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Leukaemia is a form of blood cancer which affects the white blood cells and damages the bone marrow. Usually complete blood
count (CBC) and bone marrow aspiration are used to diagnose the acute lymphoblastic leukaemia. It can be a fatal disease if not
diagnosed at the earlier stage. In practice, manual microscopic evaluation of stained sample slide is used for diagnosis of leukaemia.
But manual diagnostic methods are time-consuming, less accurate, and prone to errors due to various human factors like stress,
fatigue, and so forth. Therefore, different automated systems have been proposed to wrestle the glitches in the manual diagnostic
methods. In recent past, some computer-aided leukaemia diagnosis methods are presented. These automated systems are fast,
reliable, and accurate as compared to manual diagnosis methods. This paper presents review of computer-aided diagnosis systems
regarding their methodologies that include enhancement, segmentation, feature extraction, classification, and accuracy.

1. Introduction

Leukaemia is a cancerous growth of abnormal white cells
which damages the blood and bone marrow. This rapid
production of immature white blood cells (lymphoblast)
disturbs the immune systemof the body and reduces the bone
marrow’s ability to produce red blood cells and platelets [1].
Moreover, these abnormal leukaemia cells generally spread
into the blood rapidly and can also invade other body parts
like spleen, liver, kidney, lymph nodes, and brain, which may
lead to other forms of cancer.

Diagnosis of leukaemia usually depends on the complete
blood count (CBC) in which doctors check the complete
count of white blood cells, red blood cells, and platelets.
This complete blood count test may show leukaemia cells,
but, in most cases, it is not enough for doctors to confirm
that the patient has leukaemia. So, they have to use different
methods including bone marrow aspiration [2] and micro-
scopic examining of blood smear [3]. But all these manual
methods require a lot of effort and time. Also, highly trained
medical professionals are required to perform these types
of examining and hence it is labor-intensive task. On the
contrary, automated diagnostic systems can overthrow these
problems ofmanual diagnosis. Furthermore, it will reduce the

burden of medical professional and will provide accurate and
effective results as compared to manual diagnosing.

Leukaemia is classified as either lymphocytic or myeloge-
nous depending on which white blood cell (WBC) type is
affected. If the immature cells are granulocytes and mono-
cytes, then the leukaemia will be classified as myelogenous.
If the immature cells are lymphocytes, then the leukaemia is
classified as lymphocytic [4]. According to French American
British (FAB) classification, acute lymphoblastic leukaemia
is further categorized into 3 subtypes: L1, L2, and L3. These
subtypes have different properties; for example, L1 type cells
are usually small in size and are of similar shape with little
cytoplasm. Their nucleus is circular and well structured. L2
type cells are different in shape and are usually larger than
the L1 type cells. Their nucleus is irregular and they have
variations in their cytoplasm. L3 type cells are of same shape
and normal size with circular or oval shape nucleus. They
have fair amount of cytoplasmwhich contains vacuoles.They
are usually larger than L1.

Despite advancement, microscopic examination of blood
smear still remains standard and hence economical method
for leukaemia diagnosis. But thismethod ofmanual diagnosis
depends on the operator, that is, his experience, exhaustion,
personal issues, and so forth. Hence, these factors will
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Table 1: Advantages and disadvantages of different preprocessing methods.

Method Advantages Disadvantages

Histogram
equalization

Simple technique to enhance the contrast of an image
by utilizing its histogram. Useful for images having
darker or brighter background and foreground.

It is only useful if the input image has low contrast;
otherwise it can reduce the image quality. It cannot
discriminate between noise and actual image, which
can increases the contrast of noise.

Linear contrast
stretching

Enhance the contrast of image by extending dynamic
range of intensity values. Useful for low contrast images.

Main disadvantage of linear contrast stretching is that it
is vulnerable to noise. An image having single outlier
pixel can reduce the effectiveness of this operation.

Median filter Popular nonlinear filter for removing salt and pepper
noise. Useful for preserving sharp edges of image.

Only useful for images having low density noise. It
cannot perform well for the images having high
percentage of salt and pepper noise.

Minimum filter Easy to implement. Useful for removing salt noise from
the images. Can remove image detail if images are highly noisy.

Gaussian filter Useful for removing blur and noise from the images. If used alone can blur the edges and reduce the contrast
of images.

Unsharp masking Simple method for image sharpening. Remove
blurriness from the image.

Highly sensitive to noise because of linear high pass
filter.

significantly affect the outcome. So, there should be some
effective and vigorous automated system for screening of
leukaemia through which output results can be considerably
improved without effect of operator’s intervention. Further-
more, automated systems as compared to manual diagnosis
can increase the accuracy and the speed of diagnosing. This
will help the doctors to treat the leukaemia in more efficient
manners. These methods can also play a vital rule in rural
and underprivileged areas, where medical experts are not
available.

This paper presents a detailed review of computer-aided
acute lymphoblastic leukaemia (ALL) diagnosis methodol-
ogy.This research also analyses and compares differentmeth-
ods over a range of parameters. This paper is organized as
follows. Section 2 describes materials and methods in the
current literature including preprocessing techniques, seg-
mentation methods, feature extraction, and classification
methods. Section 3 provides the discussion and analysis of
work and Section 4 concludes the research.

2. Materials and Methods

Digital histopathology has witnessed a lot of improvement
in the recent years. With the new technological advance-
ment, much effective methods have been proposed for auto-
mated microscopic image analysis. Due to this development,
computer-aided detection (CAD) is becoming a reliable
method for ALL detection.

CAD system for ALL detection can be divided into
four phases, namely, preprocessing, segmentation, feature
extraction, and classification.This section provides a detailed
survey of different techniques and methods that have been
proposed, developed, and used in the automatic detection of
acute lymphocytic leukaemia cell.

2.1. Preprocessing. In preprocessing step, image is enhanced
and its quality is improved so that it can be accurately seg-
mented and classified. There are lot of factors that adversely

affect the quality of images, that is, false background, salt or
pepper noise, and low contrast. These factors may occur due
to the mishandling of camera, poor lightening conditions,
and so forth. Different techniques are proposed by the
researcher to detect these factors and to make the blood
images suitable for the segmentation [5]. Histogram equal-
ization is a very common method that utilizes the image his-
togram to adjust the contrast of image.Thismethod is suitable
for enhancing dark background/foreground and low contrast
blood smear images [6]. Another very common technique
is linear contrast stretching in which the intensity range of
an image is extended to enhance the image. It is also called
normalization of image. Many researchers have used this
technique to enhance the quality ofmicroscopic blood images
by increasing the contrast [7, 8]. Selective median filtering
with unsharp masking technique has been presented by Patil
and Raskar which removes the noise from the images but
maintains the edges, which helps to better identify the
leukocytes and lymphocytes during the segmentation [9].
Many studies use minimum filter, which is used to highlight
the lighter object to darker shade so that they can be easily
recognized during segmentation process [10]. Another filter
called order statistical filter is also used for the preprocessing
of microscopic blood images, which removes the exponential
noise as well as salt and pepper noise [11]. Gaussian filter with
standard deviation is also applied, which reduces the noise
and unwanted detail from the blood image to improve the
accuracy for the efficient ALL identification [12]. Advantages
and disadvantages of these methods are discussed in Table 1.

2.2. Lymphocyte Segmentation. Segmentation is the process
of segregating the image into different regions through which
we can easily understand the different parts of that image
and we can analyse our region of interest from the segmented
image [33]. Different pixels of the segmented image can have
different labels which distinguish them from each other and
the pixels having the same labels can share the characteristics
of the pixels. Image segmentation is the significant part of
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Figure 1: Lymphocyte segmentation methods.

acute lymphoblastic leukaemia detection, because based on
precise segmentation a classifier will be able to classify the
normal and blast cells accurately [34]. Plenty of image seg-
mentation techniques have been presented in the literature
to segment out white blood cells and lymphocytes to detect
blast cells. Different methods for lymphocytes segmentation
have been depicted in Figure 1.

2.2.1. K-Means Clustering. 𝐾-means clustering is a semisu-
pervised learning technique that is used when your data is
not labeled.This algorithm is used to divide the image into𝐾
clusters by using 𝑛 observations so that the objects in the same
cluster are as close as possible and objects in the different
cluster are different from other cluster’s objects. This method
has been used in the leukaemia blood image segmentation to
extract the WBCs and lymphocytes from the image [35, 36].

Assume an initial set of 𝑛 elements is given, and
m1
(1), . . . ,mk

(1) are 𝐾-means at time stamp 1; then the algo-
rithm will be processed by alternating among the following 2
steps.

1st Step: Assignment. Accurately assign each observation to
the nearest mean cluster.

Mathematically it can be defined as

𝑆(𝑡)𝑖
= {𝑥𝑝 : 𝑥𝑝 − 𝑚(𝑡)𝑖 2 ≤ 𝑥𝑝 − 𝑚(𝑡)𝑗 2 ∀𝑗, 1 ≤ 𝑗 ≤ 𝑘} ,

(1)

where each of the observations 𝑥𝑝 will be assigned to one 𝑆(𝑡).

2nd Step: Update. Now for the centroid of the observation
calculate the new mean in the new cluster.

𝑚(𝑡+1)𝑖 = 1𝑆(𝑡)𝑖 
∑
𝑥𝑗∈𝑆
(𝑡)
𝑖

𝑥𝑗. (2)

This loop will continue till there is no/minimal difference in
mean between two consecutive iterations.

2.2.2. Fuzzy 𝐶-Means Clustering. Fuzzy 𝐶-means is the gen-
eralized form of 𝐾-means clustering. Unlike 𝐾-means clus-
tering where each data point has its separate cluster, fuzzy 𝐶-
means allow each data point to have same cluster. Fuzzy 𝐶-
means is widely used inmedical image segmentation because
medical images have some signs of noise which is difficult
for the hard clustering to tackle because in hard clusters
like 𝐾-means clustering we have to define final number of𝑘 clusters; therefore they are sensitive to outliers [37]. On
the other hand, fuzzy 𝐶-means takes more time as compared
to 𝐾-means because of its fuzzy calculation measures. In
ALL detection, this soft clustering algorithm plays a vital role
because most of the leukaemia blood images have noise and
sign of illumination, so fuzzy 𝐶-means gives better result,
which helps in better classification of the disease but may
take more time than𝐾-means [26]. The basic fuzzy 𝐶-means
algorithm is as follows:

(1) Pick the desired number of clusters.
(2) Randomly assign each data point to the cluster.
(3) Repeat steps (1) and (2) until no more data points are

left.

Fuzzy 𝐶-means algorithm divides 𝑛 number of elements A ={a1, a2, . . . , an} into fuzzy 𝑐-clusters C = {c1, c2, . . . , cn} and
a partition matrix M = 𝑚𝑖𝑗 ∈ [0, 1], 𝑖 = 1, . . . , 𝑛, 𝑗 =1, . . . , 𝑐, where every element𝑚𝑖𝑗 tells to what degree element
ai belongs to cluster cj with respect to some given criteria.

Mathematically it can be defined as

arg
𝑐
min
𝑛∑
𝑖=1

𝑐∑
𝑗=1

𝑚𝑥𝑖𝑗 𝑎𝑖 − 𝑐𝑗 2 , (3)

where

𝑚𝑖𝑗 = 1
∑𝑐𝑘=1 (𝑎𝑖 − 𝑐𝑗 / 𝑎𝑖 − 𝑐𝑘)2/(𝑥−1)

. (4)

2.2.3. Watershed Segmentation. Watershed is an image seg-
mentation method that usually starts from the initial pixel
called marker and uniformly deluges all the other neighbor-
ing pixels of that marker known as catchment basin. These
basins are separated by the watershed, which will partition
them into different regions or pixels. It is also categorized
as region based segmentation technique [38]. Watershed
segmentation is used in medical image processing because
most of the WBCs in microscopic images are overlapping
with each other; therefore they need to be separated in order
to get better classification results. The main advantage of
this method over other methods is that the regions that
form from the resulting boundaries are closed and con-
nected as compared to traditional edge based techniques that
produce the boundaries which are disconnected and often
need postprocessing to form closed regions [39]. Although
watershed segmentation is a very simple technique and is
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suitable for parallel processing, due to existence of local
minima, it can produce oversegmentation. So, for acute
lymphoblastic leukaemia detection, most of the studies have
used marker controlled watershed segmentation to segment
out the leukaemia cells [40], which use predefined inter-
nal and external markers. In marker controlled watershed
boundaries can be predefined or they can be defined as ridges
between external and internal markers. External marker in
this method is manually defined according to our object of
interest and internal marker is automatically obtained by the
combination of different techniques like thresholding, edge
detection, and morphological operations. This method will
tackle the oversegmentation problem and help in segmenting
the objects with closed form [41]. Mathematically it can be
written as

LS (𝑥) = max
𝑦∈𝑁(𝑥)

(𝐼 (𝑥) − 𝐼 (𝑦)𝑑 (𝑥, 𝑦) ) , (5)

where LS(𝑥) is the lower slope of image 𝐼 at pixel 𝑥 and𝑁(𝑥)
is the neighboring pixel set of the pixel 𝑥 and 𝑑(𝑥, 𝑦) is the
watershed distance between 𝑥 and 𝑦. If 𝑖 = 𝑗, the LS (lower
slope) will be assigned zero.The cost from pixel 𝑥 to 𝑦 can be
calculated as
cost (𝑥, 𝑦)

=
{{{{{{{{{{{

LS (𝑥) ⋅ 𝑑 (𝑥, 𝑦) if 𝑓 (𝑥) > 𝑓 (𝑦)
LS (𝑦) ⋅ 𝑑 (𝑥, 𝑦) if 𝑓 (𝑥) < 𝑓 (𝑦)
1
2 (LS (𝑥) + LS (𝑦)) ⋅ 𝑑 (𝑥, 𝑦) if 𝑓 (𝑥) = 𝑓 (𝑦) .

(6)

2.2.4. Thresholding. Thresholding is another effective image
segmentation method that is used to convert the gray scale
image into binary image. By partitioning the image into
background and foreground, we can easily eliminate its
background to get our desired objects. If an image has high
contrast, then the thresholding will be very effective for
its segmentation [42]. This method works with a standard
threshold value; if the intensity value of the image is less
than the threshold value, then the value will be zero, that is,
convert to black color, and if the value of the intensity level is
greater than the threshold value, then the intensity value will
be converted to white.Thus, this will generate a binary image
with separated foreground and background, which will help
in better understanding of the image [43]. Mathematically, it
can be written as

𝐼 (𝑖) = {{{
1, if 𝐼 (𝑖) ≥ 𝑇
0, otherwise,

(7)

where 𝐼 is the original grey scale image with 𝑖th pixel value
in the image. 𝐼 is the binary image if 𝑇 is a global threshold
value.

In medical image segmentation, thresholding is an effec-
tivemethod for image segmentation. For acute lymphoblastic
leukaemia detection, one of the most used thresholding
techniques is Otsu’s method, which finds the optimal thresh-
old value by the minimal variance in the class to separate

the lymphocytes from the blood leukaemia image [44].
Although Otsu’s thresholding gives good results, being a
global thresholding technique it can blur the local edges of
blood cells, so to avoid this problemdifferent edge-preserving
filters are used to preserve sharp edges of blood cells. Another
triangle oriented thresholdingmethod has been used for lym-
phocytes detection by using Zack’s algorithm.This algorithm
constructs a line between highest histogram value of the
image and lowest histogram value through which an optimal
threshold value is calculated and image is segmented based on
that threshold value [45]. For acute lymphoblastic leukaemia
detection, Otsu’s thresholding [16, 21] method performs
better and provides 93% overall accuracy as compared to
Zack’s algorithm [17, 29] that is able to achieve 92% results.

2.2.5. Region Growing. It is a region based segmentation
technique that is used to select the region of interest from the
image by using predefined conditions. By utilizing edge detail
of an image, a condition can be defined for region of interest
selection [46]. It is also called pixel based segmentation
because an initial pixel is selected in the image and then
its neighboring pixels that are connected with the initial
pixel having the same intensity value are selected as a region
of interest. However, selecting the pixels manually is not
a proficient approach. But still it is widely used in the
medical image segmentation for picking tumor cells from the
microscopic image [47].

Region growing is basically used to divide the image into
different regions. Its basic formula is as follows:

(a) ⋃𝑛𝑖=1 𝑅𝑖 = 𝑅.
(b) 𝑅𝑖 is a connected region, 𝑖 = 1, 2, 3, . . . , 𝑛.
(c) 𝑅𝑖 ∩ 𝑅𝑗 = 𝜙 for all 𝑖 = 1, 2, . . . , 𝑛.
(d) 𝑃(𝑅𝑖) = TRUE for 𝑖 = 1, 2, . . . , 𝑛.
(e) 𝑃(𝑅𝑖 ∪𝑅𝑗) = FALSE for any adjacent region 𝑅𝑖 and 𝑅𝑗.

(a) shows that every pixel should be the part of the same
region. (b) indicates that all pixels in the region should be
connected; (c) shows that all the regionsmust be disjoint from
each other. (d) shows properties that should be true or false
with respect to some criteria. (e) indicates that the regions
should be different with respect to predicate 𝑃.
2.2.6. Morphology. Morphology or mathematical morphol-
ogy is a set theory based technique that is used to extract
different components from the image for the better repre-
sentation and description for the shapes and regions [48].
Morphological image processing deals with the shape of
different objects in an image by using some specific image
processing techniques.Thebasic idea behind themorphology
is to slide a predefined small shape called structuring element
over the image 𝐼 so that we can get our desired result
depending on whether the structuring elements fit or miss
over the image [49].

There are two basic morphological operators, which are
erosion ⊖ and dilation ⊕. Let 𝐸 be a binary image and let 𝑆
be a structuring element. Then the erosion ⊖ and dilation ⊕
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of the binary image 𝐸 with the structuring element 𝑆 can be
defined as

𝐸 ⊖ 𝑆 = {𝑧 | (𝑆)𝑧 ⊆ 𝐸} ,
𝐸 ⊕ 𝑆 = {𝑧 | (𝑆)

𝑧
∩ 𝐸 ̸= 𝜙} . (8)

Erosion is basically used to shrink the foreground objects and
smooth their boundaries. Dilation expands the foreground
objects and smoothens their boundaries and fills the small
holes and gaps.There are twomoremorphological operations
called opening ∘ and closing ∙.

The opening of an image 𝐸 by the structuring element 𝑆
is an erosion followed by dilation.

𝐸 ∘ 𝑆 = (𝐸 ⊖ 𝑆) ⊕ 𝑆. (9)

Closing of an image𝐸 by structuring element 𝑆 can be defined
as dilation followed by erosion.

𝐸 ∙ 𝑆 = (𝐸 ⊕ 𝑆) ⊖ 𝑆. (10)

Top-hat transform is another morphological operation that
is divided into two types called white top-hat transform and
black top-hat transform. These operators are used to extract
small image details and element information from the given
image.

Black-hat transform is the difference between image 𝐼 and
its closing, which is defined as

𝑇𝑏 (𝐼) = 𝐸 − [𝐸 ∙ 𝑆] . (11)

White-hat transform is defined as the difference between an
image 𝐼 and its opening, which is defined as follows:

𝑇𝑤 (𝐼) = 𝐸 − [𝐸 ∘ 𝑆] . (12)

Inmedical image segmentation, morphology plays an impor-
tant role. In ALL detection, many researchers have used
morphological operation for the segmentation of leukaemia
cells. It efficiently enhances the cells by filling small holes
and gaps, smoothening their boundaries, and removing the
salt or pepper noise from the nucleus. It is usually used with
watershed transform to segment out the blast cells and to
identify the connected cells for the separation of blast cells
[50].

2.3. Features Extraction. In digital image processing and
machine learning, features are the information we retrieve
from the computational problem, which helps us to efficiently
solve the task. Features can be some specific structure of the
image like its shape, points, texture, edges, and so forth. [51].
Features extraction is the interpretation of this information
to reduce the dimension of image in such a way that is
more informative and less redundant. This technique is very
effective when the algorithm has a large set of data and that
data can be also redundant; then the data is minimized to
reduce set of features that carry the most of information
of the image and is easy to compute by the algorithm. The
selection of subset of these relevant features is called features

Morphological
features

Texture and
intensity
features

Features extraction

Figure 2: Features extraction techniques.

selection [52]. These features will contain the most relevant
information and this subset is used instead of complete
feature set. By minimizing the information into reduced set
of features, a classifier will give better result by interpreting
fewer amounts of data with more relevant information.

For acute lymphoblastic leukaemia detection, features
extraction plays vital role because blast cells may have lot
of information including different characteristics of their
nucleus and cytoplasm [53]. Different features have been
extracted in the recent study. These features can be divided
into two broad categories, morphological features and texture
features, as shown in Figure 2.

2.3.1. Morphological Features. In medical image processing,
morphological features are very effective to analyse the infor-
mation of the blood cell. In acute lymphoblastic leukaemia,
blast cell has unique shape based features because every type
of cell has unique area, perimeter, and circular rounding. So,
by extracting morphological features from the blood cells we
can efficiently perform classification of these cells [54].

(1) Shape Features. Shape based features play very important
role for the acute leukaemia cell detection. Different shape
based features like area, perimeter, circulatory, solidity, eccen-
tricity, and so forth have been extracted to classify the blast
cells of leukaemia [55].

(2) Bending Energy. Bending energy is also an essential
feature that helps in efficient detection of acute lymphoblastic
leukaemia. This parameter is used to detect the curvature of
blast’s cell boundarywhich canhelp inALL classification [56].

(3) Roundness Ratio. Roundness ratio is also an important
feature that is widely used in leukaemia detection. Because of
increased variance in the circular shape of blast cells, round-
ness ratio is an efficient feature for the better classification of
leukaemia cell and its subtypes. Also, it helps in counting of
WBCs which is also an important factor for the leukaemia
occurrence [57].

(4) Chain Code. Chain code features are widely used in acute
lymphoblastic leukaemia detection. These features separate
the boundaries of nucleus and cytoplasm of blast cell which
will help us to trace out the nucleus and cytoplasm [58].
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2.3.2. Texture and Intensity Features. In medical image pro-
cessing, texture is an important characteristic for the iden-
tification of blast cells. By analysing texture of an image, we
can easily pick our region of interest and it also describes the
spatial intensity distribution and specific colors in that ROI.
For leukaemia detection, important information including
texture and intensity has been extracted from blood smear
images, which can help in better classification of blast cells
for leukaemia detection and blast cell identification.

(1) GLCM (Grey Level Cooccurrence Matrix). GLCM is a
statistical method used for the examining of texture in which
spatial relationship between the pixels is considered. For
leukaemia detection, GLCM is very useful to utilize the
texture of the input blood smear image and extract features
based on the texture and intensity of blast cells [59].

(2) Histogram. Histogram features including entropy, energy,
mean, standard deviation, skewness, and kurtosis are
extracted from the blood smear image to get enough relevant
information. These types of features are also called 1st-order
statistical features that are calculated by utilizing original
pixels and excluding neighbour pixels [18].

(3) Gabor Texture Extraction. Gabor texture extraction
method proposed by Dennis Gabor is very useful to extract
relevant information of a blood smear image by analysing its
texture. Gabor features can be extracted after applying Gabor
filter [60].

(4) Color Intensity Features. Color features are very useful for
fetching relevant information from blood cell nucleus. So,
mean color values fromdifferent colormodels like RGB,HSV,
HIS, and so forth are extracted as a feature and input to the
classifier for better classification of blast cells [61].

(5) Fractal Dimension Features. Fractal dimension is widely
used in medical image processing to measure different
quantitative information. To identify whether a leukaemia
cell is blast or normal, the roughness of its nucleus is being
measured over spatial distribution by using fractal geometry
[62].

(6) Entropy. By performing nucleus texture measurement, we
can extract the entropy as a feature vector that is used to
measure the randomness of the nucleus from the blood smear
image. Different entropymeasurements are used for the acute
lymphoblastic leukaemia cell detection [63].

(7) Hausdorff Dimension. It is also an essential feature for
microscopic blood image analysis, which is used with fractal
dimension to extract relevant information by measuring
roughness of nucleus [64].

(8) Local Binary Pattern. Local Binary Pattern is a texture
classification technique that is used to extract texture features
of an image. Because of fast computational speed of LBP, it is
highly recommended for leukaemia detection, where speed
is an important factor [65, 66]. Also, it provides significant
information about the illumination changes, which also helps
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Naive bayes
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neuro-fuzzy
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Figure 3: Classification methods for ALL.

in detection of blasted leukaemia cells. In [67], Discrimi-
native Robust Local Binary Pattern is proposed for features
extraction, which provides very encouraging results.

2.3.3. Features Selection. Features selection is a technique
used in pattern recognition and computer vision, which helps
in selecting those important features that are more relevant
to the problem and are not redundant. This will allow the
algorithm to select a subset of features, which will increase
the efficiency and accuracy andwill reduce the computational
cost due to reduced input [68]. Therefore, feature selection
will compare all the initial features that are extracted from
the microscopic blood smear images and select the most rel-
evant features. For acute lymphoblastic leukaemia detection,
different feature selection techniques are used. In [69], PCA
(Principal Component Analysis) technique is used to reduce
the features to avoid any redundancy. Genetic Algorithm
is also used to select important features [70, 71]. PPCA
(Probabilistic Principal Component Analysis) technique also
gives better performance for features reduction [13].

2.4. Classification Methods for ALL Detection. Computer-
aided diagnosing is an effective method to accurately diag-
nose acute lymphoblastic leukaemia. Computer-aided meth-
od can be fully automated or semiautomated depending
on the approach you are using. ALL (acute lymphoblastic
leukaemia) is a pattern classification problem that is diag-
nosed by extracted features of microscopic blood smear
images. Classification is a supervised learning technique that
uses training data to train its model and test data to check
performance of that model [72]. Different pattern classifiers
are used for diagnosis of ALL, which are summarized in
Figure 3.

2.4.1. SVM (Support Vector Machine). Support vector ma-
chine is one of extensively used algorithms for leukaemia
detection. This algorithm is used to output and optimize
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hyperplane that classifies the given data based on their
features [21, 73]. The main reason behind the selection of
SVM for leukaemia detection is that it is a binary classifier
that can efficiently classify between normal and blast cells.
However, a custom approach has been used for classifying its
subtypes like L1, L2, and L3 [74].

2.4.2. KNN (𝐾-Nearest Neighbor). 𝐾-nearest neighbor is a
widely used classification and regression technique that uses
the nonparametric and lazy learning method to classify dif-
ferent data. In 𝑘-nearest neighbour algorithm, classification
is done by the voting from the nearest neighbours. Based on
this voting, objects will be assigned to their relevant classes.
For acute lymphoblastic leukaemia cell classification, 𝑘-NN
classifier is used to get better classification result for the
normal and blast cells [75].

2.4.3. Random Forest. Random forest is an efficient classi-
fication technique that uses ensemble learning method to
classify an object from the input vector. It contains different
combinations of trees which perform voting for the selection
of the class and then selectionwill be based on the class having
maximum vote [76]. Although random forest depends on
random numbers due to which it may give different results
every time, still this classifier is preferred by the researcher
because it corrects the problem of overfitting. For acute
lymphoblastic leukaemia detection, random forest has been
found to be stronger classifier for the detection of normal and
infected blood cells [77].

2.4.4. ANFIS (Adaptive Neurofuzzy Inference System). Adap-
tive neurofuzzy inference system is another good classifier
that is widely used for the medical image classification. This
is a very powerful method because it is the combination
of artificial neural network and fuzzy logic. Although its
design complexity is more than other classifiers like random
forest, ANFIS is an end-to-end classifier as compared to
random forest performs classification using given features,
so if features are not strong enough random forest cannot
performs classification accurately. Therefore ANFIS helps in
better classification and early diagnosis ofmany diseases [78].
Recent study shows that ANFIS has been used for the classifi-
cation of blast cell in leukaemia patients bymicroscopic blood
image analysis, where it gives appropriate results [79].

2.4.5. Naive Bayes. Naive Bayes is an efficient classifier that is
used to categorize the data by applying Bayes’ theorem. In this
classifier, values of features are assumed to be independent of
other feature values [80]. Naive Bayes hasmultiple names like
simple Bayes and independent Bayes. For acute lymphoblastic
leukaemia detection, Naive Bayes has been utilized in the
recent study, where it is used to efficiently classify the normal
and blast cell from the microscopic blood images [81].

2.4.6. Multilayer Perceptron (MLP). Multilayer perceptron is
an artificial neural network model that contains multiple
layers of node and each layer is connected to its next node.
In MLP, each input node represents input data and all

other nodes are neuron that gives output by using activation
function. It is widely used in large-scale problems because
of its simple design and powerful computational capability.
Recent study shows that MLP has been utilized for the
acute lymphoblastic leukaemia detection, where it uses scaled
conjugate gradient back propagation (SCG) for training
blood images and on basis of this trained model performs
classification to classify normal and cancerous cells [61].

2.4.7. Probabilistic Neural Network (PNN). Probabilistic neu-
ral network is a widely used classifier. In PNN classifier,
Parzen window as well as a nonparametric function is used
to approximate probability distribution function of each class,
through which probability of input data can be estimated and
by applying Bayes rule each class with highest probability will
be assigned to the input data [82]. For acute lymphoblastic
leukaemia detection, probabilistic neural network has been
used for the efficient classification of normal and blast cells
[83].

3. Analysis and Discussion

We have presented a basic overview of image analysis and
machine learning techniques that are used for the acute lym-
phoblastic leukaemia detection and classification of normal
and blast cells. We have briefly discussed all the methods and
techniques that have been used in previous research to check
how they were implemented and what are their pros and cons
as compared to the manual diagnosing methods available
for leukaemia detection. These computer-aided methods are
found to be more efficient, reliable, accurate, and less time-
consuming as compared to the manual diagnosing methods
that were less efficient and more time-consuming.

Table 2 shows a systematic comparison of various ALL
diagnostic methods. Every method has used its own tech-
nique to diagnose acute lymphoblastic leukaemia. Different
preprocessing, segmentation, features extraction, and classi-
fication techniques with their performance have been shown
in Table 2.

Karthikeyan and Poornima [14] used histogram equaliza-
tion and median filtering for preprocessing of ALL images
and then fuzzy 𝐶-means was used to segment out the white
blood cells and after extracting features using Gabor texture
extraction method support vector machine was used for
classification of blasted cells. They were able to achieve 90%
accuracy by using abovemethod. Putzu and Ruberto [17] had
improved their accuracy to 92% by using triangle threshold
with improved features. They had extracted shape, color, and
texture features using GLCM. After that, SVM was used for
classification of blast and normal cells. Mohapatra et al. [27]
achieved an accuracy of 94.73% by using their proposed
methodology. They used contrast enhancement and selective
median filtering for noise removal and contrast adjustment,
which helps in better segmentation of leukaemia images.
Shadowed𝐶-means clustering was used for the segmentation
of lymphocytes which clustered the lymphocytes into 3
regions including their background, cytoplasm, and nucleus.
After that, different features including fractal dimension,
shape based features, color features, and texture features were
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extracted from the segmented lymphocytes. Then a powerful
ensemble classifier (Naive Bayesian, 𝐾-nearest neighbor,
multilayer perceptron, radial basis functional neural network,
and support vector machines) was used to classify normal
and blast cells. Mishra et al. [13] used histogram equalization
and Weiner filtering to enhance contrast and noise adjust-
ment. Improved watershed segmentation with Sobel and
Prewitt operators was used to achieve better segmentation.
After extracting GLCM based texture features, they used
random forest classifier rather than SVM, which improved
the accuracy to 96.29% as compared to other methods. Savita
Dumyan [20] increased their accuracy to 97.8% by using
canny edge detection that is efficient and reliable as compared
to other edge detection techniques because of its low error
rate. After extracting features, powerful ANN (artificial neu-
ral network) classifier was trained to classify normal and blast
cells. Li et al. [18] proposed novel segmentation technique
for white blood cells, where dual-threshold method was
used for segmentation, in which optimal threshold value
was determined by using golden section search. After that,
postprocessing was carried out, in which morphological
operation and median filtering were used to enhance the
segmentation results. By using this method, they were able to
achieve accuracy of 98%. Rawat et al. [15] were able to achieve
higher accuracy of 99% as compared to all previous methods
by using powerful hybrid hierarchical classifiers. Histogram
equalization and order statistic filter were used for contrast
adjustment and noise removal. Global thresholding followed
by morphological opening was used for segmentation of
lymphocytes. After that different features were extracted
and reduced by using PCA (Principal Component Analysis).
Then 2-method classification technique was used, in which
five classifiers were arranged in hierarchal order to detect
normal and blast cells; then subtypes of acute lymphoblastic
leukaemia, that is, L1, L2, and L3, were also classified by using
this method.

After analysing the previous methods, we come to the
point that there is still research room available to improve the
accuracy of leukaemia detection. ALL detection and diagno-
sis are very sensitive issues and are related to the health and
life of humans. Accuracy of such diagnosis process should
be flawless for complete replacement of human operators by
these computer-based diagnoses but this is a very challenging
task because these blood cells are highly overlapping as shown
in Figure 4, which makes them difficult to separate.

It is also analysed that classification of ALL subtypes
is somewhat ignored in the literature. Most researchers
have neglected the identification of subtypes of acute lym-
phoblastic leukaemia because of their interclass similarity
and intraclass variability. These subtypes are difficult to
classify but play vital role in precise diagnosis of disease and
are very crucial for the medical treatment of the disease.
Different subtypes of acute lymphoblastic leukaemia are
shown in Figure 5. According to FAB classification, we have
the following:

(i) L1: these blast cells are homogenous and small with
very scanty cytoplasm and do not contain vacuoles.
Their nucleus is regular and round

Figure 4: Overlapping cells.

(a) (b)

(c) (d)

Figure 5: Subtypes of ALL according to FAB. (a) A noncancerous
cell, (b) L1 type ALL, (c) L2 type ALL, and (d) L3 type ALL.

(ii) L2: they are heterogeneous and large in size with
irregular nucleus. Cytoplasm may contain vacuoles

(iii) L3: these blast cells are homogenous and their size
is moderate. Their nucleus is round and regular and
cytoplasm has notable vacuoles.

4. Conclusion and Future Prospects

In this paper, we have provided the brief detail about ALL.
We also highlighted different methods for diagnosis of acute
lymphoblastic leukaemia (ALL) which have been proposed
by different researchers. ALL is a fatal disease that needs to be
diagnosed earlier for proper treatment. So, we have compared
different methods for the early detection of leukaemia.
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Techniques for different stages of the diagnostic methods
are summarized, analysed, and compared in this research.
Although a lot of research work has been done for ALL
detection, there is tremendous amount of work needed to
make its detection flawless, accurate, cost-effective, andmore
efficient. Also, after comparing the previous work, we come
to the point that there are very few works done for the
classification of its subtypes, which have opened more room
for researchers to work on subtypes of leukaemia, which will
help the pathologist to do effective treatment of leukaemia
patient.
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