,
headaches, limb weakness, speech problems, and memory loss.
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awake craniotomy and intraoperative imaging aids in the identification
of tumor boundaries and key brain areas, thereby enhancing tumor re-
section while preventing nerve function deficits [3,4]. However, despite
advances in therapy, glioma prognosis is still poor and unpredictable.
The prognosis of lower-grade glioma is better than that of GBM, with
better survival outcomes. Therefore, a risk assessment tool for prog-
nostic prediction of lower-grade glioma may be beneficial. However,
concordance of different clinical criteria for risk stratification is low as
clinical trials using clinical factors (age, tumor diameter, and whether
the tumor crosses the midline among others) are not comparable [5].
Therefore, a unified risk management for survival prediction is neces-
sary. Various survival predictive signatures using RNA sequences have
been shown to be powerful survival prediction tools [6-10]. Survival
predictive signatures can be used to create novel and innovative clinical
indicators to improve the concordance of different criteria.
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Most therapeutic options for gliomas have limited efficacies. Novel
immunostimulatory strategies attract more attention due to their sensi-
tive anti-glioma responses compared to conventional therapies [11]. Ge-
nomic studies have revealed the immunological mechanisms of glioma
growth, leading to the identification for glioma immune checkpoints
[6,12]. The tumor immune risk stratification management is important
for elucidating immunotherapeutic mechanisms. A simple and feasi-
ble individualized prognostic signature has a more valuable function in
clinical trials. However, practical applications of predictive signatures
are limited. This is because differences in measurement platforms af-
fect sample homogenization, making the sample risk score to become
cumbersome and unstable. If references were from a single sample, de-
fects from the prognostic predictive system caused by high biological
heterogeneities, technical biases, and different measurement platforms,
would be overcome. Fortunately, gene pairs based on relative expres-
sion levels between two genes can transcend these challenges [13]. This
study presents an immune gene pair signature established using machine
learning. It can be used for individual OS predictions for glioma patients.
Resource can be saved accurate predictive signatures for prognosis.

Material and methods
Identification of immune-related gene pairs

RNA-sequence data, and the corresponding clinical information in
the prognostic signature were download from the Cancer Genome At-
las (TCGA) (https://portal.gdc.cancer.gov/) and the Chinese Glioma
Genome Atlas (CGGA) (http://www.cgga.org.cn/). Samples with miss-
ing clinical data, including age, sex, IDH mutation status, survival
time, or with survival time < 90 days were excluded. Differences in
clinical characteristics was analyzed by SPSS (Version 20). p < 0.05
was set as the threshold for statistical significance. The gene set with
immune-related genes was identified using the IMMPORT website
(https://www.immport.org/). Samples in TCGA were assigned to the
training cohort, whereas samples in CGGA were assigned to the testing
cohort.

Establishment and validation of the prognostic signature

Immune-related prognostic genes with p < 0.05 identified using Cox
regression analysis and Kaplan-Meier (KM) survival analysis in TCGA
and CGGA were separately screened. Then, these genes were used to in-
tersect to obtain a new gene set. Probably, immune-related gene pairs
(IRGPs) had a natural advantage, thereby eliminating the necessity for
normalization in individual prognostic analysis. IRGPs were defined
through pair-wise comparisons based on gene expression levels in the
same sample [13]. The IRGPs were scored as “1” if the expressions were
IRG1>IRG2, otherwise, they would “0”. In two special cases, the IRGPs
were calculated as 0 and 1, and were excluded to reduce bias or avoid
unrepeatability. Univariate and multivariate Cox proportional hazards
regression analyses were performed to establish a prognostic model. The
risk score for each sample was calculated using the model formula [6].
The optimal cut-off value of the 3-year area under the curve (AUC) was
identified as the point at which the sum of specificity and sensitivity
was maximal. Then, samples were assigned into groups of two for fur-
ther analyses.

Validation of the prognostic signature

External and internal verification were used to evaluate the predic-
tive ability of the signature. Two KM survival curves for OS were first
compared using the log-rank test (p < 0.05) [14], while the 1-, 3-, and
5-year time-dependent receiver operating characteristic (ROC) curves
were visualized in the training and testing cohorts [15]. The risk score
coupled with five clinical factors (age, sex, WHO grade, IDH mutation
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status, and 1p/19q codeletion status) was tested for independent assess-
ment using univariate and multivariate Cox regression analyses. Princi-
pal component analysis (PCA), a publicly known source apportionment
method, was performed for hierarchical clustering [16-18].

Establishment and validation of the nomogram

A nomogram for survival prediction was established based on the
prognostic factors, and was validated in the testing cohort. A calibration
curve plot was used to validate the predictive accuracy and the concor-
dance index [19,20]. Net reclassification index (NRI) [21], combined
with decision curve analysis (DCA) [22] were performed to choosing
select an optimized signature. The source of the prognostic signature
was transferred to a webpage, shiny (https://shiny.rstudio.com/), us-
ing the “DynNom” R package, which makes it easy for users to predict
individual prognosis.

Risk score immune cell infiltration

To establish a landscape of risk scores and infiltrating immune cells,
infiltration intensity was assessed through the web app, Immune Cell
Abundance Identifier (immuneCellAl), by uploading the LGG RNA-seq
data [23]. Differential distributions of 24 types of immune cells between
the low-risk and high-risk groups were visualized. Moreover, differen-
tial expression levels of six established immune checkpoint genes (CD48,
CD274, cytotoxic T lymphocyte antigen 4 (CTLA4), T cell immunoglob-
ulin domain and mucin domain 3 (TIM3), long non-coding RNA MIR
155 host gene (MIR155HG), and programmed cell death 1 (PD1)) in the
high-risk and low-risk groups were analyzed (p < 0.05).

Weighted gene co-expression network analysis (WGCNA)

WGCNA, firstly proposed by Zhang and Horvath [24], is a power-
ful tool for evaluating correlations among genes by assigning a connec-
tion weight. Compare to traditional methods, it is biologically mean-
ingful [25,26]. The top 25% variant median absolute deviation sample
were screened for WGCNA. Sample clustering was performed to detect
outliers in the data, and to reduce the impact of heterogeneity. The
best-correlated relationship between the WGCNA module and biolog-
ical traits (including IDH mutation status, 1p/19q codeletions status,
CDA4 T cells, B cells, and dendritic cells, macrophage among others) was
selected for biological processes analyses. The network was developed
through co-expression relationships that were achieved using WGCNA
and visualized in Cytoscape v3.7.0 [27].

Gene ontology analysis

GO analysis is a biological method for evaluating the mechanisms
involved in three domains: biological process (BP), cellular component
(CQC), and molecular functions (MF). Hub genes with a weight larger than
0.20 in the target module were screened using GO analysis to evaluate
module function in WGCNA.

Results
Prognostic signature establishment

A total of 298 immune genes that were screened from the TCGA were
associated with overall survival outcomes, 44 of which were identified
as intersecting genes in CGGA. Eight pair-wise immune genes were ex-
tracted for establishing the prognostic signature (Table 1). The prefer-
able cutoff value for distinguishing the high-risk group (n = 100) and
low-risk group (n = 359) in the TCGA was —0.145 (Fig. 1a,c). Similarly,
a total of 118 samples were defined as high-risk while 414 samples were
involved in the low-risk set in CGGA. A total of 449 samples in TCGA
and 459 samples in CGGA were finally included by excluding the sam-
ples without clinical indication (Table 2).
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Table 1 Table 2
Eight gene pairs and coefficients in the prognostic signature. The clinical characteristics of included samples in TCGA and CGGA.
Gene Pairs Coef Gene Pairs Coef Variables TCGA (449) CGGA (459)  Value P value
PDIA2|WNT5A —-0.097987276 PDIA2|SLC11A1 —0.044735657 Sex 1.056 0.034
LCNL1|CTF1 —-0.056923104 MSR1|CHGA 0.004112451 Female 203 192
BIRC5|SSTR2 0.42711727 BMP2|TGFB2 -0.014125758 Male 246 267
BMP2|TNFRSF12A  -0.460456827  NRG3|TGFB2 ~0.54034719 Age (year)
<40 203 221 0.786 0.375
PDIA2: protein disulfide isomerase family A member 2, WNT5A: Wnt >40 246 238
family member 5A, LCNL1: lipocalin like 1, CTF1l:cardiotrophin 1, 0S (year, median) 6.67 6.85 2.583 0.108
SSTR2:somatostatin receptor 2, BIRC5:baculoviral IAP repeat containing 5, Histology type 121.030  <0.001
BMP2: bone morphogenetic protein 2, TNFRSF12A:TNF receptor superfam- Astrocytoma 148 150
ily member 12A, MSR1:macrophage scavenger receptor 1, TNFRSF12A:TNF Olfgodendroglloma 146 77
receptor superfamily member 12A, SLC11A1: solute carrier family 11 mem- Oligoastrocytomas 104 232
ber 1, CHGA: chromogranin A, TGFB2:transforming growth factor beta ng grade 21 0 0.014 0.096
2, BI}/II?Z:bone morphogenetic protein 2, BIRC5: baculoviral IAP repeat WHO II 215 218
containing 5. WHO 11l 234 241
IDH mutation 5.645 0.018
Yes 364 342
Survival prediction assessment and validation No 85 117
1p/19 codeletion 0.504 0.478
Th . . . Yes 309 319
e survival rate of the low-risk group was higher than that of the No 150 140

high-risk group for the training (Fig. 1d) and testing cohorts (Fig. 1e),
especially in the definite period of the early course of the disease. AUC
values of the signature for 1-, 3-, and 5-year were 0.902, 0.878, and
0.799, respectively. In the testing cohort, AUC values of 1-, 3-, and 5-
year were 0.778, 0.806, and 0.778 respectively, indicating an accurate
prediction from the signature (Fig. 1f,g). The risk score was a definite
prognostic factor that was independent of age, sex, WHO grade classifi-
cation, IDH mutation status, and 1p/19q codeletion status, both in the

training and testing cohorts (Fig. 1h,i).

Contribution of the signature to immune status

Distribution patterns of all the genes, as well as immune-related
genes in the TCGA and intersecting immune-related genes in CGGA,

NA: Not available.

were analyzed using three-dimensional principal component analysis
(PCA). Compared to the immune-related genes set (Fig. 2b) and all the
other genes set (Fig. 2c), it was found that the intersecting immune-
related genes involved in signature establishment (Fig. 2a) could be used
to divide the samples into low-risk and high-risk groups. The correlation
between risk score and immune cell infiltrations is presented in the vi-
olin plot. Seventy-five percent (18/24) of the immune cells exhibited a
positive or negative correlation with the risk score (p < 0.05) (Fig. 2d).
Significant immune cells in the plot include innate immune cells such
as macrophages and DC cells as well as adaptive immune cells such as B
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cells and CD4 T cells. Expression levels of six immune checkpoint genes
(CD48, CD274, CTLA4, TIM3, MIR155HG, and PD1) were higher in the
high-risk group than in the low-risk group (Fig. 2e-j).

Gene co-expression network and hub genes

Hierarchical clustering and Dynamic Branch Cutting clustered the
genes into 13 modules representing different gene sets with varying sizes
from 57 to 965 genes (Fig. 3a). The correlation between module eigen-
genes and risk score, macrophages, DC cells, B cells, and CD4 T cells, was
used to establish a discriminatory module for prognostic mechanisms. In
Fig. 3b, the yellow module is bound with the risk score; macrophages,
DC cells, B cells, and CD4 T cells have the highest module membership
(MM) than other modules. The gene co-expression network was estab-
lished based on the hub genes whose weight was >0.20 (Supplement
material 1). In the complicated co-expression network constructed us-
ing 87 genes from the yellow module, most of the genes were found to
be differential expression genes (DEGs) with a [log2FC|> 0.6 between
the high-risk and low-risk groups (Fig. 4). Moreover, 65 (65/87) genes
were correlated with OS. Therefore, a new gene set comprising 87 hub
genes was used for GO enrichment analyses. The hub genes were en-
riched in immune-related functions, such as neutrophil activation, and
neutrophil degranulation, neutrophil-mediated immunity among others
(Fig. 5). More GO functions can be found in the Supplement material 2.

Optimization of the prognostic model

Three gene pairs (BIRC5|SSTR2, BMP2|TNFRSF12A, NRG3|TGFB2)
accounted for the vast majority of the proportions when calculating the

High risk

Low risk

Table 3
The NRI of risk-prediction in model A and B.
95%Cl 95%CI
Year NRI Lower Upper Year NRI Lower Upper
1 -0.020 -0.104  0.010 2 —-0.067 -0.201 0.042
3 -0.160 -0.314 0.018 4  -0.162 —-0.289 —-0.044
5 -0.174 -0.400  0.007 6 -0.193 —-0.462 0.024

NRI: Net reclassification index, CI: confidence intervals.

risk score by comparing coefficients of the eight pairs of immune-related
genes. Two models were built in this study. Model A, comprising age,
WHO grade, 1p/19q codeletion status, IDH mutation status, as well as
risk score and Model B comprising age, WHO grade, 1p/19q codeletion
status, BIRC5|SSTR2, BMP2|TNFRSF12A, NRG3|TGFB2. Model B was
progressive with fewer ingredients than model A. The 4-year NRI in-
dicated that the predictive ability of model A was better, with 16.2%
improvement, whereas the NRIs of 1-, 2-, 3-, 5- and 6-year were not
significantly different between model A and B (Table 3). DCA curves
indicated that prognostic models had better predictive abilities within a
certain survival rate range, and prognostic assessment abilities between
model A and model B were almost the same (Fig. 6).

Nomogram establishment and validation

Six ingredients, including age, WHO grade, 1p/19q codeletion,
BIRC5|SSTR2, BMP2|TNFRSF12A, and NRG3|TGFB2 were selected
to establish the nomogram for predicting the 1-, 3-, and 5-year
survival rates (Fig. 7a). The C-index of the Cox model was 0.874,
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and the calibration curves of 1-, 3- and 5-year had goodness-off-
fit (Fig. 7b-f). Web applications of our signature can be access to
https://soochowneuro.shinyapps.io/immunepairB/?_ga=2.184366244.
349859851.1606627026-2101425941.1599397013 for predicting the
OS.

Discussion

The criteria proposed by the Radiation Therapy Oncology Group
(RTOC) and the European Organization for Research and Treatment of
Cancer (EORTC) were useful for predicting the prognosis of low-grade
glioma [28,29]. However, Franceschi et al. [5] insisted that the crite-
ria were not comparable due to poor concordance between RTOC and
EORTC. As such, these two criteria are not as strong as expected. We
propose an IRGPs prognostic signature that can decrease the effects of

CXCL16

~ RPN

_ SENHOgngy SELPL

TNFRSF1B
)

x

inherent biological sample heterogeneity, differences in measurement
platforms, and technical bias, but may utilize more probable immuno-
logical mechanisms to improve the prognosis. Cox proportional hazards
regression analyses were used to create a new analogous clinical prog-
nostic predictor called “risk score”. The WGCNA provided new insights
by integrating gene sets, clinical factors, and immune cell infiltration.
Clinical applications of traditional prognostic signatures are limited
because of the differences in biological heterogeneity and laboratory
technologies. A gene pair is a remodeling that quantifies the expression
of two genes from the same sample with the same laboratory conditions.
Gene pair is an expression of the targeted and reference genes from
the one sample. Signatures that resemble gene pairs have been used in
prognostic evaluations of various cancers [30-33]. Moreover, the con-
cordance between the 1p/19 codeletion-associated immune prognostic
signature developed in our earlier study [6] and the current gene pairs
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Fig. 5. GO analysis to the 87 DEGs between
high-risk group and low-risk group shows the
top 10 listed biological functions in BP, CC, and
MF.

Fig. 6. The model A shows that age, IDH muta-
tion, 1p/19q codeletion, WHO grade, and risk
score are included as reference factors from
each variable axis. The sum values in the axis
including five factors can predicted the 1-, 3-,
and 5-year survival rates (a). Similar, the model
B including age, WHO Grade, 1p/19q codele-
tion status, BIRC5|SSTR2, BMP2|TNFRSF12A,
and NRG3|TGFB2 can predict the 1-, 3-, and 5-
year survival rates (b).
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Fig. 7. Internal and external validation using
calibration curves for predicting 1-, 3-, and 5-
year survival in the TCGA (a,c) and CGGA (d,f).
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signature was greatly improved than that of the EORTC and RTOG cri-
teria [5]. We found that 93 (63.3%) glioma patients in the high-risk
group of the 1p/19q codeletion-associated immune signature and 305
(97.8%) patients in the low-risk group met gene pairs signature criteria.
Moreover, among the immune gene pairs signature high-risk patients
(n =100; 21.8%), 93 (93.0%) were scored as high risk, according to the
1p/19q codeletion-associated signature criteria. Among IRGPs signature
low-risk patients (n = 359; 78.2%), 305 (85.0%) were scored as low
risk according to the gene pairs signature criteria. Therefore, the IRGPs
signature prediction of risk attribute is highly accurate. Coefficients in
Table 1 show that three gene pairs (BIRC5|SSTR2, BMP2|TNFRSF12A,
and NRG3|TGFB2) play a vital role in the establishment of risk score.
The prognostic predictive ability of the simplified signature (model B),
which included three gene pairs was similar to the original signature
(model A) implying that model B is more economical without reducing
performance.

Adaptive immune cells, for example, B cells and T cells, and in-
nate immune cells including macrophages, neutrophils, and monocytes
among others are the primary cancer immune response cells [23].
Many immune-associated gene signatures have been established and
may imply that glioma prognosis is closely associated with the den-
sity of immune cell infiltrations [6,12,34,35], as well as laboratory
studies [36,37]. However, most of the published signatures report dif-
ferences in immune cell infiltrations in different risk stratifications of
glioma. Rarely are further mechanisms described to identify cancer im-
munology. In this study, an IRGPs signature was first constructed, and
WGCNA, a method proposed by Horvath et al. [24] to evaluate system-
level biological meaning of genes [38], was used to determine a gene
set correlated with immune cell infiltrations. The gene set in the yel-
low module is closely correlated with the established prognostic fac-
tors such as age, WHO grade, IDH mutation, and 1p/19 codeletion. The
same gene set is highly correlated with immune cell infiltration that has
been provided, playing a vital role in glioma prognosis [39,40]. Chai
et al. [41] reported that neutrophils are biomarkers for regulating the
prognosis of glioblastoma multiforme. GO enrichment analysis based on
the DEGs in the high and low-risk groups, showed that immune-related
functions, such as neutrophil activation involved in immune response,
neutrophil-mediated immunity, occupy a dominant position. Moreover,
CD48, CD274, CTLA4, TIM3, MIR155HG, and PD1, were identified as
immune checkpoint genes [42-48]. Our findings imply that the signa-
ture may contribute to glioma immune risk stratification. More glioma
prognostic mechanisms can be further evaluated by constructing a gene
network.

0z 04 05 08 10

Predicted survival of 5 year

This study elucidates on the available evaluation mechanisms for tu-
mor microenvironment research studies associated with immunoregula-
tion. Immune escape and immune therapy play a pivotal role in glioma
growth. The IRGPs prognostic signature has more advantages than pre-
vious signatures. The signature is novel, but it is not flawless and the
limitations should not be ignored. For example, tissue heterogeneity
and tumor purity may silently affect individualized prognostic assess-
ments. Single-cell sequencing may improve signature performance to a
large extent. In addition, this signature is a temporary tool for predicant
glioma prognosis, and studies should aim at advancing it.
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