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Abstract: Osteoarthritis is a common musculoskeletal disorder. Classification models can discriminate
an osteoarthritic gait pattern from that of control subjects. However, whether the output of learned
models (probability of belonging to a class) is usable for monitoring a person’s functional recovery
status post-total knee arthroplasty (TKA) is largely unexplored. The research question is two-fold:
(I) Can a learned classification model’s output be used to monitor a person’s recovery status post-
TKA? (II) Is the output related to patient-reported functioning? We constructed a logistic regression
model based on (1) pre-operative IMU-data of level walking, ascending, and descending stairs
and (2) 6-week post-operative data of walking, ascending-, and descending stairs. Trained models
were deployed on subjects at three, six, and 12 months post-TKA. Patient-reported functioning was
assessed by the KOOS-ADL section. We found that the model trained on 6-weeks post-TKA walking
data showed a decrease in the probability of belonging to the TKA class over time, with moderate
to strong correlations between the model’s output and patient-reported functioning. Thus, the LR-
model’s output can be used as a screening tool to follow-up a person’s recovery status post-TKA.
Person-specific relationships between the probabilities and patient-reported functioning show that
the recovery process varies, favouring individual approaches in rehabilitation.

Keywords: osteoarthritis; total knee arthroplasty; machine learning; classification; biomechanics;
inertial measurement units

1. Introduction

Knee osteoarthritis (OA) is the most common form of osteoarthritis and affects millions
of people worldwide [1,2]. Conventional treatment for OA consists of (a combination of)
education, medication, promotion of an active lifestyle, and exercise therapy [2–5]. If
these approaches no longer result in an acceptable reduction in pain or disability, the
treatment of choice is a total knee arthroplasty (TKA). To assess the impact of OA and
TKA surgery on everyday functioning, patient-reported outcome measures (PROMs) are
most often used as part of a clinical follow-up. On the other hand, objective follow-up of
biomechanical improvement can be used as an additional factor that facilitates precision
medicine (including rehabilitation) [6–8].

Altered gait biomechanics early after knee replacement is predictive of altered gait
biomechanics at 12 months post-TKA [9]. Thus, movement analysis has been suggested
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as a method that can indicate the need for physical therapy intervention [9]. However,
conventional lab-based methods to capture the biomechanical gait pattern of people are
time-consuming, requiring specialised equipment and personnel. Fortunately, the com-
bination of the technological improvements in wearable sensors and the development of
advanced statistical models (e.g., machine learning) might provide new avenues to monitor
and detect aberrant movement patterns in a clinical, and therefore more ecological, settings.

One of the biggest advances of machine learning is its ability to automate the detection
of pathological gait features that are too difficult and too complex for conventional statistics or
conventional 3D gait analysis that usually evaluates joint function independently from other
joints, whereby patterns are less likely to be recognised [10,11]. Previous studies (Laroche et
al., 2014 or Jones et al., 2006) used machine learning in osteoarthritis research to distinguish
an osteoarthritic biomechanical gait pattern from the gait pattern of an asymptomatic control
subject [11,12]. Recently, we used an L1-regularised logistic regression model to distinguish
people with (either pre-operative hip or knee) OA from asymptomatic controls [13]. Separate
models were created for five activities of daily living and four rehabilitation exercises. Marker-
based joint kinematics during ascending stairs, descending stairs, and level walking could
accurately classify people with knee OA and asymptomatic controls [13].

This L1-regularised logistic regression model has the advantage that it outputs a
measure of certainty to the classification. Given that a person progresses along a contin-
uum after surgery, a hard prediction cannot capture where on this continuum a person’s
current recovery is situated. Therefore, models that display a measure of certainty might
be more suitable for follow-up purposes. Nevertheless, whether the output of such a
learned classification model—i.e., the probabilistic outcome as a measure of classification
certainty—can be used to monitor a person’s recovery status post-TKA is still largely
unexplored. The use of a learned classification model to monitor recovery status has the
potential to serve as a global metric of recovery based on a large number of biomechanical
input parameters. One classification model (Cardiff classifier) previously evaluated the
probability of belonging to the TKA class, and has been used to detect improvement after
a total knee arthroplasty [12]. The Cardiff classifier showed that at six months post-TKA,
23% of the TKA patients were classified as an asymptomatic control based on objective
measures (integrated 3D motion capture with force plate data); however, a striking 74%
was classified as an asymptomatic control based on subjective outcomes (PROMs) [14].
This indicates that there is a discrepancy between the classification based on PROMs and
the classification based on motion capture data. Moreover, it shows that PROMS provide
only part of the relevant information. Motion capture measures obtained in this study
were limited for clinical use due to methodological difficulties (e.g., need for specialised
lab-based data). Fortunately, as mentioned before, the combination of the technological
improvements in wearable sensors and the development of advanced statistical models
provides new avenues for individuals in a clinical setting to assess and monitor a person’s
functional recovery status.

Therefore, this study aims to train a logistic regression model that can differentiate
people pre- and post-TKA from control subjects based on kinematic variables extracted
from IMU sensors. Logistic regression outputs a score between 0 and 1, representing the
probability that a person belongs to a certain class, i.e., how confident the model is that this
subject belongs to a particular class [15]. Therefore, we aim to use the probabilistic output
of the logistic regression model to examine whether the output of a learned classification
model can monitor a person’s recovery status post-total knee arthroplasty (TKA) (i.e., does
the movement pattern of people post-TKA evolve towards that of asymptomatic controls).
Moreover, this study aims to explore the interaction between patient-reported outcome and
the probability of belonging to the TKA class.

Therefore, we tackle two research questions: (1) Can the output of a learned classi-
fication model be used to monitor a person’s recovery status post-TKA? We hypothesise
that the probabilistic outcome score of a logistic regression model decreases post-TKA (i.e.,
probability of belonging to the TKA class decreases over time—indicative of normalisation
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of biomechanical features). (2) Are the outputs of learned classification models related to
patient-reported outcome measures? We hypothesise that if the probability of belonging
to the TKA class increases (adverse outcome), this coincides with a more unsatisfactory
patient-reported outcome. This probabilistic outcome essentially provides a complete gait
analysis summarised in a single outcome score between 0 and 1 (similar to the Gait Profile
Score often used in a clinical setting [16]). As such, the probabilistic outcome used in this
study could be used as a global metric to monitor recovery based on a large number of
biomechanical input data as an addition to the already used PROMs. Moreover, this global
metric might also be relevant in determining the end of a rehabilitation trajectory.

2. Materials and Methods
2.1. Participants

This is an exploratory study based on a secondary analysis of a more extensive
prospective follow-up (study was approved by the local ethics committee of the university
hospital Leuven, S59857). In this controlled laboratory-based study, 39 people participated:
20 asymptomatic controls and 19 people with unilateral knee OA. The people with knee
OA received a total knee arthroplasty, and 17 were re-evaluated at 6 weeks, and at 3, 6,
and 12 months post-TKA. One participant dropped out at 6 weeks after having received a
double prosthesis, and a second participant dropped out at 12 months post-TKA due to a
symptomatic herniated disk in the lower back. People with knee OA were recruited from
two local hospitals (Jessa Hospital, Hasselt, Belgium and Ziekenhuis Oost Limburg, Genk,
Belgium). The asymptomatic control subjects were recruited from a local senior’s network
in Leuven. Inclusion and exclusion criteria for both groups are in Table 1. Before starting
the study, participants provided written informed consent.

Table 1. Inclusion and exclusion criteria for the participants.

Healthy Population Patient Population

Inclusion Inclusion

• Aged between 50–75 years old
• Understand the Dutch language
• Able to walk 10 m and ascent/descent

the stairs

• Aged between 50–75 years old
• Understand the Dutch language
• Diagnosed with hip or knee OA
• Awaiting of total hip of knee replacement

surgery
• Able to walk 10 m and ascent/descent

the stairs

Exclusion Exclusion

• Diagnosed with musculoskeletal or neuro-
logical disorders

• Pain in hips, knees or ankles, which affect
normal movement

• Corticosteroid injection 3 months before
inclusion to the study

• Diagnosed with symptomatic hip or knee
OA on the contralateral knee

• Joint replacement in other lower limb joints
• Symptomatic degenerative disorders in

other lower limb joints
• Neurological conditions that could alter

movement pattern
• History of pathological osteoporotic frac-

tures (in hip, knee or ankle joints)

2.2. Study Protocol

Based on Emmerzaal et al., (2022) ascending stairs, descending stairs, and level walk-
ing are the three activities that best distinguish people with end-stage knee OA from
asymptomatic controls [13]. Therefore, the participants were asked to perform these three
activities (i.e., level walking, ascending, and descending stairs), while being equipped
with 17 inertial measurement units (IMUs) (MVN BIOMECH Awinda Xsens Technolo-
gies, sampling at 60 Hz; software version MVN Awinda 4.4) [17]. These sensors were
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placed on all body segments except hands (i.e., both feet, lower legs, upper legs, pelvis,
sternum, shoulders, upper arms, lower arms, and head) according to the Xsens guidelines
(MVN User Manual, 2019). Participants were instructed to walk or navigate the stairs at a
self-selected speed; see van der Straaten et al., (2018) for details of the protocol [18]. All
activities were performed barefoot. Pre-operatively and for the control subjects, a standard-
ised 4 step staircase was used. For the follow-up measures, a standardised 3 step staircase
was used. Step height and tread length was identical in both staircases (height = 0.16 m
and length = 0.31 m).

2.3. Data Processing

Joint angles were directly extracted from the Xsens graphical user interface (MVN Awinda
studio 4.4) [17]. Similar to the workflow of Emmerzaal et al. (2022), only a single middle stride
was extracted for each leg and used for further processing [13]. Step detection for walking was
performed using the peak acceleration of the anterior-posterior raw acceleration signal [19].
For each detected step, we determined left-right steps using the medio-lateral acceleration
signal [19]. To extract the stride from the stairs data, we used the local maxima of the tibia
acceleration in the x-direction that followed a local minimum. The peak tibia acceleration
was found to be the most robust method to segment stairs data based on the comparison of
the step detection based on the peaks in the acceleration signal with the step detection using
force plate data. Joint angles from the spine, hip, knee, and ankle of the middle stride were
extracted and filtered at 6 Hz to match conventional filtering of joint kinematics used in our
previous work [13] and time normalised to 100% stride time.

2.4. Feature Construction

The features during all evaluation moments for each subject during the three types
of exercise were derived from the kinematic timeseries data using a multivariate feature
construction tool, TSFuse (version 1.0dev) [20]. Feature construction was performed in an
unsupervised manner (meaning this was conducted without knowledge in which group
each participant belonged to). Table 2 shows an overview of kinematic data used as input
to TSFuse package. Each input is represented as a view that contains a univariate timeseries
for each trial. Based on these time series, TSFuse generates new timeseries using time
series fusion operations (e.g., computing the ratio of two time series). To avoid generating
redundant timeseries, the system only adds a new timeseries if the correlation to any of
the other timeseries is lower than a given threshold. We set this threshold to its default
value (0.99). The system then automatically extracts features from the input and generated
time series. We used the full setting of TSFuse, which includes all features implemented
in the system. These features contain statistics such as the mean, variance, minimum and
maximum of a timeseries, as well as more complex features such as Fourier coefficients
and linear trend statistics. A complete overview of all implemented features is shown
in [20]. After extracting the features for each trial, the features were averaged per subject
per activity. Note, for the asymptomatic controls, the features were averaged over both legs.
In people with knee OA and after TKA, only the affected/operated side was considered.

Table 2. Timeseries used as input in TSFuse.

Kinematics

Spine lateral bending
Spine flexion/extension

Spine rotation
Hip flexion/extension

Hip abduction/adduction
Hip internal/external rotation

Knee flexion/extension
Knee abduction/adduction
Ankle plantar/dorsiflexion
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2.5. Statistical Analysis

Based on the features derived from the kinematic data, we used a leave-one-out cross
validation machine learning pipeline that predicted the probability that a given person
belongs to the TKA class. Since different activities may require different models, we trained
a separate model for each activity. The training phase had two steps:

1. Normalisation: Because of inter-individual differences such as body mass and length,
the features of different subjects may have different ranges. To account for such differ-
ences, we normalise the features using standard scaling. Specifically, we transform
each feature as follows:

(x − mean(x))/std(x)

where x is a vector containing the value for each subject and each activity in the
training set.

2. Training with hyperparameter tuning: We train a logistic regression model that takes
the normalised features as input. Since the number of constructed features is large
(25,958 features) in comparison to the number of instances (39 subjects), we select a
small set of features by using L1-regularisation, which sets the coefficients of irrelevant
and redundant features to zero. We tune the regularisation parameter by training
different logistic regression models using five-fold cross-validation on the training set.
Specifically, we evaluate ten different values for the regularisation parameter scaled
logarithmically between 0.01 and 1. For each value, we evaluate the average area
under the ROC curve (AUC) over the five-folds and select the value with the highest
average AUC. The final model is then trained on the full training set using the best
regularisation parameter. The model was trained using the LIBLINEAR [21] optimiser
with a maximum of 100 iterations.

After training, we can evaluate the model on unseen data, i.e., data collected from
different subjects or at different points in time. The evaluation phase has the following
two steps:

1. Normalisation: Similar to the training phase, we normalise the feature values. We
apply the same transformation as for the training data using the mean and standard
deviation computed from the training set.

2. Prediction: We apply the trained logistic regression model to the normalised features.
The model returns a score between zero and one. Scores close to zero mean that the
model is confident that the person is an asymptomatic control, and scores close to one
mean that the model is confident that this person is a person and will receive or has
received a TKA. Decision boundary is set at 0.5, scores above the 0.5 are classified as
TKA and below the 0.5 are classified as asymptomatic.

The analysis is performed in Python (version 3.8.5). We use the scikit-learn library
(version 0.21.2) to normalise the features and train the logistic regression models [22].

To analyse whether the considered features within the model capture changes in
movement pattern post-TKA we explore two types of input features: (1) model developed
on input features measured pre-TKA; to deploy the model on all other time points (i.e., six
weeks, three-, six-, and 12 months post-TKA) for each activity; and (2) model developed
on input features measured at 6 weeks post-TKA; to deploy the model on the remaining
evaluation moments post-TKA (i.e., 3-, 6-, and 12 months post-TKA). For all models, we will
first check the model’s ability to differentiate the TKA class from the asymptomatic control
class with the classification accuracies of each model (i.e.,the ratio of correct predictions to
the total number).

To explore how the participants’ probability relates to patient-reported outcome mea-
sures, we used the outcome scores of the activity of daily living (ADL) subsection of the
Knee Injury and Osteoarthritis Outcome Score (KOOS) at the different evaluation moments.
The ADL subsection was chosen because it evaluates the perceived functioning in daily life—
amongst others, during ascending and descending stairs. First, we calculated the change in
probability and the change in patient-reported outcome between 6 weeks and 12 months
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post-op. Thereafter, we calculated the Spearman’s rank correlation on the change scores to
get the group correlations. Lastly, we calculated individual Spearman’s rank correlation
coefficient between the probability of belonging to the TKA class and the patient-reported
functioning per participant over time to get the individual responses. A correlation co-
efficient between 0–0.25 was considered weak, from 0.25–0.5 fair, 0.5–0.75 moderate, and
0.75–1.0 strong.

3. Results
3.1. Classification Accuracies

We found that all models had high classification accuracies, ranging from 91.67%
to 100%, indicating that all our models are able to differentiate the TKA class from the
asymptomatic class (Table 3).

Table 3. Classification accuracies of all models.

Activity Model Trained on Classification Accuracy

Ascending stairs Pre-TKA data 93.33%
Descending stairs pre-TKA data 96.67%

Level walking pre-TKA data 100%
Ascending stairs 6 weeks post-TKA data 95.83%
Descending stairs 6 weeks post-TKA data 91.67%

Level walking 6 weeks post-TKA data 94.58%

3.2. All Activities, Models Trained Pre-Operative Data

Figure 1 shows the heatmaps for the classification model trained on pre-operative
data and deployed on all post-TKA re-evaluation moments. For ascending and descending
stairs, we observed a decrease in probability to belong to the TKA class in only 27% of our
participants. This is visualised in five participants that show a change from darker to lighter
colours in the heatmap shown in Figure 1. The majority (72% of our participants), however,
does not show a change in the probability score of belonging to the TKA class. However,
stair negotiation might be unsuitable for monitoring progress due to the substantial number
of participants that could not negotiate stairs at six weeks post-op (white fields in Figure 1).
Contrarily, using data from level walking, we observe a large decrease in the probability of
belonging to the TKA class between pre- and post-TKA probabilities where all individuals
are classified as asymptomatic at six weeks post-op. Due to the substantial number of
people unable to negotiate stairs, the remainder of the analysis will only consider level
walking, i.e., the model is trained on early post-op data and relates the probability scores
with patient-reported functioning.

3.3. Level Walking, the Model Trained on Post-Operative Data

Using the model trained on six weeks post-TKA data, we see more minor deviations in
the probability of belonging to the TKA class at various stages of recovery (Figure 2). This
decrease in the probability of belonging to the TKA class is visualised in a gradual shift from
darker to lighter colours in all participants. At 12 months post-TKA, 38% of our participants
are now classified as asymptomatic (probability below the 0.5) and have improved their
movement pattern to resemble that of asymptomatic controls—indicative that 62% still
have an aberrant gait pattern at 12 months post-TKA. Showing that, if we would have used
the binary classification as the output, we would have missed the improvements made by
the people who do not cross the arbitrary 0.5 threshold.
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Figure 1. Heatmap of the probability of belonging to the patient class for each individual (subject
identifiers are on the y-axis). Darker colours indicate a high probability of belonging to the TKA class,
and the lighter the colours lower the probability. The model was developed on pre-operative data of
either ascending stairs, descending stairs, or level walking.

Figure 2. Heatmap of the probability of belonging to the patient class for each individual. Darker
colours indicate a high probability of belonging to the TKA class, and the lighter the colours lower
the probability. The model was developed on post-operative data of level walking.

3.4. Probability of Being in the TKA Class Related to Reported Functioning

For the total group, we found a fair correlation between a change in probability of
belonging to the TKA class between 6 weeks and 12 months (ρ = −0.37) with a change in
ADL score. However, this result was not-significant (p = 0.15). Concerning the individual
correlations over time, we found a strong (ρ > −0.75) and moderate (ρ = 0.5–0.75) negative
correlation between the probability of belonging to the TKA class and the KOOS ADL
outcome score in 55.6% and 11.1% of our participants, respectively (Figure 3). In the
remaining 33.3%, we only found a fair or weak negative correlation. Nevertheless, from the
individual plots in Figure 3 we can also observe that the responses to recovery are person
specific—i.e., not everyone shows a clear decrease in probability of belonging to the TKA
class. In the people with a strong negative correlation (rows 1 and 2 of Figure 3), we see an
apparent coupling between a decrease in the probability of belonging to the TKA class and
an increase in the patient-reported functioning score. However, a good outcome on patient-
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reported functioning (e.g., score > 90) does not necessitate a classification as asymptomatic
based on biomechanical gait data (e.g., koa_pp08—row 1 column 3, koa_pp06—row 1
column 4 of Figure 3). Indicating that recovery is a multidimensional process and the two
methods might measure a different construct of the recovery process.

Figure 3. Evaluation time-curves of the probability of belonging to the TKA class (blue) and the
patient-reported outcome (orange) per participant. The model used is trained on post-operative
walking data and deployed on post-op walking. The headers of each subplot show the correlation
coefficient. The subplots are sorted on highest correlation to lowest correlation.

4. Discussion

This study aimed to explore whether the output of a learned classification model can
be used to monitor a person’s recovery status post-TKA and whether these biomechanically-
related outputs reflect patient-reported functioning. Our results show that the model’s
ability to detect biomechanical changes depends on the activity and the data used to
develop the logistic regression classification model: level walking was able to monitor a
person’s recovery status when early post-operative IMU-based kinematic data was used
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to create the model (Figure 2). Models trained on level walking pre-operative data are
less applicable for capturing changes during re-evaluation moments post-TKA (Figure 1).
Using data from stair negotiation might be unsuitable for monitoring purposes due to
the substantial number of participants that could not negotiate stairs at all timepoints.
Moreover, the trends in the probability score of the logistic regression model trained on
level walking six weeks post-TKA is related to trends in the patient-reported functioning
for 67.3% of our participants. However, inter-individual differences in responses during
recovery are present.

4.1. All Activities, the Model Trained Pre-Operative Data

The logistic regression models trained on pre-operative data are less appropriate for
monitoring purposes. The substantial number of subjects (33%) that are unable to negotiate
stairs at six weeks post-TKA makes employing this classification model more difficult in
clinical practice.

Level walking is an activity that all participants were able to perform. However, the
pre-operative model was not able to detect biomechanical changes at follow-up since all
individuals were classified as asymptomatic as early as six weeks post-TKA. This result is
in contrast with the results of Worsley et al., (2016) who used the Cardiff classifier trained
on pre-operative walking data and showed that only 23% retained asymptomatic gait at
6 months post-TKA [14]. Moreover, from a clinical perspective, it is improbable that all our
participants function as asymptomatic individuals six weeks after major surgery. Especially
considering that previous research found that biomechanical differences in gait pattern
compared to asymptomatic controls are still present at 12 months post-TKA [9,23,24],
making Worsley’s results more probable [14]. Possibly, the most relevant features in
differentiating people with pre-operative end-stage OA from asymptomatic controls are
no longer relevant post-TKA—e.g., relevant features might have been resolved with the
surgical procedure. Thus, if the goal is to classify the gait pattern of end-stage OA people,
features from pre-operative level walking kinematics show perfect accuracy. However to
monitor biomechanical changes in the gait pattern post-TKA, this model is less relevant
because we are possibly dealing with a different population—i.e., post-TKA instead of end
stage OA.

4.2. Level Walking, the Model Trained on Post-Operative Data

In contrast, the model trained on early post-operative (6 weeks post-TKA) level
walking data was able to monitor biomechanical changes post-TKA at the remaining
evaluation moments (i.e., three, six, and 12 months). We can observe more minor deviations
in the probability of belonging to the TKA class at the different time points during recovery,
which results in a gradual shift from darker to lighter colours (Figure 2). At 12 months
post-TKA, 38% of our participants were classified as asymptomatic. This is a slightly higher
percentage than Worsley et al. (2016), who found that only 23% of the people with TKA
improved using a model trained on pre-operative kinematic, kinetic, and spatiotemporal
gait data [14]. However, Worsley et al. (2016) re-evaluated their participants six months
post-TKA compared to the one year post-op considered in our study [14]. This longer
follow up period might clarify the difference with Worsley’s results.

4.3. Interaction between Probability and Patient-Reported Outcome

We explored whether the changes in probabilities of belonging to the TKA class were
related to changes in patient-reported functioning between 6 weeks and 12 months post-
TKA, and we only found a fair non-significant negative correlation (ρ = −0.37) between
the two when considering the group. Indicating that there is only a slight relationship
between a larger improvement between 6 weeks and 12 months post-TKA in patient
reported functioning, and a larger decrease in the probability of belonging to the patient
class. However, when we explored the individual relationships, we found moderate to
strong negative correlations between the probability of belonging to the TKA class and
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patient-reported functioning in 66.6% of our participants. This indicates that a decrease
in the probability of belonging to the TKA class was related to an increase in reported
functioning for those individuals. However, in 33.3% we only found weak to fair negative
correlations. The inter-individual responses to TKA might explain the weaker correlation
found when using the whole group. Highlighting the importance of a more individualised
approach within a clinical setting.

A more in-depth investigation of the different recovery processes (Figure 3) reveals that
despite the strong correlations, an excellent score on the KOOS does not always correspond
to a classification of being asymptomatic (biomechanical recovery is lacking?). Despite
not reporting any issues in daily life, an aberrant mechanical movement pattern has been
related to the onset and progression of OA [25–27], illustrating the additional value of
monitoring biomechanics alongside patient-reported functioning. A similar phenomenon
is present in the opposite direction, where a classification of being asymptomatic does not
always correspond to an excellent KOOS score, showing that recovery is a multifactorial
process that includes all sides of the biopsychosocial model. These results and those from
previous studies (e.g., [6–8]) illustrate the additional value of monitoring biomechanics
alongside the already-used patient reported outcome measures in a clinical setting to allow
for individualised rehabilitation.

Previously conducted validation studies of joint angles provided by the Xsens’ propri-
etary software have suggested that angles in the frontal and transversal plane are less valid
than those calculated in the sagittal plane (see, e.g., [28]). However, we do not believe that
the accuracy of the joint angles affected the machine learning model. Because even though
the absolute angles might not be valid compared to 3D Motion Capture, we were still able
to classify the gait pattern of our participants correctly, and in this case, that is the aim of
this study.

Since we only used kinematic data measured through wearable technology (i.e., di-
rectly exported from the Xsens MVN 4.4 software[17]), this method is directly translatable
to the clinical setting and overcomes the dependence on force plate data needed for the
Cardiff classifier [12,23] and conventional 3D biomechanical analysis. Hence, this method
can be used as a tool to follow up progress after a TKA and as a screening tool to identify
people who, from a biomechanical perspective, are not improving.

4.4. Limitations

There are some limitations to this work concerning its clinical use and generalisability.
Machine learning allowed us to generate and extract features derived from different sensors
to obtain a global metric able to monitor the movement pattern of an individual. However,
as we used features extracted from TSFuse, we gain little to no physiological insight into
the causes of the progress. Indicating that this metric cannot define specific rehabilitation
goals. Therefore, the the probabilistic outcome of the learned classification model can be
used as a tool to detect problems in the movement pattern, nevertheless the original Xsens
data or a more in-depth physical assessment should be used to detect the causes of poorer
rehabilitation outcomes. Moreover, we only included people with unilateral end-stage knee
OA without comorbidities. Hence, how well this model functions for people with bilateral
prosthesis or comorbidities needs to be investigated further. Because machine learning
works well when the test dataset has the same type of input data (i.e., same feature space
and distribution) as the training set used to develop the model [29], models should be
retrained when the input data changes. Transfer learning methods, where knowledge is
transferred from one domain to another, could be beneficial in using previously-trained
models and adapting them to different OA groups instead of collecting data from large
sample sizes [29].

Alongside the limited heterogeneity, we also have a limited number of participants.
This allowed us to investigate individual recovery processes, however, we need further
research with more participants to indicate when a change in probability of belonging to
the TKA class leads to a clinically relevant change. Moreover, it should be noted that the
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individual Spearman’s rank correlations were calculated over four data points, i.e., 6 weeks,
3-, 6-, and 12 months post-TKA.

5. Conclusions

This study found that the ability of the classification model to monitor a person’s
recovery status depends on the activity (i.e., level walking, ascending or descending stairs)
and the data used (i.e., pre-op or six weeks post-op data) to develop the logistic regression
classification model. Level walking but not stair negotiating was sensitive to changes at 3, 6
and 12 months post-TKA when six weeks post-operative data was used to train the model.
Models trained on pre-operative data were unable to distinguish the level of recovery at
the post-TKA re-evaluation moments. The individual relationships found between the
probabilistic outcome measures and patient-reported functioning showed that the recovery
process varies between individuals, favouring individual approaches in rehabilitation. The
probabilistic outcome of the learned logistic regression model can potentially be used as
a global metric to follow up functional recovery status post-TKA. We believe that this
global metric can be used to flag people that are not recovering from a biomechanical point
of view.
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