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a b s t r a c t 

Lower-grade gliomas (LGGs) have a good prognosis with a wide range of overall survival (OS) outcomes. An 

accurate prognostic system can better predict survival time. An RNA-Sequencing (RNA-seq) prognostic signature 

showed a better predictive power than clinical predictor models. A signature constructed using gene pairs can 

transcend changes from biological heterogeneity, technical biases, and different measurement platforms. RNA- 

seq coupled with corresponding clinical information were extracted from The Cancer Genome Atlas (TCGA) 

and the Chinese Glioma Genome Atlas (CGGA). Immune-related gene pairs (IRGPs) were used to establish a 

prognostic signature through univariate and multivariate Cox proportional hazards regression. Weighted gene 

co-expression network analysis (WGCNA) was used to evaluate module eigengenes correlating with immune 

cell infiltration and to construct gene co-expression networks. Samples in the training and testing cohorts were 

dichotomized into high- and low-risk groups. Risk score was identified as an independent predictor, and exhibited 

a closed relationship with prognosis. WGCNA presented a gene set that was positively correlated with age, WHO 

grade, isocitrate dehydrogenase (IDH) mutation status, 1p/19 codeletion, risk score, and immune cell infiltrations 

(CD4 T cells, B cells, dendritic cells, and macrophages). A nomogram comprising of age, WHO grade, 1p/19q 

codeletion, and three gene pairs (BIRC5|SSTR2, BMP2|TNFRSF12A, and NRG3|TGFB2) was established as a tool 

for predicting OS. The IPGPs signature, which is associated with immune cell infiltration, is a novel tailored tool 

for individual-level prediction. 
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Glioma, the most common malignant brain tumor, derives from glial
r neural stem cells. Glial cells surround and support the neurons, trans-
itting electric and chemical signals in the central nervous system. The
orld Health Organization (WHO) classification grades glioma from I–

V based on the extent of glioma cell resemblance to normal cells, mitotic
ctivity, microvascular proliferation, and necrosis among others. The
016 WHO classification is more scientific in grading as it considered
he status of some molecular markers [1] . WHO grade I glioma cells cor-
espond to well-differentiated glial tumors, whereas WHO grade II and
II, together, are together known as lower-grade glioma. WHO grade IV
ncludes two types of glioblastoma (GBM): Secondary GBM originating
rom lower-grade glioma and primary GBM [2] . Glioma symptoms vary
epending on tumor location and size. Common symptoms are seizures,
eadaches, limb weakness, speech problems, and memory loss. 
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Therapeutic options for glioma are continuously being evaluated and
ovel surgical procedures are gradually being advanced. For example,
wake craniotomy and intraoperative imaging aids in the identification
f tumor boundaries and key brain areas, thereby enhancing tumor re-
ection while preventing nerve function deficits [ 3 , 4 ]. However, despite
dvances in therapy, glioma prognosis is still poor and unpredictable.
he prognosis of lower-grade glioma is better than that of GBM, with
etter survival outcomes. Therefore, a risk assessment tool for prog-
ostic prediction of lower-grade glioma may be beneficial. However,
oncordance of different clinical criteria for risk stratification is low as
linical trials using clinical factors (age, tumor diameter, and whether
he tumor crosses the midline among others) are not comparable [5] .
herefore, a unified risk management for survival prediction is neces-
ary. Various survival predictive signatures using RNA sequences have
een shown to be powerful survival prediction tools [6–10] . Survival
redictive signatures can be used to create novel and innovative clinical
ndicators to improve the concordance of different criteria. 
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Most therapeutic options for gliomas have limited efficacies. Novel
mmunostimulatory strategies attract more attention due to their sensi-
ive anti-glioma responses compared to conventional therapies [11] . Ge-
omic studies have revealed the immunological mechanisms of glioma
rowth, leading to the identification for glioma immune checkpoints
 6 , 12 ]. The tumor immune risk stratification management is important
or elucidating immunotherapeutic mechanisms. A simple and feasi-
le individualized prognostic signature has a more valuable function in
linical trials. However, practical applications of predictive signatures
re limited. This is because differences in measurement platforms af-
ect sample homogenization, making the sample risk score to become
umbersome and unstable. If references were from a single sample, de-
ects from the prognostic predictive system caused by high biological
eterogeneities, technical biases, and different measurement platforms,
ould be overcome. Fortunately, gene pairs based on relative expres-

ion levels between two genes can transcend these challenges [13] . This
tudy presents an immune gene pair signature established using machine
earning. It can be used for individual OS predictions for glioma patients.
esource can be saved accurate predictive signatures for prognosis. 

aterial and methods 

dentification of immune-related gene pairs 

RNA-sequence data, and the corresponding clinical information in
he prognostic signature were download from the Cancer Genome At-
as (TCGA) ( https://portal.gdc.cancer.gov/ ) and the Chinese Glioma
enome Atlas (CGGA) ( http://www.cgga.org.cn/ ). Samples with miss-

ng clinical data, including age, sex, IDH mutation status, survival
ime, or with survival time < 90 days were excluded. Differences in
linical characteristics was analyzed by SPSS (Version 20). p < 0.05
as set as the threshold for statistical significance. The gene set with

mmune-related genes was identified using the IMMPORT website
 https://www.immport.org/ ). Samples in TCGA were assigned to the
raining cohort, whereas samples in CGGA were assigned to the testing
ohort. 

stablishment and validation of the prognostic signature 

Immune-related prognostic genes with p < 0.05 identified using Cox
egression analysis and Kaplan-Meier (KM) survival analysis in TCGA
nd CGGA were separately screened. Then, these genes were used to in-
ersect to obtain a new gene set. Probably, immune-related gene pairs
IRGPs) had a natural advantage, thereby eliminating the necessity for
ormalization in individual prognostic analysis. IRGPs were defined
hrough pair-wise comparisons based on gene expression levels in the
ame sample [13] . The IRGPs were scored as “1 ″ if the expressions were
RG1 > IRG2, otherwise, they would “0 ″ . In two special cases, the IRGPs
ere calculated as 0 and 1, and were excluded to reduce bias or avoid
nrepeatability. Univariate and multivariate Cox proportional hazards
egression analyses were performed to establish a prognostic model. The
isk score for each sample was calculated using the model formula [6] .
he optimal cut-off value of the 3-year area under the curve (AUC) was

dentified as the point at which the sum of specificity and sensitivity
as maximal. Then, samples were assigned into groups of two for fur-

her analyses. 

alidation of the prognostic signature 

External and internal verification were used to evaluate the predic-
ive ability of the signature. Two KM survival curves for OS were first
ompared using the log-rank test ( p < 0.05) [14] , while the 1-, 3-, and
-year time-dependent receiver operating characteristic (ROC) curves
ere visualized in the training and testing cohorts [15] . The risk score

oupled with five clinical factors (age, sex, WHO grade, IDH mutation
2 
tatus, and 1p/19q codeletion status) was tested for independent assess-
ent using univariate and multivariate Cox regression analyses. Princi-
al component analysis (PCA), a publicly known source apportionment
ethod, was performed for hierarchical clustering [16–18] . 

stablishment and validation of the nomogram 

A nomogram for survival prediction was established based on the
rognostic factors, and was validated in the testing cohort. A calibration
urve plot was used to validate the predictive accuracy and the concor-
ance index [ 19 , 20 ]. Net reclassification index (NRI) [21] , combined
ith decision curve analysis (DCA) [22] were performed to choosing

elect an optimized signature. The source of the prognostic signature
as transferred to a webpage, shiny ( https://shiny.rstudio.com/ ), us-

ng the “DynNom ” R package, which makes it easy for users to predict
ndividual prognosis. 

isk score immune cell infiltration 

To establish a landscape of risk scores and infiltrating immune cells,
nfiltration intensity was assessed through the web app, Immune Cell
bundance Identifier (immuneCellAI), by uploading the LGG RNA-seq
ata [23] . Differential distributions of 24 types of immune cells between
he low-risk and high-risk groups were visualized. Moreover, differen-
ial expression levels of six established immune checkpoint genes (CD48,
D274, cytotoxic T lymphocyte antigen 4 (CTLA4), T cell immunoglob-
lin domain and mucin domain 3 (TIM3), long non-coding RNA MIR
55 host gene (MIR155HG), and programmed cell death 1 (PD1)) in the
igh-risk and low-risk groups were analyzed ( p < 0.05). 

eighted gene co-expression network analysis (WGCNA) 

WGCNA, firstly proposed by Zhang and Horvath [24] , is a power-
ul tool for evaluating correlations among genes by assigning a connec-
ion weight. Compare to traditional methods, it is biologically mean-
ngful [ 25 , 26 ]. The top 25% variant median absolute deviation sample
ere screened for WGCNA. Sample clustering was performed to detect
utliers in the data, and to reduce the impact of heterogeneity. The
est-correlated relationship between the WGCNA module and biolog-
cal traits (including IDH mutation status, 1p/19q codeletions status,
D4 T cells, B cells, and dendritic cells, macrophage among others) was
elected for biological processes analyses. The network was developed
hrough co-expression relationships that were achieved using WGCNA
nd visualized in Cytoscape v3.7.0 [27] . 

ene ontology analysis 

GO analysis is a biological method for evaluating the mechanisms
nvolved in three domains: biological process (BP), cellular component
CC), and molecular functions (MF). Hub genes with a weight larger than
.20 in the target module were screened using GO analysis to evaluate
odule function in WGCNA. 

esults 

rognostic signature establishment 

A total of 298 immune genes that were screened from the TCGA were
ssociated with overall survival outcomes, 44 of which were identified
s intersecting genes in CGGA. Eight pair-wise immune genes were ex-
racted for establishing the prognostic signature ( Table 1 ). The prefer-
ble cutoff value for distinguishing the high-risk group ( n = 100) and
ow-risk group ( n = 359) in the TCGA was − 0.145 ( Fig. 1 a,c ). Similarly,
 total of 118 samples were defined as high-risk while 414 samples were
nvolved in the low-risk set in CGGA. A total of 449 samples in TCGA
nd 459 samples in CGGA were finally included by excluding the sam-
les without clinical indication ( Table 2 ). 

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://www.immport.org/
https://shiny.rstudio.com/
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Fig. 1. The cut-off value of 1-year (a), 3- 

year (b), and 5-year (c) AUCs. The cut-off

value of 3-year AUC was the optimal value for 

grouping. Kaplan-Meier (KM) survival curves 

illustrate that the prognosis of the low-risk 

group was more favorable in the training group 

(d), as well as in the testing group (e). The 

time-dependent receiver operating character- 

istic (ROC) curves for the 1-, 3- and 5-year 

survival rates in training group (f) and testing 

group (g). Risk score is an independent sur- 

vival predictor of age, sex, WHO grade, IDH 

mutation status, and 1p/19q codeletion status 

in univariate (h) and multivariate Cox propor- 

tional hazards regression analyses (i). 

Table 1 

Eight gene pairs and coefficients in the prognostic signature. 

Gene Pairs Coef Gene Pairs Coef 

PDIA2|WNT5A − 0.097987276 PDIA2|SLC11A1 − 0.044735657 

LCNL1|CTF1 − 0.056923104 MSR1|CHGA 0.004112451 

BIRC5|SSTR2 0.42711727 BMP2|TGFB2 − 0.014125758 

BMP2|TNFRSF12A − 0.460456827 NRG3|TGFB2 − 0.54034719 

PDIA2: protein disulfide isomerase family A member 2, WNT5A: Wnt 

family member 5A, LCNL1: lipocalin like 1, CTF1:cardiotrophin 1, 

SSTR2:somatostatin receptor 2, BIRC5:baculoviral IAP repeat containing 5, 

BMP2: bone morphogenetic protein 2, TNFRSF12A:TNF receptor superfam- 

ily member 12A, MSR1:macrophage scavenger receptor 1, TNFRSF12A:TNF 

receptor superfamily member 12A, SLC11A1: solute carrier family 11 mem- 

ber 1, CHGA: chromogranin A, TGFB2:transforming growth factor beta 

2, BMP2:bone morphogenetic protein 2, BIRC5: baculoviral IAP repeat 

containing 5. 
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Table 2 

The clinical characteristics of included samples in TCGA and CGGA. 

Variables TCGA (449) CGGA (459) Value P value 

Sex 1.056 0.034 

Female 203 192 

Male 246 267 

Age (year) 

< 40 203 221 0.786 0.375 

≥ 40 246 238 

OS (year, median) 6.67 6.85 2.583 0.108 

Histology type 121.030 < 0.001 

Astrocytoma 148 150 

Oligodendroglioma 146 77 

Oligoastrocytomas 104 232 

NA 51 0 

WHO grade 0.014 0.096 

WHO II 215 218 

WHO III 234 241 

IDH mutation 5.645 0.018 

Yes 364 342 

No 85 117 

1p/19 codeletion 0.504 0.478 

Yes 309 319 

No 150 140 

NA: Not available. 
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urvival prediction assessment and validation 

The survival rate of the low-risk group was higher than that of the
igh-risk group for the training ( Fig. 1 d ) and testing cohorts ( Fig. 1 e ),
specially in the definite period of the early course of the disease. AUC
alues of the signature for 1-, 3-, and 5-year were 0.902, 0.878, and
.799, respectively. In the testing cohort, AUC values of 1-, 3-, and 5-
ear were 0.778, 0.806, and 0.778 respectively, indicating an accurate
rediction from the signature ( Fig. 1 f,g ). The risk score was a definite
rognostic factor that was independent of age, sex, WHO grade classifi-
ation, IDH mutation status, and 1p/19q codeletion status, both in the
raining and testing cohorts ( Fig. 1 h,i ). 

ontribution of the signature to immune status 

Distribution patterns of all the genes, as well as immune-related
enes in the TCGA and intersecting immune-related genes in CGGA,
3 
ere analyzed using three-dimensional principal component analysis
PCA). Compared to the immune-related genes set ( Fig. 2 b) and all the
ther genes set ( Fig. 2 c), it was found that the intersecting immune-
elated genes involved in signature establishment ( Fig. 2 a ) could be used
o divide the samples into low-risk and high-risk groups. The correlation
etween risk score and immune cell infiltrations is presented in the vi-
lin plot. Seventy-five percent (18/24) of the immune cells exhibited a
ositive or negative correlation with the risk score ( p < 0.05) ( Fig. 2 d ).
ignificant immune cells in the plot include innate immune cells such
s macrophages and DC cells as well as adaptive immune cells such as B
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Fig. 2. The PCAs of intersecting immune- 

related genes set (a), immune-related genes set 

(b), and all genes set (c) in the low and high- 

risk groups. Twenty-four kinds of immune cells 

infiltration in the low and high-risk group (d). 

The expression of six kinds of immune check- 

points in the low and high-risk groups (e–j). 
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Table 3 

The NRI of risk-prediction in model A and B. 

Year NRI 

95%CI 

Year NRI 

95%CI 

Lower Upper Lower Upper 

1 − 0.020 − 0.104 0.010 2 − 0.067 − 0.201 0.042 

3 − 0.160 − 0.314 0.018 4 − 0.162 − 0.289 − 0.044 

5 − 0.174 − 0.400 0.007 6 − 0.193 − 0.462 0.024 

NRI: Net reclassification index, CI: confidence intervals. 
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ells and CD4 T cells. Expression levels of six immune checkpoint genes
CD48, CD274, CTLA4, TIM3, MIR155HG, and PD1) were higher in the
igh-risk group than in the low-risk group ( Fig. 2 e-j ). 

ene co-expression network and hub genes 

Hierarchical clustering and Dynamic Branch Cutting clustered the
enes into 13 modules representing different gene sets with varying sizes
rom 57 to 965 genes ( Fig. 3 a ). The correlation between module eigen-
enes and risk score, macrophages, DC cells, B cells, and CD4 T cells, was
sed to establish a discriminatory module for prognostic mechanisms. In
ig. 3 b , the yellow module is bound with the risk score; macrophages,
C cells, B cells, and CD4 T cells have the highest module membership

MM) than other modules. The gene co-expression network was estab-
ished based on the hub genes whose weight was > 0.20 (Supplement
aterial 1). In the complicated co-expression network constructed us-

ng 87 genes from the yellow module, most of the genes were found to
e differential expression genes (DEGs) with a |log2FC| > 0.6 between
he high-risk and low-risk groups ( Fig. 4 ). Moreover, 65 (65/87) genes
ere correlated with OS. Therefore, a new gene set comprising 87 hub
enes was used for GO enrichment analyses. The hub genes were en-
iched in immune-related functions, such as neutrophil activation, and
eutrophil degranulation, neutrophil-mediated immunity among others
 Fig. 5 ). More GO functions can be found in the Supplement material 2.

ptimization of the prognostic model 

Three gene pairs (BIRC5|SSTR2, BMP2|TNFRSF12A, NRG3|TGFB2)
ccounted for the vast majority of the proportions when calculating the
4 
isk score by comparing coefficients of the eight pairs of immune-related
enes. Two models were built in this study. Model A, comprising age,
HO grade, 1p/19q codeletion status, IDH mutation status, as well as

isk score and Model B comprising age, WHO grade, 1p/19q codeletion
tatus, BIRC5|SSTR2, BMP2|TNFRSF12A, NRG3|TGFB2. Model B was
rogressive with fewer ingredients than model A. The 4-year NRI in-
icated that the predictive ability of model A was better, with 16.2%
mprovement, whereas the NRIs of 1-, 2-, 3-, 5- and 6-year were not
ignificantly different between model A and B ( Table 3 ). DCA curves
ndicated that prognostic models had better predictive abilities within a
ertain survival rate range, and prognostic assessment abilities between
odel A and model B were almost the same ( Fig. 6 ). 

omogram establishment and validation 

Six ingredients, including age, WHO grade, 1p/19q codeletion,
IRC5|SSTR2, BMP2|TNFRSF12A, and NRG3|TGFB2 were selected
o establish the nomogram for predicting the 1-, 3-, and 5-year
urvival rates ( Fig. 7 a ). The C-index of the Cox model was 0.874,



X. Pan, Z. Wang, F. Liu et al. Translational Oncology 14 (2021) 101109 

Fig. 3. The cluster dendrogram of genes in dif- 

ferent models assigned with corresponding col- 

ors by dissimilarity based on topological over- 

lap (a). Each rectangle, the intersection of mod- 

ule eigengene in the row and clinical predictors 

(age, sex, WHO grade, IDH mutation, 1p/19q 

codeletion) coupled with risk score and 3 kinds 

of immune cell infiltration in the column, con- 

tains a correlation and a p- value (b). 

Fig. 4. The 87 genes constructed the gene net- 

work from the yellow module. Among the 87 

genes, 56 (triangle) are highly expressed in the 

high-risk group, 4 (rectangle) are highly ex- 

pressed in the low-risk group, and 27 (circle) 

have no difference in expression. Survival anal- 

ysis indicated that 65 genes (gray) were related 

to OS with a p-value < 0.05, the other genes 

(white) showed no relation to OS. 
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nd the calibration curves of 1-, 3- and 5-year had goodness-off-
t ( Fig. 7 b–f ). Web applications of our signature can be access to
ttps://soochowneuro.shinyapps.io/immunepairB/?_ga = 2.184366244. 
49859851.1606627026–2101425941.1599397013 for predicting the
S. 

iscussion 

The criteria proposed by the Radiation Therapy Oncology Group
RTOC) and the European Organization for Research and Treatment of
ancer (EORTC) were useful for predicting the prognosis of low-grade
lioma [ 28 , 29 ]. However, Franceschi et al. [5] insisted that the crite-
ia were not comparable due to poor concordance between RTOC and
ORTC. As such, these two criteria are not as strong as expected. We
ropose an IRGPs prognostic signature that can decrease the effects of
5 
nherent biological sample heterogeneity, differences in measurement
latforms, and technical bias, but may utilize more probable immuno-
ogical mechanisms to improve the prognosis. Cox proportional hazards
egression analyses were used to create a new analogous clinical prog-
ostic predictor called “risk score ”. The WGCNA provided new insights
y integrating gene sets, clinical factors, and immune cell infiltration. 

Clinical applications of traditional prognostic signatures are limited
ecause of the differences in biological heterogeneity and laboratory
echnologies. A gene pair is a remodeling that quantifies the expression
f two genes from the same sample with the same laboratory conditions.
ene pair is an expression of the targeted and reference genes from

he one sample. Signatures that resemble gene pairs have been used in
rognostic evaluations of various cancers [30–33] . Moreover, the con-
ordance between the 1p/19 codeletion-associated immune prognostic
ignature developed in our earlier study [6] and the current gene pairs

https://soochowneuro.shinyapps.io/immunepairB/?_ga=2.184366244.349859851.1606627026-2101425941.1599397013


X. Pan, Z. Wang, F. Liu et al. Translational Oncology 14 (2021) 101109 

Fig. 5. GO analysis to the 87 DEGs between 

high-risk group and low-risk group shows the 

top 10 listed biological functions in BP, CC, and 

MF. 

Fig. 6. The model A shows that age, IDH muta- 

tion, 1p/19q codeletion, WHO grade, and risk 

score are included as reference factors from 

each variable axis. The sum values in the axis 

including five factors can predicted the 1-, 3-, 

and 5-year survival rates (a). Similar, the model 

B including age, WHO Grade, 1p/19q codele- 

tion status, BIRC5|SSTR2, BMP2|TNFRSF12A, 

and NRG3|TGFB2 can predict the 1-, 3-, and 5- 

year survival rates (b). 

6 
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Fig. 7. Internal and external validation using 

calibration curves for predicting 1-, 3-, and 5- 

year survival in the TCGA (a,c) and CGGA (d,f). 

s  

t  

g  

(  

M  

(  

1  

l  

r  

s  

T  

a  

T  

w  

(  

p
 

n  

a  

M  

m  

s  

s  

f  

g  

m  

W  

l  

s  

l  

t  

s  

b  

e  

p  

t  

f  

n  

C  

i  

t  

p  

n

 

m  

t  

g  

v  

l  

a  

m  

l  

g

F

 

P  

C

A

 

o  

(

E

C

C

D

 

i  
ignature was greatly improved than that of the EORTC and RTOG cri-
eria [5] . We found that 93 (63.3%) glioma patients in the high-risk
roup of the 1p/19q codeletion-associated immune signature and 305
97.8%) patients in the low-risk group met gene pairs signature criteria.
oreover, among the immune gene pairs signature high-risk patients

 n = 100; 21.8%), 93 (93.0%) were scored as high risk, according to the
p/19q codeletion-associated signature criteria. Among IRGPs signature
ow-risk patients ( n = 359; 78.2%), 305 (85.0%) were scored as low
isk according to the gene pairs signature criteria. Therefore, the IRGPs
ignature prediction of risk attribute is highly accurate. Coefficients in
able 1 show that three gene pairs (BIRC5|SSTR2, BMP2|TNFRSF12A,
nd NRG3|TGFB2) play a vital role in the establishment of risk score.
he prognostic predictive ability of the simplified signature (model B),
hich included three gene pairs was similar to the original signature

model A) implying that model B is more economical without reducing
erformance. 

Adaptive immune cells, for example, B cells and T cells, and in-
ate immune cells including macrophages, neutrophils, and monocytes
mong others are the primary cancer immune response cells [23] .
any immune-associated gene signatures have been established and
ay imply that glioma prognosis is closely associated with the den-

ity of immune cell infiltrations [ 6 , 12 , 34 , 35 ], as well as laboratory
tudies [ 36 , 37 ]. However, most of the published signatures report dif-
erences in immune cell infiltrations in different risk stratifications of
lioma. Rarely are further mechanisms described to identify cancer im-
unology. In this study, an IRGPs signature was first constructed, and
GCNA, a method proposed by Horvath et al. [24] to evaluate system-

evel biological meaning of genes [38] , was used to determine a gene
et correlated with immune cell infiltrations. The gene set in the yel-
ow module is closely correlated with the established prognostic fac-
ors such as age, WHO grade, IDH mutation, and 1p/19 codeletion. The
ame gene set is highly correlated with immune cell infiltration that has
een provided, playing a vital role in glioma prognosis [ 39 , 40 ]. Chai
t al. [41] reported that neutrophils are biomarkers for regulating the
rognosis of glioblastoma multiforme. GO enrichment analysis based on
he DEGs in the high and low-risk groups, showed that immune-related
unctions, such as neutrophil activation involved in immune response,
eutrophil-mediated immunity, occupy a dominant position. Moreover,
D48, CD274, CTLA4, TIM3, MIR155HG, and PD1, were identified as

mmune checkpoint genes [42–48] . Our findings imply that the signa-
ure may contribute to glioma immune risk stratification. More glioma
rognostic mechanisms can be further evaluated by constructing a gene
etwork. 
t

7 
This study elucidates on the available evaluation mechanisms for tu-
or microenvironment research studies associated with immunoregula-

ion. Immune escape and immune therapy play a pivotal role in glioma
rowth. The IRGPs prognostic signature has more advantages than pre-
ious signatures. The signature is novel, but it is not flawless and the
imitations should not be ignored. For example, tissue heterogeneity
nd tumor purity may silently affect individualized prognostic assess-
ents. Single-cell sequencing may improve signature performance to a

arge extent. In addition, this signature is a temporary tool for predicant
lioma prognosis, and studies should aim at advancing it. 
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