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Although the central roles played by two-dimensional (2D) cell models and
animal models in increasing fundamental understanding of cell biology are
undisputed, neither can accurately recapitulate the physiology of human tissues
and their pharmacological responses to different perturbations. For example, up
to 50% of compounds eliciting liver injury in man do not show similar effects in
animal studies [1]. Increasing awareness of these deficiencies has led to the
development of a range of three-dimensional (3D) cell culture models of
human tissues that include unicellular and multi-cellular models based on
known cellular compositions of particular human tissues, and tissue stem
cell-derived organoids, collectively termed here microtissues. These have enor-
mous potential for helping to elucidate human physiology, mechanisms of
disease and their safe treatment [2]. Exploitation of 3D models is limited by sev-
eral major challenges. Drug discovery, cell therapy and personalized medicine
applications require new technologies that replicate biophysical cell growth
conditions, enhance the reproducibility of microtissue handling and, impor-
tantly, provide analytical options that capture the complexity of the cellular
structures that can be generated. This requires sustained interdisciplinary col-
laborations and innovations in the physical sciences. Indeed, the translation
of many routine research methods from 2D to 3D is challenging.

This special edition showcases current research which aims to tackle some
of the challenges associated with developing 3D tissues. The contributions
come from members of an MRC-funded network 3DBioNet which aims to
establish multi-disciplinary teams of scientists from industry and academia
who together possess the diverse skills needed to develop 3D microtissues.
As explained below, the five, featured articles span experimental methods for
organoid development [3], the use of 3D scaffolds to promote wound healing
[4], software for reconstructing and analysing 3D structures from 2D
microscopy images [5], methods for quantifying cell numbers in 3D organoids
[6] and mathematical and computational modelling [7].

With its focus on in vitro models of neurodegenerative diseases (NDDs)
and increasing awareness that their prevalence is likely to increase as
populations age, the article by Bhargava et al. [3] highlights the clinical and
therapeutic drivers for the development and application of human organoids.
While animal models provide useful information about the pathogenesis
and pathobiology of NDDs, their use is limited as they often overexpress
mutant proteins, obscuring details about the onset and progression of NDDS.
These factors, combined with increased awareness of the ethical issues
associated with animal experiments and technical difficulties with using
appropriate tissue from NDD patients, are driving the development of
in vitro models involving induced pluripotent stem cells (iPSCs) to study
NDD onset and progression. iPSCs have self-renewal properties and can
differentiate into multiple cell types, including motor neurons, astrocytes
and microglia and, as such, can be used to understand NDDs. In their article,
Bhargava et al. [3] provide a comprehensive review of existing in vitro
methods for using iPSCs to study NDDs, focusing on the pros and cons of
2D and 3D techniques.
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When designing 3D microtissues, it is important to recapi-
tulate the microenvironment experienced in vivo. The 2D and
3D assays reviewed in [3] focus on organoids generated from
stem cells alone, with growth factors being used to create suit-
able microenvironments. Depending on the tissue of interest,
however, it may be preferable to seed the cells within artificial
tissue matrices or 3D scaffolds. In a systematic study, Khan
et al. [4] use a tissue engineering approach to investigate practi-
cal ways to accelerate the healing of full-thickness wounds.
They show that seeding bone marrow-derived mesenchymal
stem cells (BM-MSCs) in 3D collagen scaffolds enhances
wound healing by increasing stem cell survival and adherence
at the wound site. They show further how transfecting the BM-
MSCs with Jagged 1, a potent angiogenic ligand, enhances
wound healing, by promoting cell proliferation, reducing
inflammation and increasing oxygen perfusion through the
de novo formation of blood vessels (i.e. vasculogenesis). Their
study reveals the strong clinical potential and translational
value of developing 3D microtissues for medical applications.

As the number of applications of 3D organoids increases,
so the need for methods to analyse and quantify the resulting
structures is also increasing. Most existing software focuses
on the analysis of the morphology of individual 2D images
through the organoids and, as such, is unable accurately to
identify and quantify structures (e.g. filopodia) that span
multiple 2D slides. Further, when using commercial software,
it can be difficult to adapt or verify the algorithms being used
to perform the image analysis. Rohwedder et al. introduce
Cloudbuster, versatile open-source software that can recon-
struct 3D objects (e.g. organoids or tumour spheroids) from
multiple, 2D cross-sectional images of the objects. They
demonstrate the versatility of their workflow by applying it
to high-resolution confocal microscopy images of spheroids
cultured from two glioma cell lines, using the z-stacks to
reconstruct the 3D structure of the spheroids and to quantify
changes in spheroid size and morphology over time and in
response to treatment with inhibitors of cell migration.

The principles for analysing 3D organoids introduced in
[5] are reinforced in the article by Temple et al. [6]; there
the attention focuses on the need for robust and reproducible
methods to quantify cell numbers and gene expression levels
in 3D culture systems so that accurate comparisons can be
made between the performance of different 3D systems.
The authors start by reviewing existing methods for culturing
3D tissue constructs, focusing on the pros and cons of each
method, with particular emphasis on the challenges associ-
ated with collecting data from each system. They then
summarize methods for imaging 3D microtissues, before con-
cluding that standardized methods for image analysis,
particularly cell quantification, should be established in
order to ensure that information generated from different
experiments can be compared and their combined infor-
mation content maximized.
A natural next step for exploiting further the information
that can be extracted from 3D organoids could involve inte-
grating the imaging methods developed in [5] and [6] with
mathematical and computational models that describe the
biophysical processes that underpin the growth and response
to treatment of 3D organoids [8,9]. By fitting the theoretical
models to data extracted from 3D reconstructions of the
organoids, estimates of biophysical parameters can be
obtained and the impact of different interventions quantified.
Additionally, validated mathematical and computational
models can be used to inform experimental design (e.g. the
types of data that are needed, and the times at which
they should be collected, in order to estimate key model
parameters) [10,11].

The article by Hardman et al. [7] illustrates the potential
insight that theoretical modelling can provide into the
design and operation of bioreactors. They use finite-element
modelling to show that a muscle-on-a-chip bioreactor is
capable of delivering oxygen at a rate sufficient to enable sus-
tained growth of muscle cells. They then show how their
model can be used to predict what bioreactor dimensions
should be used to ensure muscle cells experience normoxic
conditions during cell culture. They also predict the maxi-
mum density of neurons that can be seeded in a typical
bioreactor while ensuring sufficient oxygen is available to
sustain muscle growth.

In summary, the five papers featured in this special edi-
tion highlight the diverse skills that are being used to
develop and analyse 3D organoids of human tissues, and
the potential for organoids to increase understanding of
human physiology and strategies for treating diseases.
Together with an earlier special issue which also showcases
research by members of 3DBioNet [12], it is clear how the
field has developed over the past 2 years. However, many
challenges remain: drug discovery, cell therapy and personal-
ized medicine applications require new technologies that
replicate biophysical cell growth conditions, enhance the
reproducibility of microtissue handling and permit (image)
analysis of the complex, cellular structures that can be gener-
ated. Addressing these challenges requires active and
sustained multidisciplinary collaboration between engineers,
physicists, mathematicians, computer scientists, biomedical
researchers and industrial stakeholders. Through its activi-
ties, the MRC-funded network 3DBioNet has catalysed the
formation of multiple new collaborations and helped to
strengthen the reputation of the UK as a leading centre for
research and innovation in the development and application
of 3D microtissues in medicine and biology.
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