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ABSTRACT

The family Toxoderidae (Mantodea) contains an ecologically diverse group of praying
mantis species that have in common greatly elongated bodies. In this study, we
sequenced and compared the complete mitochondrial genomes of two Toxoderidae
species, Paratoxodera polyacantha and Toxodera hauseri, and compared their mitochon-
drial genome characteristics with another member of the Toxoderidae, Stenotoxodera
porioni (KY689118). The lengths of the mitogenomes of T. hauseri and P. polyacantha
were 15,616 bp and 15,999 bp, respectively, which is similar to that of S. porioni (15,846
bp). The size of each gene as well as the A4+T-rich region and the A+T content of the
whole genome were also very similar among the three species as were the protein-coding
genes, the A+T content and the codon usages. The mitogenome of T. hauseri had the
typical 22 tRNAs, whereas that of P. polyacantha had 26 tRNAs including an extra two
copies of trnA-trnR. Intergenic regions of 67 bp and 76 bp were found in T. hauseri and
P. polyacantha, respectively, between COX2 and trnK; these can be explained as residues
Submitted 21 December 2017 of a tandem dl.lplication/ ranflom loss of trnK and trnD. This non-coding region may be
Accepted 20 March 2018 synapomorphic for Toxoderidae. In Bl and ML analyses, the monophyly of Toxoderidae
Published 19 April 2018 was supported and P. polyacantha was the sister clade to T. hauseri and S. porioni.
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Mantodea are a major group of predatory insects and over 2,500 extant species/subspecies

DOI 10.7717/peerj.4595 are known that belong to 427 genera, assigned to 21 families (Ehrmann, 2002; Svenson ¢
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Distributed under to the family rank. In Svenson & Whiting’s research (2009), three Toxoderidae species
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group which was the sister clade to Oxyothespinae (Mantidae). Zhang et al. (2018a) found
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that Stenotoxodera porioni and Schizocephala bicornis (Mantidae) were a sister group.
Praying mantises in this family are ecologically diverse and are distributed across the
Indian subcontinent, Indonesia, southwest Asia, tropical Africa, Afghanistan, and Australia
(Patel, Sing ¢ Singh, 2016). The outstanding feature of Toxoderidae is a highly elongated
body; in particular, the prothorax is very long, often nearly half of the entire body length
and the metazona is laterally compressed and often carries a dorsal ridge (Wieland, 2013).
Mitochondrial genomes have been used extensively as molecular markers for
phylogenetic analyses and comparative or evolutionary genomic research due to their
features that include small genome size, fast evolution rates, low sequence recombination,
and evolutionary conserved gene products (Boore, 20065 Zhang et al., 2008; Cameron,
2014a; Ma et al., 2015; Cheng et al., 2016). The typical insect mitogenome is a 14-20 kb
circular molecule including 37 genes (13 protein-coding genes, two ribosomal RNA
genes, and 22 transfer RNA genes) and an A+T-rich region, all on a single chromosome
(Boore, 1999; Cameron, 2014a). In insect mitochondrial genomes, gene rearrangements
are frequently observed (Oliveira et al., 2008; Beckenbach & Joy, 2009; Dowton et al., 2009;
Leavitt et al., 2013; Wei et al., 2014; Dickey et al., 2015), but gene duplications (extra copies)
or deletions (gene loss) are rarer events (Carmeron, 2014a). In terms of gene duplication,
many species show an extra tRNA gene copy near the A+T-rich region, supporting the
idea that gene duplication events are mainly due to replication slippage mechanisms
(Macey et al., 1997; Zhang ¢ Hewitt, 1997). For example, an extra copy of trnM was
found in Parafronurus youi (Ephemeroptera) (Zhang et al., 2008) and Abispa ephippium
(Hymenoptera) (Carmeron et al., 2008). A complete duplication of #rnl occurred in the
mitogenomes of Chrysomya species (Diptera) (Junqueira et al., 2004; Nelson et al., 2012),
Reduvius tenebrosus (Hemiptera) (Jiang et al., 2016), Nasutitermes corniger (Blattodea)
(Dietrich & Brune, 2016) and Acraea issoria (Lepidoptera) (Hu et al., 2010). However,
an extra tRNA gene copy is also sometimes found in other regions. For example, a
duplicated trnL (UUR) was identified in Troglophilus neglectus (Orthoptera) (Fenn et
al., 2008) and an extra copy of trnR occurred in Brontostoma colossus (Heteroptera)
(Kocher et al., 2014). However, the phenomenon of an insect mitochondrial genome
with multi-copies of a specific tRNA gene is quite rare. To our knowledge, among
published genomes, Trialeurodes vaporariorum (Heteroptera) had five copies of trnS
(UCN) with an identical anticodon in a direct repeat (Thao ¢ Baumann, 2004) and Apispa
ephippium (Hymenoptera) had four identical copies of trul (UUR) (Cameron et al., 2008).
By contrast, among the published complete mitogenomes of mantises, a considerable
number of gene rearrangements occur. A survey of the complete mitogenomes of 43
mantis species belonging to nine families (Hymenopodidae, Iridopterygidae, Liturgusidae,
Mantidae, Sibyllidae, Tarachodidae, Thespidae and Toxoderidae) (Carmeron, Barker ¢
Whiting, 2006; Wang et al., 2016; Ye et al., 2016; Tian et al., 2017; Zhang & Ye, 2017; Zhang
et al., 2018a; Zhang et al., 2018b), revealed that three Liturgusidae species (Humbertiella
nada, Theopompa sp.-HN, Theopompa sp.-YN) possessed a derived gene arrangement
of trnM-trnl-trnQ (Ye et al., 2016). Furthermore, six Hymenopodidae species Ambivia
undata, Creobroter gemmata, Creobroter jiangxiensis, Creobroter urbanus, Odontomantis
sp. and Theopropus elegans, three Mantidae species Mantis religiosa, Phyllothelys sp. and
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Statilia sp., and Liturgusidae species Theopompa sp.-HN contained two to eight identical
trnR genes, and Statilia sp. also had five copies of trnW pseudogenes (Ye et al., 2016; Zhang
et al., 2018a). In addition, Schizocephala bicornis (Mantidae) had five identical trnl and
Stenotoxodera porioni (Toxoderidae) had three identical trnK (Zhang et al., 2018a).

In this study, we sequenced and annotated two complete mitochondrial genomes of
Toxoderidae species, Paratoxodera polyacantha and Toxodera hauseri, and compared them
with the mitogenome of another known Toxoderidae species Stenotoxodera porioni (Zhang
et al., 2018a). Our results supplement and enhance the limited molecular data available for
praying mantis species and may give us a useful model for studying the characteristics and
mechanisms of tRNA duplications.

MATERIALS AND METHODS

Sampling collection and DNA extraction

Two samples P. polyacantha and T. hauseri were collected from Borneo island in 2015,
identified by JY Zhang and stored in 100% ethanol at —40 °C. Total DNA was extracted
from muscle of one leg using the QIAGEN DNeasy Blood and Tissue Kit (QIAGEN,
Germany).

PCR amplification and sequencing

Two mantis mitogenomes were amplified with six pairs of mantis-specific universal primer
sets F2, F3, F7, F9, F10 and F11 as described in Zhang et al. (2018a) and specific primers
were designed based on the sequenced PCR information from universal primers using
Primer Premier 5.0 (Table 1). We used both normal PCR (product length < 3,000 bp) and
Long-PCR (product length >3,000 bp) methods with Takara Taq and Takara LATaq DNA
polymerase, respectively (Takara, Dalian, China) in a 50 pL reaction volume. The reaction
systems and cycling conditions for normal PCR and Long-PCR were as in Zhang et al.
(2018a). All PCR products were sequenced in both directions using the primer-walking
method and ABI3730XL by Sangon Biotech Company (Shanghai, China).

Mitogenome annotation and sequence analyses

Contiguous sequence fragments were assembled using DNASTAR Package v.6.0 (Burland,
2000). The tRNA genes and their potential cloverleaf structures were identified by MITOS
(http://mitos.bioinf.uni-leipzig.de/index.py) (Bernt et al., 2013) using the invertebrate
mitogenome genetic code. Two rRNA genes (12S and 16S rRNA) were determined by
comparison with homologous sequences of mtDNA from other mantis species using
Clustal X (Thompson et al., 1997). Following identification of tRNAs and rRNAs, 13
protein-coding genes were translated with the invertebrate mitogenome genetic code to
find the open reading frames between tRNAs (Carmeron, 2014b). We used CG View server
V 1.0 (Grant & Stothard, 2008) to draw the mitochondrial genome map with GC content
and GC skew of P. polyacantha and T. hauseri. The A+T content, codon usage and relative
synonymous codon usage (RSCU) of protein-coding genes were calculated by Mega 7.0
(Kumar, Stecher & Tamura, 2016). Composition skewness was calculated according to the
following formulas: AT-skew = (A — T)/(A + T); GC-skew = (G — C)/(G + C) (Perna &
Kocher, 1995).
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Table 1 Specific primers used to amplify the mitogenomes of P. polyacantha and T. hauseri.

Species Primer name Sequence (5'-3') Product
length (bp)
64-WZ-J-2431 ATCCCATCCTCTATCAACATC 1,600
64-WZ-N-4047 AGACCATTACTTGCTTTTCAG
64-WZ-J-4067 CTGAAAAGCAAGTAATGGTCT 4,900
64-WZ-N-8996 AGATTAGTAGGGGGATTTTTAG
64-WZ-J-4821 GGTACATTATCAATTCGTTT 3,200
P. polyacantha 64-WZ-N-8008 GGTTCATTTTTTTTAGTTTT
64-WZ-9330 AATAATGGTAAAGAAGCGAAT 4,000
64-WZ-N-13569 TTTTTGCTCGCCTGTTTAT
64-WZ-J-14354 CGATACACCTACTTTGTTACGA 4,000
64-WZ-N-2567 ACAAATCCCAGAAATCCAATAG
64-WZ-J-11521 ATTTCCTATTCGCCTATGC 700
64-WZ-N-12258 GGTTTGTTTCTTGTCTTGCT
66-HSJT-]-1799 CACTCTATTTTGTCTTCGG 700
66-HSJT-N-2511 TTCTTTTTTTCCTCTTTCA
66-HSJT-]-3237 ACTTACCTCCCGCTGAA 1,500
66-HSJT-N-4715 GGAACAAGATGGGCAAA
66-HSJT-]-7393 AAAACGAATGTCCTGAA 1,100
T. hauseri 66-HSJT-N-8472 GATTGCCTTTGAACTTG
66-HSJT-J-9121 TAAGACACCAGCCAAGA 4,200
66-HSJT-N-13343 TAAGGGACGAGAAGACC
66-HSJT-J-14386 AATAATGAGAGTGACGGGC 2,600
66-HSJT-N-1337 AAGGAGGATAGAACTAAGATGA
66-HSJT-]-15004 TAAAATCATCTACTGCCGA 1,200
66-HSJT-N-621 CAAAGGAATGAAGGAGAGT

Phylogenetic analyses

In order to discuss the phylogenetic relationships of Toxoderidae, 43 previously sequenced
mantis mitogenomes (Carmeron, Barker & Whiting, 2006; Wang et al., 2016; Ye et al., 2016;
Tian et al., 2017; Zhang & Ye, 2017; Zhang et al., 2018a; Zhang et al., 2018b) were used

in the phylogenetic analyses. The outgroup taxa were two cockroaches, Cryptocercus
kyebangensis and Eupolyphaga sinensis (Zhang et al., 2010) and two termites, Tertmes hospes
(Dietrich ¢ Brune, 2016) and Macrotermes barneyi (Wei et al., 2012). Accession numbers of
all mitogenomes are listed in the phylogenetic trees. According to the phylogenetic analyses
of Zhang et al. (2018a), we used the nucleotide sequences of the 13 protein-coding genes as
the dataset to construct the BI and ML phylogenetic trees. Each of 13 protein-coding genes
were aligned using Clustal W in the program Mega 7.0 (Kumar, Stecher & Tamura, 2016)
and conserved regions were identified by the program Gblock 0.91b (Castresana, 2000).
The resulting alignments were concatenated with Geneious 8.1.6 (Kearse et al., 2012).
We used the program PartitionFinder 1.1.1 (Lanfear et al., 2012) to infer the optimal
partitioning strategy and choose the best model according to the Bayesian Information
Criterion (BIC). The data blocks were defined by each of three codon positions for the
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thirteen protein-coding genes and a total of 11 partitions were found. ML analysis was
implemented in RAXML 8.2.0 with a GTRGAMMA model and branch support for each
node was evaluated with 1,000 replicates (Stamatakis, 2014). BI analysis was implemented
in MrBayes 3.2 with a GTR + I + G model, each of four chains (three hot and one cold),
with run length of 10 million generations and sampling every 1,000 generations (Rongquist
et al., 2012). Convergence was assessed with Tracer 1.5 (Rambaut ¢ Drummond, 2007) and
trees from the first 25% of the samples were removed as burn-in.

RESULTS AND DISCUSSION

Mitogenome organization and composition

We annotated and deposited the complete mitogenomes of P. polyacantha (M G049920) and
T. hauseri (KX434837) in the GenBank database. There two new mitogenomes were double
circular DNA molecules with lengths of 15,999 bp and 15,616 bp, respectively (Figs. 1 A—1B).
These were longer and shorter, respectively, than the mitogenome of S. porioni (15,846 bp),
a previously sequenced member of Toxoderidae that we used as a comparison species. The
size variation of the three mitochondrial genomes was mainly caused by different intergenic
nucleotides (IGNs) and the presence of additional copies of tRNAs in P. polyacantha and
S. porioni. Of all 43 sequenced mantis mitogenomes (Carmeron, Barker ¢ Whiting, 2006;
Wang et al., 2016; Ye et al., 2016; Tian et al., 2017; Zhang ¢ Ye, 2017; Zhang et al., 2018a;
Zhang et al., 2018D), the length of the mitogenome of Hierodula patellifera (16,999 bp) was
the longest whereas that of Tenodera sinensis (15,531 bp) was the shortest. The mitogenome
lengths of seven Paramantini species were long (>16,000 bp) because of a large non-coding
region (400-1,500 bp) between trnM and ND2 apart from the typical A+T-rich region. The
mitogenomes of Anaxarcha zhengi, Deroplatys desiccate, Mantidae sp., Parablepharis kuhlii
asiatica, Phyllothelys spl., Theopompa sp.-YN and Theopompa sp.-YN were also longer
than 16,000 bp because of a long typical A+T-rich region (>1,100 bp) (Ye et al., 2016).
The mitogenome of T. hauseri contained the typical 37 genes (13 PCGs, 22 tRNAs and 2
rRNAs) and an A+T-rich region (Table S1) whereas the mitogenome of P. polyacantha
had an extra four tRNAs (2 trnA and 2 trnR) (Table S2); by comparison, S. porioni had
an extra two trnK. The T. hauseri mitogenome contained the shortest IGNs, a total of
210 bp, compared to 305 bp for P. polyacantha and 313 bp for S. porioni. The nucleotide
composition of the P. polyacantha and T. hauseri mitogenomes had a high A+T bias of
74.81% and 73.49% and both showed positive AT-skew and negative GC-skew, which was
also similar to S. porioni (Table 2).

Protein-coding genes and codon usages

All 13 protein-coding genes (PCGs) were identified in the mitogenomes of P. polyacantha
and T. hauseri. Nine PCGs (ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, ND6 and
CYTB) were coded on the majority strand (J-strand) and the remaining four (ND5, ND4,
NDA4L, and ND1) were coded on the minority strand (N-strand). The length, codon usages
and A+T content of PCGs in the P. polyacantha and T. hauseri mitogenomes were nearly
identical to S. porioni. Among three mitogenomes, 12 PCGs used ATN (N represents A,
T, C, G) as initiation codons with the exception of COXI which was initiated with TTG.
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Figure 1 Mitochondrial genome maps of P. polyacantha (A) and T. hauseri (B). The first circle shows
the gene map (PCGs, rRNAs, tRNAs and the AT-rich region) and the genes outside the map are coded
on the majority strand (J-strand) whereas the genes inside the map are coded on the minority strand (N-
strand). The second circle shows the GC content and the third shows the GC skew. GC content and GC
skew are plotted as the deviation from the average value of the entire sequence.

Full-size Gl DOI: 10.7717/peer;j.4595/fig-1
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Table2 Base composition of mantis mitochondrial genomes.

Species name A+T(%) AT-skew GC-skew
Mito PCGs rRNAs A+T-rich Mito PCGs-H PCGs-L rRNAs A+T-rich Mito PCGs-H PCGs-L rRNAs A+T-rich
region region region
P. polyacantha 74.81 74.43 77.39 76.48 0.044 —0.075 —0.225 —0.039 0.035 —0.195 —0.150  0.263 0.356 —0.210
T. hauseri 73.49 73.09 76.39 76.50 0.061 —0.060 —0.247 —0.075 0.023 —0.231 —0.188 0.276 0.418 —0.193
S.porioni 73.49 73.00 76.34 76.93 0.058 —0.076  —0.252 —0.079 —0.002 —0.212 —-0.174  0.277 0.369 —0.241
(KY689118)

TTG is an accepted conventional initiation codon for many insect mitogenomes including
among mantises (Ye et al., 2016; Zhang ¢» Ye, 2017; Zhang et al., 2018a) and cockroaches
(Jeon & Park, 2015; Cheng et al., 2016). TAA was commonly used as for the termination
codons although the incomplete termination codon T was found in COX3 and ND5 in all
three mitogenomes. An incomplete termination codon has also been found in all other
sequenced mantis species (Carmeron, Barker ¢ Whiting, 2006; Wang et al., 2016; Ye et al.,
20165 Tian et al., 2017; Zhang ¢ Ye, 2017; Zhang et al., 2018a; Zhang et al., 2018b). It has
been demonstrated that incomplete termination codons can act as functional termination
codons in polycistronic transcription cleavage and polyadenylation processes (Ojala,
Montoya ¢ Attardi, 1981; Du et al., 2016). In the P. polyacantha mitogenome, COX2 used
TAG as the termination codon. Although TAG is the canonical termination codon in insect
mitogenomes, it is not used frequently perhaps due to the high percentage of AT nucleotide
use by the protein-coding genes (Liu et al., 2016). In the 43 published mantis mitogenomes,
only COX1 of Theopompa sp.-YN (Ye et al., 2016) and Leptomantella albella (Wang et al.,
2016), COX2 of Theopropus elegans, ATPS8 of Sibylla pretiosa, ATP6 of Phyllothelys spp.
and Creobroter jiangxiensis, ND4 of Schizocephala bicornis and CYTB of Creobroter urbanus
(Zhang et al., 2018a) as well as ND3 of Tamolanica tamolana (Cameron, Barker ¢» Whiting,
2006) used TAG as the termination codon.

The average AT contents of the 13 PCGs in P. polyacantha and T. hauseri were 74.43%
and 73.09%, both slightly higher than S. porioni (73%). The PCGs encoded by the majority
strand displayed T-skews (the content of T > A) and G-skews (G > C) whereas the minority
strand displayed T-skews and C-skews (C > G). We calculated the relative synonymous
codon usage (RSCU) of the three Toxoderidae species mitogenomes (Figs. 2A-2C; Table 3)
and the result showed that NNU and NNA were higher than 1.0 with the exception of Leu
(CUR) and Ser (AGU) in P. polyacantha, T. hauseri and S. porioni and Arg (CGU) only in S.
porioni. The most frequent amino acids in the coding sequences of P. polyacantha, T. hauseri
and S. porioni mitochondrial proteins were Leu (UUR), Ile and Phe (>300) (Fig. 3). These
three amino acids were also frequently used in 43 other mantis mitogenomes (Carmeron,
Barker ¢ Whiting, 2006; Wang et al., 2016; Ye et al., 2016; Tian et al., 2017; Zhang & Ye,
2017; Zhang et al., 2018a; Zhang et al., 2018b) and Lepidoptera mitogenomes (Liu et al.,
20165 Xin et al., 2018; W et al., 2012). The least used amino acid in the three mitogenomes
was Cys (<50).
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UUC UUG CUG AUC AUG GUG UCG CCG ACG GCG UAC CAC CAG AAC AAG GAC GAG UGC UGG CGG AGG GGG
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GUU UCU CCU AcU GCU AGU GGU

C

Figure 2 The relative synonymous codon usage (RSCU) in three mantis mitogenomes. The RSCU of
the mitogenome in P. polyacantha (A), T. hauseri (B), and S. porioni (C).
Full-size Gal DOI: 10.7717/peer;j.4595/fig-2

Ribosomal RNAs and transfer RNAs

The mitogenomes of P. polyacantha and T. hauseri each had one 16S rRNA and one 12§
rRNA gene. The 165 rRNA gene was located between trnL (UUR) and trnV and the
125 rRNA gene was located between trnV and the A+T-rich region as also occurs in
other mantises. The size of the 16S rRNA was 1,387 bp in P. polyacantha and 1,322 bp in
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Table 3 The codon number and relative synonymous codon usage in mitochondrial protein coding genes.

Codon Count RSCU Codon Count RSCU Codon Count RSCU
PP TH SP PP TH SP PP TH SP PP TH SP PP TH SP PP TH SP
UUU(F) 279 269 269 1.70 1.67 1.65 UCU(S) 80 70 78 1.92 1.69 1.9 UAU(Y) 152 157 165 1.63 1.67 1.76
UUC(F) 50 53 58 0.30 0.33 0.35 UCC(S) 33 35 36 079 0.84 0.88 UAC(Y) 34 31 22 037 033 024
UUA(L) 391 359 368 4.17 3.75 3.77 UCA(S) 91 97 88 2.19 234 215 CAU(H) 56 55 61 1.49 1.47 1.54
UUG(L) 40 57 59 043 06 061 UCG(S) 3 7 4 007 0.17 0.1 CACH) 19 20 18 051 0.53 046
CUU@L) 70 63 70 0.75 0.66 0.72 CCUP) 69 71 74 2.06 2.03 2.18 CAA(Q) 61 60 58 1.85 1.88 1.84
CUC(L) 14 20 22 015 021 023 CCC(P) 17 23 24 051 066 071 CAGWQ) 5 4 5 015 013 0.16
CUA(L) 42 70 61 045 0.73 0.63 CCA(P) 45 38 34 134 1.09 1 AAU(N) 160 155 165 1.69 1.61 1.68
CUG(L) 6 5 5 0.06 0.05 0.05 CCG(P) 3 8 4 0.09 023 0.12 AACN) 29 38 31 031 0.39 0.32
AUU(I) 319 291 266 1.81 1.65 1.59 ACU(T) 70 62 62 154 1.43 143 AAAK) 78 74 72 1.75 1.57 1.58
AUC(I) 34 61 68 0.19 035 041 ACC(T) 29 29 29 064 0.67 0.67 AAG(K) 11 20 19 0.25 0.43 0.42
AUAM) 256 231 231 1.80 1.71 1.74 ACA(T) 81 81 77 178 1.86 1.77 GAU(D) 59 56 62 174 1.67 1.82
AUGM) 28 39 35 020 029 0.26 ACG(T) 2 2 6 0.04 0.05 0.14 GAC(D) 9 11 6 0.26 0.33 0.18
GUU(V) 84 95 102 1.77 199 2.05 GCUA) 72 74 73 176 174 1.69 GAA(E) 69 71 68 173 177 1.7
GUC(V) 8 9 11 0.17 0.19 0.22 GCC(A) 23 30 31 0.56 071 0.72 GAG(E) 11 9 12 0.28 0.23 0.3
GUA(V) 87 75 70 1.83 1.57 141 GCA(A) 67 57 63 1.63 134 146 UGU(C) 34 38 38 151 1.73 1.81
GUG(V) 11 12 16 023 025 0.32 GCG(A) 2 9 6 0.05 021 0.14 UGC(C) 11 6 4 0.49 0.27 0.19
GGU(G) 84 73 73 1.53 136 1.37 CGUR) 18 16 13 129 1.14 091 AGU(S) 38 35 36 091 0.84 0.88
GGC(G) 6 9 11 0.11 0.17 021 CGC(R) 2 3 6 0.14 021 042 AGC(S) 5 17 12 0.12 041 0.29
GGA(G) 105 106 94 1.92 198 1.77 CGA(R) 26 27 31 1.86 1.93 2.18 AGA(S) 78 71 71 1.87 1.71 1.73
GGG(G) 24 26 35 044 049 0.66 CGG(R) 10 10 7 0.71 071 049 AGG(S) 5 0 3 012 0 0.07
UGA(W) 95 89 89 181 1.71 1.68 UGG(W) 10 15 17 0.19 0.29 0.32
Notes.
PP, P. polyacantha; TH, T. hauseri; SP, S. porioni (KY689118).
500 [ Paratoxodera polyacantha
Toxodera hauseri
wo — [ Stenotoxodera porioni
300 | 1
200 [
100 [ W H‘;
I I o T i HH_L HHL HH_L HHL mi DDL HHL m
F L1 L2 I M VvV 82 P T A Y H Q N K D E C W R 8S1 G

Figure 3 Total codons in three mantis mitogenomes.

Full-size Gal DOI: 10.7717/peerj.4595/fig-3
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T. hauseri, both a little longer than in S. porioni (1,317 bp). The size of the 125 rRNA was
787 bp in T. hauseri similar to S. porioni (788 bp) whereas the P. polyacantha (842 bp) was
much longer. In the P. polyacantha mitogenome, the A+T content of the rRNA genes was
the highest (77.39%) whereas the A+T content of rRNAs in the T. hauseri mitogenome
was approximately 76%, slightly lower than the A+T-rich region. In P. polyacantha and
T. hauseri, the AT-skew was slightly negative whereas the GC-skew was strongly positive
indicating that the contents of T and G were higher than those of A and C, respectively.

Unlike the typical set of 22 tRNA genes in metazoan mitogenomes, there were 26 tRNA
genes including an extra two copies of trnA-trnR predicted in the P. polyacantha whereas
T. hauseri had a typical set of 22 tRNA genes. The secondary clover-leaf structures of
tRNA genes identified in the mitogenome of P. polyacantha and T. hauseri are shown
in Figs. 4A—47 and 5A-5V. The lengths of these tRNA genes varied from 63 bp to 72
bp. All the predicted tRNAs displayed the typical clover-leaf secondary structure, except
for trnS (AGN), where the DHU arm appears to be replaced by unpaired nucleotides, a
feature typical of other animal mitochondria (Wolstenholme, 1992). All the mismatched
base pairs found were U-G pairs, and there were 24 and 25 mismatched base pairs in the
P. polyacantha and T. hauseri sequences, respectively. In addition, unmatched U-U base
pairs were observed in both two mitogenomes.

The mitogenome of P. polyacantha had an extra 2 copies of trnA-trnR and formed
the gene cluster ND3-trnA-trnR-trnA-trnR-trnA-trnR-trnN-trnS-trnE-trnF-ND5. Three
trnA genes were identical whereas the first trnR was a little different from the other two
because it had an extra 2 bp nucleotide “TA” on the TyC arm (Figs. 4]—40). Duplication
of tRNA is a common phenomenon in mantis mitogenomes. Ye et al. (2016) found that
4 mantises (Creobroter gemmata, Mantis religiosa, Statilia sp., Theopompa sp.-HN) had
2-8 copies of trnR. In addition, Statilia sp. had 5 trnW2 copies as well as 6 trnR forming
the gene cluster ND3-trnA-trnR-trnR-trn W2-trnR-trnR-trn W2-trnW2-trnR-trn W2-trnN-
trnS-trnE-trnF-ND5. Zhang et al. (2018a) found that the mitogenomes of S. porioni and
Schizocephala bicornis had 3 identical trnK and 5 identical trul, respectively. Evidence
for tRNA duplication has also been found in other insect orders such as Ephemeroptera
(Zhang et al., 2008), Hymenoptera (Cameron et al., 2008) and Lepidoptera (Hu et al.,
2010). However, the occurrence of three copies of trnA-trnR in P. polyacantha is the first
such report in Insecta although in the mitogenome of Brontostoma colossus (Kocher et
al., 2014), trnA-trnR may have been duplicated at least once. This is because the gene
cluster ND3-trnR-trnA-trnR-ND5 was found in B. colossus and there were 40 bp intergenic
nucleotides between ND3 and trnR, 20 bp of which showed high similarity to trnA (100%).

A+T-rich region and intergenic regions

The A+T-rich region of the insect mitogenome is equivalent to the control region of
vertebrate mitogenomes and harbors the origin sites for transcription and replication
(Andrews et al., 1999; Yukuhiro et al., 2002; Cameron, 2014a; Du et al., 2016). The A+T-
rich regions of P. polyacantha and T. hauseri mitogenomes were located between 12§
rRNA and trnl with lengths of 709 bp and 687 bp, respectively (Figs. 1A—1B), which is
similar to S. porioni (685 bp). The length of the A+T-rich region is variable, generally
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Figure 4 Inferred secondary structures of the 26 tRNA genes of P. polyacantha mitogenome. (A) trnl;
(B) trnQ; (C) truM; (D) trnW; (E) trnC; (F) trnY; (G) trul (CUN); (H) trnK; (I) truD; (J) trnA; (K) trnR;
(L) trnA; (M) trnR; (N) trnA; (O) truR; (P) truN; (Q) trnS (AGN); (R) trnE; (S) truF; (T) trnH; (U) trnT;
(V) trnP; (W) trnS (UCN); (X) trnL (UUR); (Y) trnV'; (Z) trnF.

Full-size & DOI: 10.7717/peer;j.4595/fig-4
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Figure 5 Inferred secondary structures of the 22 tRNA genes of T. hauseri mitogenome. (A) trnl; (B)
trnQ; (C) truM; (D) trnW; (E) trnC; (F) trnY; (G) trul (CUN); (H) trnK; (I) trnD; (J) trnG; (K) trnA; (L)
trnR; (M) truN; (N) trnS (AGN); (O) trnE; (P) trnF; (Q) trnH; (R) trnT; (S) trnP; (T) trnS (UCN); (U)
trnl (UUR); (V) truV.

Full-size & DOI: 10.7717/peerj.4595/fig-5
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ranging from 639 bp in Mantis religiosa to 1,775 bp in Theopompa sp.-HN (Ye et al.,
2016). In the mitogenomes of P. polyacantha and T. hauseri, the contents of A+T
were 77.39% and 76.34%, respectively, similar to S. porioni (76.39%). The A +T-
rich regions of P. polyacantha and S. porioni genomes both showed positive AT-skew
values whereas T. hauseri showed a negative skew. All A+T-rich regions of the three
Toxoderidae species displayed negative GC-skew values. Unlike the species Anaxarcha
zhengi, Hierodula formosana, Rhombodera valida, Tamolanica tamolana, Theopompa sp.-
YN and Theopompa sp.-HN that showed different copies of tandem repetitive sequences
(Cameron et al., 2008; Ye et al., 2016; Zhang ¢» Ye, 2017), we failed to find any tandem
repetitive sequences in P. polyacantha and T. hauseri using Tandem Repeat Finder V 4.07
(http://tandem.bu.edu/trf/trf.html) (Benson, 1999).

Intergenic regions

The mitogenomes of most insect species seem to be economical (Boore, 1999) although
large intergenic regions exist in some species. For example, large intergenic regions located
between trnM and ND2 were observed in seven Paramantini species with variable lengths
ranging from 296 bp in Tamolanica tamolana to 1,541 bp in Hierodula patellifera (Cameron,
Barker ¢ Whiting, 2006; Tian et al., 2017; Zhang & Ye, 2017; Zhang et al., 2018a). In the
mitogenome of P. polyacantha, there was a total of 305 bp of intergenic space between
genes, of which there were 10 locations of intergenic lengths smaller than 8 bp, four
locations of intergenic lengths between 10 bp and 20 bp and five locations of intergenic
lengths longer than 20 bp (Table S1). The longest intergenic region was located between
COX2 and trnK (76 bp), 28 bp of which showed high similarity to trnK (100%) whereas
the other 48 bp showed high similarity to trnD (100%). This gene arrangement can be
explained by the tandem duplication/random loss mode (TDRL) (Fig. 6A). Firstly, the
region of trnK-trnD was tandem duplicated once. Secondly, the random deletion of a
portion of one of the truK-trnD pairs occurred to form a 76 bp partial “trnK-trnD”
residue. The mitogenome of T. hauseri contained a total of 210 bp of intergenic space
spread over 21 regions with sizes ranging from 1 to 67 bp (Table 52). The longest intergenic
region was located between COX2 and trnK (67 bp) and can also be explained by TDRL
mode (Fig. 6B). Accordingly, 22 bp were similar to trnK (100%) and the remaining 45 bp
were similar to trnD (100%). Thus, we can infer that trnK-trnD was duplicated at least once
and then randomly deleted. This feature was also found in the mitogenome of S. porioni,
suggesting that it could be synapomorphic for Toxoderidae, because this characteristic
has only been found in Toxoderidae whereas the other families of Mantodea have only
0-2 nucleotides located between COX2 and trnK. In addition to the intergenic region
between COX2 and trnK, the mitogenome of S. porioni had another two trnK genes and
2 trnD residues forming the arrangement COII-trnK *-trnD *-trnK -trnD *-trnK -trnD
*-trnK -trnD-ATP8 (trnK * and trnD * represent tRNA residues) (Zhang et al., 2018a).

Phylogenetic analyses
The phylogenetic relationships inferred from BI analysis (Fig. 7A) and ML analysis
(Fig. 7B) had somewhat different topologies, the BI topology being almost identical to that

Zhang et al. (2018), PeerJ, DOI 10.7717/peerj.4595 13/21


https://peerj.com
http://tandem.bu.edu/trf/trf.html
http://dx.doi.org/10.7717/peerj.4595#supp-3
http://dx.doi.org/10.7717/peerj.4595#supp-4
http://dx.doi.org/10.7717/peerj.4595

Peer

28 bp K residuc 48bp D rosidue K nD 22 bp trmK residue

(A) P. polyacantha (B) T. hauseri

Figure 6 Proposed mechanism of gene arrangements in P. polyacantha (A) and T. hauseri (B).
Full-size Gal DOI: 10.7717/peerj.4595/fig-6

of Zhang et al. (2018a). In BI analysis, the main topology was as follows: (Amantis nawai
(Mantidae) + Mantidae sp.) + ((Liturgusidae + (Leptomantella albella 4 Iridopterygidae))
+ ((Haania sp. + (Schizocephala bicornis + Toxoderidae)) + remaining mantises)).
However, in ML analysis, the main topology was (Haania sp. + (Schizocephala bicornis +
Toxoderidae)) + (((Amantis nawai + Mantidae sp.) + (Liturgusidae + (Leptomantella
albella + Tridopterygidae))) + remaining mantises). The difference was mainly caused
by the unstable position of three clades: (Amantis nawai + Mantidae sp.), (Liturgusidae
+ (Leptomantella albella + Iridopterygidae)) and (Haania sp. + (Schizocephala bicornis
+ Toxoderidae)). We included three Toxoderidae taxa (P. polyacantha, S. porioni and

T. hauseri) and they formed a monophyletic clade which was also the sister clade to
Schizocephala bicornis (Mantidae). Toxoderidae as the sister clade to Schizocephala
bicornis was also found in Zhang et al. (2018a) but was reported to be the sister clade

to Oxyothespinae (Mantidae) in Svenson ¢» Whiting (2009). The species of Oxyothespinae
(Mantidae) was not including in this study. To address this discrepancy, future studies
should increase the number of species used, especially with samples of Oxyothespinae,

Tarachodinae and Amelinae.
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Figure 7 Phylogenetic relationships of Mantodea inferred from BI analysis (A) and ML analysis (B). Black circles at nodes of the BI analysis indi-
cate PP < 0.95 whereas black squares at nodes of the ML analysis indicate BP < 75 (B).

Full-size & DOLI: 10.7717/peerj.4595/fig-7

CONCLUSION

We successfully determined the complete mitogenomes of P. polyacantha and T. hauseri and
the two mitogenomes showed similar gene characteristics to other mantis mitogenomes.
An extra two copies of trnA-trnR was found in the mitogenome of P. polyacantha, which
was the first report of this in an insect mitogenome, and may give us a useful model for
studying the mechanisms of the tRNA duplications. The presence of trnK-trnD residues
between COX2 and #rnK could be synapomorphic for Toxoderidae and can be explained
by the tandem duplication/random loss model (TDRL). Both BI analysis and ML analysis
showed that Toxoderidae was monophyletic and that P. polyacantha was a sister clade to
T. hauseri and S. porioni.
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