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Cataract, defined as the clouding of the ocular lens, has 
historically been a major cause of human blindness. However, 
the incidence of cataract-induced visual disability has greatly 
decreased in recent decades due to the development and 
refinement of surgical cataract treatment combined with its 
increased global availability [1,2]. Phacoemulsification, the 
most common method used today, removes the central lens 
epithelium/capsule and lens fibers followed by placement of 
an intraocular lens (IOL) prostheses into the retained lens 
capsule to restore refraction [3,4].

For most patients, cataract surgery is highly successful, 
restoring vision while improving their overall quality of 
life [5]. However, like all surgeries, cataract surgery is not 
completely benign as it often induces acute ocular inflamma-
tion [6] which can precipitate vision compromising macular 
edema [7] and in rare cases, retinal detachment [8,9]. Further, 
the most common cataract surgery methods do not remove all 

of the lens epithelial cells (LECs) from the retained periph-
eral anterior lens capsule, and these cells undergo a wound 
healing response which causes them to proliferate, migrate 
across the denuded lens capsule, and differentiate into a 
mixture of dysmorphic lens fiber cells and myofibroblasts 
which disrupt vision if they reach the visual axis, a condition 
called posterior capsular opacification (PCO) [10,11].

It is recognized that transforming growth factor-beta 
(TGF-β) signaling in lens capsule associated cells (CACs) is 
critical for myofibroblast formation [12,13] and persistence 
[14] post cataract surgery (PCS), however much less is known 
about the mechanisms by which cataract surgery triggers this 
signaling. Notably, we have discovered that it takes 48 to 72 h 
for the canonical TGF-β pathway, as measured by elevations 
in pSMAD2/3 levels, to activate in CACs PCS [15], likely due 
to the need to upregulate the expression of αVβ8-integrin, 
an important regulator of latent TGF-β activation [16]. To 
understand how cataract surgery induces this pathway, we 
performed RNAseq profiling on CACs collected at 24 h 
following lens fiber cell removal in a mouse model which 
unexpectedly revealed that a large proportion of the LEC 
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transcriptome was remodeled by 24 h PCS [15], a response 
which included the downregulation of many genes regulating 
the lens epithelial phenotype and induction of proinflamma-
tory cytokine and fibrotic marker expression [15,17].

As human LECs also produce growth factors and inflam-
matory cytokines when cultured in vitro in the capsular 
bag model of PCO [18], and the aqueous humor of cataract 
patients exhibits highly elevated levels of inflammatory cyto-
kines by 20 h PCS [19], it is possible that the LECs remaining 
behind PCS could play a direct role in driving ocular inflam-
mation, i.e., flare, PCS [20]. Further, as inflammation can 
drive fibrotic disease in other tissues [21,22], this result 
suggests that the early inflammatory response of LECs to 
cataract surgery could set the stage for their later conversion 
to myofibroblasts, thus leading to fibrotic PCO.

While the mouse has been long used as an animal model 
of cataract [23-25], mouse and human lenses do exhibit struc-
tural and molecular differences [26-28], although the simi-
larities between the molecular responses to injury/surgery 
in these species have not been comprehensively evaluated 
using unbiased approaches. Here we perform bulk RNAseq 
profiling of the central and equatorial lens epithelium isolated 
from human cadaver lenses obtained from elderly donors and 
compared the resulting transcriptomes with our prior tran-
scriptomic profiling of aged mouse lens epithelial cells [17]. 
The acute response of human equatorial LECs to the lens 
capsular bag model of cataract surgery [29] was assessed by 
transcriptome profiling of cells obtained either immediately 
after explant creation or following 24 h of culture. These 
data provide a comprehensive overview of the similarities 
and differences between the mouse and human LEC tran-
scriptome and confirm that the mouse is a valid model to 
understand the acute response of LECs to cataract surgery.

METHODS

Human tissue: Aged human donor eye globes (70–80 years of 
age) were obtained from the “Banc d´Ulls per a Tractaments 
de Ceguesa” eye bank (Barcelona, Spain) in concordance 
with the Tenets of the Declaration of Helsinki. The experi-
mental protocol was approved by the Ethical Committee for 
Clinical Research of the Centro de Oftalmología Barraquer. 
Age, cause of death, sex, and post mortem time of each donor 
can be found in Appendix 1.

Lens capsular bag cultures: Human lens capsular bag cultures 
were created as previously described with all steps performed 
at room temperature [29,30]. Briefly, the corneoscleral disk 
was removed from the globe via a circular trephine and the 
iris-ciliary body-lens complex dissected, then transferred to 
a sterile Petri dish. Meanwhile, a silicone ring mount was 

placed in a Petri dish and immersed in Hanks balanced 
salt solution (HBSS) with added 2% antibiotic/antimycotic 
(10,000 U penicillin, 10 mg streptomycin, and 25 mg ampho-
tericin B per milliliter). The iris-ciliary body lens complex 
was then placed on the silicone ring, anterior surface facing 
upward, attached by placing eight 30-gauge needles through 
the ciliary body and the iris removed. A capsulorhexis was 
then performed on the lens, with the anterior capsulotomy 
specimen (lens capsule with attached central epithelial cells) 
immediately collected in RNALater (Sigma-Aldrich, Madrid/
Spain). The fiber cells were removed by hydrodissection and 
hydroexpression through the capsulorhexis and cortical fibers 
also placed in RNAlater. One capsular bag from each globe 
pair (lens capsule with attached equatorial epithelial cells) 
was then immediately separated from the zonules and placed 
in RNAlater, as a 0 h control. The fellow capsular bag was 
washed 3 times for three minutes each with HBSS and then 
cultured in a humidified CO2-incubator at 37 C and 5% CO2 
with RPMI-1640 medium (supplemented with 5% fetal calf 
serum (FCS), 1% 10,000 units penicillin, 10 mg streptomycin 
and 25 µg amphotericin B per milliliter). After 24 h, the 
capsular bag (lens capsule with attached equatorial epithelial 
cells) was separated from the zonules and also submerged in 
RNAlater. The samples in RNAlater were then shipped to the 
University of Delaware for further analysis.

RNA extraction and RNAseq analysis: The capsular frag-
ments with attached lens epithelial cells were removed from 
RNAlater, and RNA isolated using the RNeasy Micro Kit 
from Qiagen (Catalog Number: 74004). RNAseq libraries 
were prepared using the SMARTer® Stranded Total RNAseq 
Kit-Pico Input Mammalian (Takara Bio, Inc., Mountain View, 
CA) and sequenced by DNA Link (1000 S Hope St. unit 521 
Los Angeles, CA 90015) on a Novaseq 6000 (San Diego, 
CA). This yielded approximately 35 million raw sequencing 
reads (paired end, 101 nucleotides long) per sample which 
were assessed for quality, and trimmed for adaptor content 
and low-quality base calls, using the Babraham Institute’s 
“FastQC” and “Trim Galore!” programs.

As SMARTer® Stranded Pico RNAseq libraries often 
have significant numbers of reads derived from rRNA, 
trimmed paired end reads were first aligned to the human 45S 
pre-spliced rRNA transcript (RN45SN5), and reads aligning 
to this transcript excluded from downstream analyses. All 
remaining paired end reads of at least 85 nucleotides were 
aligned to the Ensembl primary assembly of the human 
GRCh38 genome [31] using HISAT2 with its default param-
eters [32]. Read pairs aligning to genomic features in the 
Ensembl Human version 104 GTF file were quantified as 
gene level counts, using HTSeq-Count in union mode [33]. 
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Length normalized abundance estimates (Fragments per 
Kilobase-Million (FPKM)) were calculated from gene level 
counts using the total length of all known exons for a given 
gene, after merging overlapping exons. Genes with at least 
10 mapped reads in at least four samples were considered to 
have “detectable” levels of expression, those failing criteria 
were removed before normalization and differential expres-
sion testing using edgeR’s “filterByExpr” function [34]. Gene 
level counts were normalized, and pairwise differential gene 
expression statistics calculated using robust dispersion esti-
mates with the “Trimmed Median of Means” (TMM) [35] 
and “exactTest” methods implemented in edgeR [36]. Biologi-
cally significant differentially expressed genes (DEGs) were 
defined as those exhibiting a statistically significant differ-
ence in expression using Storey’s Q value to adjust for false 
discovery rate (Q ≤0.05) [37], a difference in expression level 
greater than 2 FPKM between conditions, Fold Change (FC) 
greater than 2 in either the positive or negative direction and 
expressed at a level greater than 2 FPKM [38]. Tables of 
differentially expressed genes (DEG Tables) were generated 
for the following pairwise contrasts: freshly isolated equato-
rial versus central epithelium, and freshly isolated equatorial 
epithelium versus equatorial epithelium cultured 24 h in 
the lens capsular bag model. The resulting FastQ files and 
analyzed data were deposited in the Gene expression omnibus 
(GEO) under Accession number GSE186716.

Pathway analyses: iPathwayGuide (Advaita Bioinformatics, 
Plymouth, MI) was used for pathway analysis performed on 
all statistically significant DEGs defined as those exhibiting 
a fold change ≥ 2 and false discovery rate corrected p value 
(FDR) ≤0.05. The iPathwayGuide uses Impact Analysis, 
which considers the directed interactions of DEGs within a 
pathway (as defined by the Kyoto Encyclopedia of Genes and 
Genomes [39] (KEGG, Release 96.0+11–21, Nov 20) and if 
more pathway participants are observed in the DEG list than 
would be estimated by chance [40]. Gene ontology compari-
sons were made against the October 14, 2020 release of the 
Gene Ontology Consortium database [41].

Comparison of gene expression in human and mouse lens 
epithelial cells: FastQ files generated from RNAseq data 
previously obtained from mouse lens epithelial cells isolated 
from 24-month-old mice subjected to the in vivo mouse 
model of cataract surgery [42] both the time of lens fiber 
cell removal and 24 h later [17] (Geo accession number 
GSE166619) were reanalyzed using the same pipeline as the 
human LEC samples above except that it was mapped to the 
mouse genome (Ensembl GRCm39, GTF v104) and the mouse 
Rn45s pre-spliced transcript used for ribosomal filtering. 
This resulted in expressed gene tables representing the naïve 

24 month old mouse LEC transcriptome and the changes to 
this transcriptome that manifest 24 h after fiber cell removal 
surgery.

Ensembl’s v104 homology mappings were used to 
identify mouse homologs of human genes. For genes where 
multiple homologs were detected, homolog pairs used for 
further analysis were chosen based on Ensembl orthology 
confidence score and percentage of sequence identity. Genes 
with recognized homologs in mouse and human were then 
ranked based on their group mean abundance (FPKM). For 
each cell type (naïve human central and equatorial epithe-
lium, equatorial epithelium cultured for 24 h; mouse, naïve 
lens epithelium, lens epithelium 24 h after fiber cell removal), 
the genes with known homologs in the other species were 
rank ordered based on mean abundance, and then partitioned 
into three categories: only within the top 10% of abundance 
in human LECs, in the top 10% of abundance in both mouse 
and human LECs, and only in the top 10% of abundance in 
mouse LECs. Human central LEC and human equatorial LEC 
profiles were each compared to profiles generated from the 
entire mouse lens epithelium in separate analyses. The genes 
meeting differential expression criteria in the human and 
mouse comparisons were compared with the genes annotated 
to participate in either KEGG Pathway “Cytokine / Cytokine-
Receptor Interaction” (KEGG ID: map04060) or a set of well 
characterized genes that are known to be associated with 
fibrosis and/or epithelial to mesenchymal transition (EMT; 
MSigDB Hallmark EMT) [43].

RESULTS

We previously reported that remnant lens epithelial cells 
(LECs) massively remodel their transcriptome by 24 h after 
lens fiber cell removal in a mouse model of cataract surgery 
[15-17,44]. The most impacted pathways were related to the 
inflammatory response, most notably, cytokine-cytokine 
receptor interactions, although the mRNA levels of key 
fibrotic markers are also upregulated by this time [15,17]. 
However, the relevance of these observations to the response 
of human LECs to cataract surgery, and the progression of 
post-surgical ocular inflammation in humans, was unclear 
as there are known species differences in lens gene expres-
sion between mouse and human [45-47] while injury-induced 
inflammation in other tissues seems to be more acute in 
mice than humans [48,49]. Therefore, we evaluated the aged 
human LEC transcriptome and its acute response to an ex 
vivo culture model previously developed to investigate the 
molecular mechanisms of posterior capsular opacification 
(PCO) [29,50,51].
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Lenses from human eye bank eyes obtained from a 
Spanish population (n=3, 70–89 years of age, 2 male, 1 
female; see Appendix 1) were subjected to continuous curvi-
linear capsulorhexis to isolate the central lens epithelium 
while the equatorial lens epithelium was prepared for culture 
in the capsular bag model of PCO [29]. RNA was prepared 
from capsulorhexis specimens and capsular bags containing 
equatorial epithelial cells isolated either immediately after 
dissection or after 24 h of culture, then RNAseq performed. 
Principal component analysis (Figure 1) revealed that all three 
biologic replicates for each cell population cluster together 
well despite the fact that these samples vary in sex, post-
mortem time and cause of death, with the greatest variance 
detected between equatorial epithelial cells analyzed before 
and after culture. These data have been deposited in the Gene 
Expression Omnibus under accession number GSE186716. 
Comparisons between the freshly isolated central and equa-
torial lens epithelium transcriptomes are found in Appendix 
2. Comparisons between the freshly isolated equatorial lens 

epithelium transcriptome and the equatorial epithelium 
following 24 h of culture in the capsular bag model of PCO 
transcriptomes are found in Appendix 3.

The aged human lens epithelial cell transcriptome: Consis-
tent with other studies [52,53], regional differences were 
found in the bulk lens epithelial transcriptomes, with central 
and equatorial human LECs differentially expressing 720 
genes by at least twofold with false discovery rate (FDR) 
corrected p values of ≤0.05. Further filtering for biologic 
significance revealed 464 biologically significant DEGs 
(Appendix 2). Functional predictions via Advaita iPathway 
analysis revealed that the “calcium signaling pathway” 
(p value 1.165E-6) was the most impacted pathway, while 
consistent with known regional differences in the adult lens 
epithelium, the equatorial epithelium expressed numerous 
genes regulating epithelial cell proliferation (p value 3.600E-
4), cell adhesion (p value 4.400E-8), cell junction assembly (p 
value 8.700E-8), and cation transport (p value 2.500 E-8) at 
higher levels than the central lens epithelium (Figure 2). As 

Figure 1. Principal component analysis (PCA) for the human central epithelial cells at 0H and equatorial epithelial cells at 0H and 24H culture. 
The circles represent the central epithelial cells while the triangles represent the equatorial epithelial cells. The color red represents the 0H 
culture time point and blue represents the 24H culture time point. Note that two of the 24H equatorial LECs samples (right most triangles) 
are nearly entirely overlapping. y/o (years old) signifies the age of each donor. Additional details can be found in Appendix 1.
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we also noticed that many DEGs expressed at higher levels 
in the equatorial epithelium than central epithelium such as 
Fibrillin 1 (FBN1) which are known components of the ciliary 
zonule, we compared these DEGs with a list of proteins 
found in the zonule in a previous study [54] and found that 
equatorial LECs express genes encoding 12 known zonule 
components at higher levels than the central LECs, while 
genes encoding 4 zonule components are expressed at lower 
levels in the equatorial epithelium (p value of 2.8E-3; Table 1).

Despite these differences, the central and equatorial 
epithelium share 76% of their most abundantly expressed 
(top 10% highest expression as measured by FPKM) genes 
in common (1465 out of 1921, Appendix 4). Many of these 
shared, highly expressed genes exhibit enriched expression 
in the lens as assessed by iSyTE (Appendix 2), and are known 
to be important for lens biology, including crystallins, genes 
encoding components of the lens capsule, and developmen-
tally important transcription factors (Table 2).

Comparison between the aged mouse and human lens epithe-
lium transcriptome: The mouse is a common animal model to 
study lens biology and cataract development. Mouse genetics 
methods are robust and the mouse lens expresses most genes 
relevant to human cataract etiology. While differences in the 
molecular composition of mouse and human lenses have been 
investigated for specific classes of proteins [44-46], a global 
comparative transcriptomic analysis was lacking until now. 
Here we compare the transcriptome of 70–89 year old human 
lens epithelial cells to that of 24 month old (aged) mice, as 
mice of this age have been proposed to be biologically equiva-
lent to 70 year old humans [55].

Aged human and mouse LECs express similar numbers 
of genes at sufficient levels to likely affect lens biology. The 
10% most abundant mRNAs found in the aged human central 
epithelium were mapped to their direct mouse gene homo-
logs. The resulting set of 1787 mapped homologs was then 
compared with the genes expressed in the top 10% of the aged 
human equatorial lens epithelium as well as the 24 month old 
mouse lens epithelium. Of the genes exhibiting the highest 
expression in the human central epithelium, 36% were also 
ranked in the top 10% of the human equatorial epithelium and 
aged mouse lens epithelium (637 total genes ranked in the 
top 10% of expression in all three cell types). An additional 
32% of top 10% expressed genes (575 out of 1,787) whose 
mRNAs were highly abundant in both the central human and 
aged mouse LECs but not the human equatorial epithelium 
(See Table 3 for representative examples, entire list is found 
in Appendix 5). A similar comparison was made between 
the aged human equatorial LEC transcriptome and aged 
mouse lens epithelium which revealed that 40% of the highly 

expressed genes with known human/mouse homologs were 
among the most expressed in both cell populations (See Table 
4 for representative examples, entire list is found in Appendix 
6).

These data show that the bulk transcriptome of the aged 
mouse lens epithelium is generally more similar to equato-
rial human LECs than central as would be expected since a 
smaller lens diameter would result in a larger proportion of 
the lens epithelial cells in the lens epithelium being “equato-
rial” due to tissue geometry. The aged mouse lens epithelium 
thus appears to be a good representation of the aged human 
equatorial lens epithelium which is the cell population that 
gives rise to Soemmering’s ring and visual axis opacification 
(VAO)/PCO following cataract surgery.

Acute effect of “cataract surgery” on the human lens epithe-
lial cell transcriptome: We have previously shown that mouse 
lens epithelial cells acutely trigger inflammatory responses 
following lens fiber cell removal [15,17,56]. Here we evaluate 
whether human equatorial LECs respond similarly when 
placed in the human capsular bag model of posterior capsular 
opacification. As shown in Figure 1, principal component 
analysis revealed that 24 h of culture caused a major shift in 
the human equatorial LEC transcriptome compared to that 
found in freshly isolated equatorial epithelial cells. Further, 
all three cultured equatorial LEC samples had very similar 
gene expression profiles despite differences in sex, age, 
cause of death and postmortem time which indicates that the 
injury response of human LECs is reproducible. Comparison 
of the human equatorial LEC transcriptome following 24 h 
of culture with that from freshly isolated equatorial LECs 
revealed that 6269 genes were differentially expressed while 
filtering this list under criteria previously proposed to predict 
biologically significant DEGs [38] revealed a total of 4042 
biologically significant DEGs (Appendix 3).

iPathway analysis of the genes whose expression changes 
in human equatorial epithelial cells after 24 h of culture 
revealed the “Cytokine-cytokine receptor interaction” is the 
pathway most impacted by 24 h of culture (Figure 3A,B; p 
value=1.120e-8). Consistent with this, many of the genes with 
the greatest fold change increase in expression play known 
roles in tissue inflammation or innate immunity (Table 5). 
Notably, many of the inflammatory cytokine genes upregu-
lated in human LECs after fiber cell removal encode proteins 
whose concentrations elevate in human aqueous humor 
within 20 h of cataract surgery (19; Table 6), however other 
such cytokines either do not change in expression in LECs in 
the first 24 h of culture, or are not expressed by human LECs 
at all (Appendix 7).
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Figure 2. Advaita iPathway analysis of differentially expressed pathways/genes between central lens epithelial compared to equatorial 
epithelial. A: Bar graph showing the “differentially expressed pathway genes on calcium signaling pathway (p-value 1.65E-6) expressed more 
highly in the 0H human equatorial LECs. B: Bar graph showing the “differentially expressed genes annotated to epithelial cell proliferation” 
(p value 3.600E-4) expressed more highly in the 0H human equatorial LECs. C: Bar graph showing the “differentially expressed genes 
annotated with cell adhesion” (p value 4.400E-18) expressed more highly in the 0H human equatorial LECs. D: Bar graph showing the 
“differentially expressed genes annotated with cell junction assembly” (p value 8.700E-8) expressed more highly in the 0H human equatorial 
LECs. E: Bar graph showing the “differentially expressed genes annotated with cation transport” (p value 2.500E-8) expressed more highly 
in the 0H human equatorial LECs. Red bars are genes that are expressed more highly in the equatorial lens epithelial cells compared to 
central lens epithelial cells. Blue bars are genes that are expressed more highly in central lens epithelial cells compared to equatorial lens 
epithelial cells.
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Table 1. Genes encoding known components of the ciliary zonule that are differentially expressed in 
central versus equatorial lens epithelial cells freshly isolated from human cadaver lenses.

Gene code Gene name Central 
FPKM

Equatorial 
FPKM

Fold 
change

FDR

ECM1 Extracellular Matrix Protein 1 1.54 246.85 159.53 1.97E-02
TINAGL1 Tubulointerstitial Nephritis Antigen Like 1 1.95 53.45 27.41 5.70E-06
FRZB Frizzled Related Protein 0.10 2.18 20.99 3.83E-03
ADAMTSL4 ADAMTS like 4 9.65 123.25 12.77 8.02E-07
FBN1 Fibrillin 1.06 11.38 10.70 4.48E-08
TGM2 Transglutaminase 2 9.65 123.25 12.77 8.02E-07
NID1 Nidogen 1 23.07 106.95 4.64 1.68E-10

EFEMP1 EGF Containing Fibulin Extracellular 
Matrix Protein 1 44.96 202.07 4.49 1.59E-15

COL18A1 Collagen Type XVIII Alpha 1 Chain 1.07 4.67 4.36 3.10E-04
NID2 Nidogen 2 1.03 4.41 4.29 2.66E-04
MEGF6 Multiple EGF like Domains 6 5.05 18.81 3.72 1.47E-08
LOXL1 Lysyl Oxidase Like 1 47.07 97.95 2.08 1.42E-02
COL4A4 Collagen Type IV Alpha 4 Chain 57.13 27.48 −2.08 2.76E-02
ABI3BP ABI Family Member 3 Binding Protein 65.00 26.28 −2.47 2.71E-05
TIMP3 TIMP Metallopeptidase Inhibitor 3 1482.04 586.92 −2.53 3.30E-04
SERPINA1 Serpin Family A Member 1 5.60 0.45 −12.28 1.81E-02

FPKM- fragments per kilobase million; FDR- false discovery rate corrected p value.

Table 2. Examples of genes known to be important for lens biology that are highly expressed in both 
the central and equatorial human lens epithelium freshly isolated from cadaver lenses.

Gene code Gene name Central 
FPKM

Equatorial 
FPKM

References

CRYAB Crystallin Alpha B 2929.52 5271.15 [95]
CRYBB2 Crystallin Beta B2 2012.33 8481.76 [96]
VIM Vimentin 1025.50 800.17 [70]
FTL Ferritin Light Chain 572.87 550.88 [97]
AQP1 Aquaporin 1 409.85 624.03 [73]
CRYAA Crystallin Alpha A 332.91 274.72 [98]
GJA1 Gap Junction Protein Alpha 1 270.28 119.79 [99]

CITED2
Cbp/p300 Interacting Transacti-
vator with Glu/Asp rich carboxyl-
terminal domain 2

232.53 220.31 [100]

FOXE3 Forkhead box E3 222.00 385.26 [101]
COL4A3 Collagen Type IV Alpha 3 Chain 116.46 63.98 [102]
AQP5 Aquaporin 5 82.39 106.34 [103]
SIX3 SIX homeobox 3 78.04 96.13 [104]
HSPG2 Heparan Sulfate Proteoglycan 2 71.18 92.89 [105]
PAX6 Paired Box 6 44.26 44.03 [67]
ITGB1 Integrin Subunit Beta 1 23.23 29.17 [106,107]
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Other significantly impacted pathways included those 
participating in “neuroactive ligand-receptor interactions” 
(Figure 3C,D; p value=6.959e-7) while the “epithelial to 
mesenchymal transition” pathway was also predicted to be 
impacted (Figure 3E; p value 0.042). Notably, as would be 

expected in cells transitioning to a mesenchymal phenotype, 

several genes known to be important for lens function also 

downregulate in human equatorial LECs after 24 h of culture 

(Table 7).

Table 3. Examples of genes highly expressed (top 10%) in both aged human central 
epithelial cells and 24 month old mouse lens epithelial cells.

Gene code Gene name Central 
human FPKM

Mouse 
FPKM

References

CRYAB/Cryab Crystallin Alpha B 3222.44 9608.55 [95]
CRYBB2/Crybb2 Crystallin Beta B2 2205.12 16,545.00 [96]

ALDH1A1/Aldh1a1 Aldehyde Dehydrogenase 
Family 1, Subfamily A1 1612.38 237.60 [108]

VIM/Vim Vimentin 1124.82 1271.65 [70,109]

CRIM1/Crim1 Cysteine Rich Transmem-
brane MBP Regulator 1 543.42 683.85 [108]

CRYGS/Crygs Crystallin, Gamma S 481.65 2628.69 [110]
AQP1/Aqp1 Aquaporin 1 450.93 80.43 [73]

CCN2/Ccn2 Cellular Communication 
Network Factor 2 387.64 182.95 [111]

CRYAA/Cryaa Crystallin Alpha A 362.02 18,815.73 [98]

CITED2/Cited2
Cbp/p300-Interacting Trans-
activator with Glu/Asp-Rich 
C-terminal Domain 2

255.61 46.77 [100]

FOXE3/Foxe3 Forkhead Box E3 244.40 264.49 [101]
COL4A3/Col4a3 Collagen Type IV Alpha 3 128.13 165.46 [102]

Table 4. Representative genes highly expressed (top 10%) in both aged human equato-
rial epithelial cells and 24 month old mouse lens epithelial cells.

Gene code Gene name Equatorial human 
FPKM

Mouse FPKM References

CRYBB2/Crybb2 Crystallin Beta B2 9219.07 16,373.51 [96]
CRYAB/Cryab Crystallin Alpha B 5739.75 9504.28 [95]

ALDH1A1/Aldh1a1 Aldehyde Dehydrogenase 1 
Family Member A1 1464.38 234.90 [108]

VIM/Vim Vimentin 871.48 1257.50 [70,109]
CRYGS/Crygs Crystallin Gamma S 863.88 2602.04 [110]

CRIM1/Crim1 Cysteine Rich Transmembrane 
BMP Regulator 1 560.18 676.14 [112]

FOXE3/Foxe3 Forkhead Box E3 420.07 261.49 [101]
CRYAA/Cryaa Crystallin Alpha A 300.71 18,617.30 [98]

SPARC/Sparc Secreted Protein Acidic and 
Cysteine Rich 193.81 703.63 [113]

BFSP1/Bfsp1 Beaded Filament Structural 
Protein 1 86.67 662.61 [114]

DKK3/Dkk3 Dickkopf 3 79.58 1128.94 [115]
COL4A2/Col4a2 Collagen Type IV Alpha 2 Chain 44.07 735.50 [102]
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Comparison between the human equatorial epithelium tran-
scriptional response to the lens capsular bag model to the 
in vivo response of aged mouse lens epithelial cells to lens 
fiber cell removal: We previously reported that both the aged 
and young mouse LECs transcriptome is drastically remod-
eled by 24 h after fiber cell extraction in an in vivo model 
of cataract surgery [15,17]. Comparison of these DEGs with 
the list of genes differentially expressed at least twofold in 
human equatorial epithelial cells following 24 h of culture 
revealed that human and mouse LECs commonly upregulate 
555 homologous genes and downregulate 290 homologous 
genes (Appendix 8). As the KEGG pathway “cytokine-cyto-
kine receptor interaction” was the most impacted pathway 
in both human (Figure 3A,B) and mouse LECs [15,17] at 24 

h after fiber cell removal, we next assessed the similarities 
between this response in human and mouse LECs and found 
that 20 genes in this pathway were upregulated in LECs 
from both species following injury including various tumor 
necrosis factor receptors and interleukin receptors (Table 8). 
However, while the KEGG pathway “neuroactive receptor-
ligand interaction was predicted to be an impacted pathway in 
injured human LECs (Figure 3), this was not seen in injured 
aged mouse LECs [17] although some genes mapping to 
this pathway such as F2RL1, GAL, GABBR2, and C3 were 
upregulated in LECs of both species at 24 hours post lens 
fiber cell removal.

As the inflammatory response of LECs may contribute 
to the formation of capsular bag associated myofibroblasts 

Figure 3. Advaita iPathway analysis of differentially expressed pathways/genes between 0H and 24H human equatorial lens epithelial 
cells. A: Impact analysis of the DEGs suggest that the KEGG pathway map “cytokine-cytokine receptor interaction” (yellow dot) is likely 
to be the most significantly impacted pathway in the 24H human equatorial LECs. B: Bar graph showing the cytokine-cytokine receptor 
interaction genes that are differentially expressed in the 24H human equatorial LECs. C: Impact analysis showing that the second most 
significant pathway in the 24H human equatorial LECs represent genes involved in the “neuroactive ligand-receptor interaction” pathway 
(yellow dot). D: Bar graph showing the “neuroactive ligand-receptor interaction” pathway genes differentially expressed in the 24H human 
equatorial LECs. E) Bar graph showing the “epithelial to mesenchymal transition” pathway genes differentially expressed in the 24H human 
equatorial LECs.
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[21] indicative of fibrotic PCO [11], it was expected that the 
24H equatorial human LECs differentially express genes 
implicated in epithelial to mesenchymal transition (EMT; 
Figure 3E) similar to our prior observation that mouse LECs 
upregulate genes associated with EMT by 24 h after lens 

injury [15,17]. Further, direct comparison of the transcrip-

tomic changes triggered in mouse and human LECs by 24 

h PCS found that 23 genes of the MSigDB “HALLMARK 

EMT” gene set were commonly regulated in both species 

Table 5. Genes with the largest fold change in expression in aged human equatorial epithelial cells following 
24 h of culture. Those with known roles in inflammation and/or innate immunity are in bold font.

Gene code Gene name Equatorial 
FPKM

Equatorial 
FPKM

Fold change FDR

MMP1 Matrix Metallopeptidase 1 0.00 94.34 29,959.76 5.10E-14
PTGS2 Prostaglandin-Endoperoxide Synthase 2 0.00 33.92 21,579.19 7.97E-5
CSF3 Colony Stimulating Factor 3 0.00 83.00 21,371.37 2.29E-129
MMP3 Matrix Metallopeptidase 3 0.00 91.09 19,587.73 1.46E-11
IL13RA2 Interleukin 13 Receptor Subunit Alpha 2 0.00 74.80 14,107.77 1.01E-40
CXCL8 C-X-C Motif Chemokine Ligand 8 0.06 576.41 9537.83 4.16E-60
LAMC2 Laminin Subunit Gamma 2 0.06 535.19 8279.12 4.81E-14
MMP10 Matrix Metallopeptidase 10 0.01 104.99 5537.03 9.77E-67
CLMP CXADR like Membrane Protein 0.00 9.32 5467.92 8.49E-10
FGF5 Fibroblast Growth Factor 5 0.00 7.74 5350.30 1.10E-26
MMP9 Matrix Metallopeptidase 9 0.00 19.05 5161.34 1.80E-4
CDCP1 CUB Domain Containing Protein 1 0.00 6.79 5127.52 3.76E-8
CD93 CD93 Molecule 0.00 6.08 4708.85 6.57E-9

C2CD4A C2 Calcium Dependent Domain 
Containing 4A 0.00 10.64 4250.85 5.21E-12

ESM1 Endothelial Cell Specific Molecule 1 0.01 48.83 3984.72 3.25E-14
RCSD1 RCSD Domain Containing 1 0.00 4.08 3863.62 1.09E-9
BNC1 Basonuclin 1 0.00 6.47 3681.52 1.47E-9
RHCG Rh Family C Glycoprotein 0.00 12.22 3661.28 6.15E-10
CXCL1 C-X-C Motif Chemokine Ligand 1 0.26 857.96 3235.67 3.10E-10
FSRL1 F2R like Trypsin Receptor 1 0.00 9.46 3215.99 7.38E-44

Table 6. Inflammatory cytokines whose concentration upregulates in aqueous humor by 20 h post cataract 
surgery [19] whose mRNA levels also change in human equatorial lens epithelial cells after 24 h in culture. 

Gene code Gene name Equatorial 
FPKM

Equatorial 
FPKM

Fold change FDR

CSF3 Colony Stimulating Factor 3 0.00 83.00 21,371 2.29E-129
CXCL8 C-X-C Motif Chemokine Ligand 8 0.06 576.41 9537 4.16E-60
CXCL1 C-X-C Motif Chemokine Ligand 1 0.26 857.96 3235 3.10E-10
IL1A Interleukin 1 Alpha 0.01 29.66 1797 2.09E-83
CXCL12 C-X-C Motif Chemokine Ligand 12 0.00 3.82 693 1.42E-22
KITLG KIT Ligand 0.04 3.34 75 2.80E-13
CCL2 C-C Motif Chemokine Ligand 2 15.02 222.43 14 8.43E-16
CSF1 Colony Stimulating Factor 1 1.87 17.50 97 4.02E-6
HGF Hepatocyte Growth Factor 4.57 1.61 −3 1.29E-2
CLEC11A C-Type Lectin Domain Containing 11A 6.59 1.41 −5 5.34E-6
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including the classical lens EMT markers α-smooth muscle 
actin and tenascin C (Table 9).

DISCUSSION

Mice have long been the most common animal model used to 
study mammalian lens development and cataract pathogenesis 
due to the availability of genetic tools that allow functional 
testing of genes in vivo. Such studies are generally believed 
to yield conclusions that further our understanding of human 
lens biology as mouse lenses express most (if not all) genes 
implicated in human cataractogenesis [57,58]. Further, mouse 
cataract surgery models have been developed for the study 
of human posterior capsular opacification (PCO) [42,59–61] 
which appear to be appropriate animal models as, like humans 
[50,62], the remnant capsular bags become populated with a 
mixture of α-smooth muscle actin expressing myofibroblasts 
and crystallin expressing dysgenic lens fiber cells at extended 
times following fiber cell removal [16,61,63,64]. However, 
while the literature reports several instances where mouse 
and human lenses express different genes [45-47], the global 
similarities between the mouse and human lens epithelial cell 
(LEC) transcriptome had not been investigated, and even less 
was known about how/whether human LECs, like mouse 
LECs, acutely alter their transcriptome in response to cataract 
surgery. This study sought to fill these knowledge gaps.

Both central and equatorial human lens epithelial cells 
express a common set of genes known to be important for 
lens biology: The most common surgical therapy for cata-
racts is phacoemulsification, a procedure that removes the 
central anterior lens capsule with attached lens epithelial cells 
and lens fiber cells, leaving the remaining lens capsule and 
attached equatorial LECs behind to anchor an intraocular 
lens implant [3,4]. Here, bulk RNAseq profiling of the 
central versus equatorial epithelial cells revealed that these 
cell populations have very similar transcriptomes which share 
most of their most abundant transcripts in common including 
those encoding transcription factors critical for LEC identity 
such as PITX3 [65], FOXE3 [66] and PAX6 [67], as well as 
numerous proteins important for LEC/lens function such as 
CRYAB (αB-crystallin) [68,69], VIM (vimentin) [70], SFRP1 
(secreted frizzled related protein 1) [71], FTL (ferritin light 
chain) [72] and AQP1 (aquaporin 1) [73]. There are, however, 
key transcriptomic differences between the central and 
equatorial cell populations in the human lens epithelium. 
For instance, equatorial epithelial cells express higher levels 
of genes important for cell cycle progression such as CDK6 
[74], while central epithelial cells express higher amounts 
of mRNAs encoding cell cycle inhibitors such as CDKN1C 
[75]. These observations are consistent with experimental 
findings that revealed that adult lens central epithelial cells 
seldom proliferate while equatorial epithelial cells continue 
proliferating throughout life leading to a slow increase in 

Table 7. Representative lens marker changes in human equatorial LECs after culture. 

Gene code Gene name Equatorial 
FPKM

Equatorial 
FPKM

Fold 
change

FDR

LGSN Lengsin 4.6 0.07 −66 7.7E-7
CRYGD Gamma D crystallin 10.1 0.2 −56 1.7E-6
SFRP2 Secreted frizzled-related protein 2 310 10 −31 2.3E-34
FGFR3 FGF receptor 3 209 13 −16 7.5E-40
FOXE3 Forkhead Box E3 375.02 26 −14 3.4E-21
HSF4 Heat shock Factor 4 4.4 0.4 −10 4.7E-7
FGFR2 FGF receptor 2 36 4 −9 2.9E-31

CITED2
Cbp/p300 Interacting Transactivator with 
Glu/Asp Rich Carboxyl-Terminal Domain 
2

214.44 32.41 −6.6 2.25E-17

COL4A3 Collagen Type IV Alpha 3 Chain 62.30 9.83 −6.34 3.50E-11
AQP5 Aquaporin 5 103.53 19.17 −5.40 1.82E-3
HSPG2 Heparan Sulfate Proteoglycan 2 90.43 26.32 −3.44 4.16E-5
CRYAB Crystallin Alpha B 5130.63 1501.50 −3.42 2.68E-8
SIX3 SIX Homeobox 3 93.56 28.24 −3.31 3.11E-12
PAX6 Paired Box 6 42.86 16.23 −2.64 2.27E-5
AQP1 Aquaporin 1 607.53 252.96 −2.40 1.11E-2
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lens size across the lifespan [76]. Further, consistent with 
the known differentiation of equatorial epithelial cells into 
lens fibers, equatorial LECs express higher levels of many 
genes important for lens fiber cell biology than the central 
epithelium including those participating the Notch and FGF 
signaling pathways which regulate lens fiber generation 
[77,78]. Additionally, numerous genes associated with cell 
adhesion and cell junction assembly are expressed at higher 
levels in the human equatorial LECs compared to the central 
LECs which is consistent with prior reports that found that 
equatorial LECs upregulate genes associated with cell adhe-
sion [79,80] to set the stage for the proper organization of 
differentiating lens fiber cells.

Notably, equatorial LECs from aged individuals also 
express appreciable levels of mRNAs that encode extracel-
lular matrix (ECM) proteins that are components of the 
zonules, acellular filaments that tether the lens to the ciliary 
muscle, suggesting that the equatorial lens epithelium plays a 
role in zonule maintenance. Such a role is consistent with the 

clinical observation that “dead bag syndrome,” the failure to 
form Soemmering’s ring following cataract surgery, is associ-
ated with zonular fragility and dislocation of the IOL/capsular 
bag complex from its connections to the ciliary body [81,82]. 
However, it is currently unclear how LECs which are enclosed 
by the lens capsule can contribute to the maintenance of 
zonules which are largely intercalated into the outer surface 
of the lens capsule matrix [83,84].

Aged mouse lens epithelial cells express similar genes as the 
aged human lens epithelium: Unlike human cataract surgery, 
a capsulorhexis is typically not performed in the mouse in 
vivo cataract surgery model due to the small size of the eye. 
As both the central and equatorial epithelium are retained 
in the mouse eye following surgery, potential differences 
between these cell populations could complicate translating 
mechanistic conclusions from the mouse model to human. To 
gauge the likely extent of such differences, we compared our 
prior transcriptomic profiling of the 24 month old mouse lens 
epithelium with that of the aged human central and equatorial 

Table 8. Genes that are members of the cytokine-cytokine receptor KEGG pathway that are 
differentially regulated during the LEC injury response in both mice and humans.

Gene code Gene name Human versus Mouse 
versus

CXCL12/Cxcl12 C-X-C Motif Chemokine Ligand 12 Up Bio Up Bio
IL6R/Il6ra Interleukin 6 Receptor Up Bio Up Bio
RELT/Relt RELT TNF Receptor Up Bio Up Bio
IL4R/Il4r Interleukin 4 Receptor Up Bio Up Bio
IL11/Il11 Interleukin 11 Up Bio Up Bio
CSF3/Csf3 Colony Stimulating Factor 3 Up Bio Up Bio
CCL2/Ccl2 C-C Motif Chemokine Ligand 2 Up Bio Up Bio
IL1A/Il1a Interleukin 1 Alpha Up Bio Up Bio
IL1R1/Il1r1 Interleukin 1 Receptor Type 1 Up Bio Up Bio
TNFRSF10B/Tnfrsf23 TNF Receptor Superfamily Member 10b Up Bio Up Bio
TNFRSF10B/Tnfrsf26 TNF Receptor Superfamily Member 10b Up Bio Up Bio
LIF/Lif Leukemia Inhibitory Factor Up Bio Up Bio
GDF15/Gdf15 Growth Differentiation Factor 15 Up Bio Up Bio
IFNAR2/Ifnar2 Interferon Alpha and Beta Receptor Subunit 2 Up Bio Up Bio
TNFRSF11B/Tnfrsf11b TNF Receptor Superfamily Member 11b Up Bio Up Bio
TNFRSF10D/Nradd TNF Receptor Superfamily Member 10d Up Bio Up Bio
TNFRSF10D/Tnfrsf23 TNF Receptor Superfamily Member 10d Up Bio Up Bio
TNFRSF10D/Tnfrsf26 TNF Receptor Superfamily Member 10d Up Bio Up Bio
CLCF1/Clcf1 Cardiotrophin like Cytokine Factor 1 Up Bio Up Bio
CSF1/Csf1 Colony Stimulating Factor 1 Up Bio Up Bio
LIFR/Lifr LIF Receptor Subunit Alpha Down Bio Down Bio
CNTFR/Cntfr Ciliary Neutrophic Factor Receptor Down Bio Down Bio
IL11RA/Il11ra1 Interleukin 11 Receptor Subunit Alpha Down Bio Down Bio
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epithelium by identifying genes that have homologs in both 
mouse and humans. As it was not possible to directly compare 
transcript abundance between species, we then rank ordered 
expressed genes based on transcript abundance in each 
species/cell type then compared which genes contributed 
to transcripts in the top 10% of abundance. This analysis 
revealed that approximately 30% of the most abundant genes 
are shared between all three cell types (human central and 
equatorial LECs, aged mouse LECs) while another 30%–40% 
of the most abundant genes are shared between either human 
central LECs and mouse or human equatorial LECs and 
mouse, although bulk transcriptome of the aged mouse lens 

epithelium is more similar to the human equatorial epithelium 
as would be expected since the human equatorial epithelium 
makes up 68% of the total lens epithelium [85]. It should be 
noted that these abundance comparisons likely underestimate 
the similarities between the mouse and human LEC transcrip-
tome as our decision to compare the 10% most abundantly 
expressed genes is an arbitrary cutoff. Overall, the similari-
ties in gene expression between the human central and equa-
torial epithelium and the total mouse lens epithelium suggest 
that analysis of the response of the entire lens epithelium in 
the mouse cataract surgery model likely does not greatly bias 
the results. However, the differences observed do emphasize 

Table 9. Genes known to participate in the “EMT” response that are commonly regu-
lated in mouse and human LECs at 24 h following fiber cell removal.

Gene code Gene name Human 
versus

Mouse 
versus

TNFAIP3/Tnfaip3 TNF Alpha Induced Protein 3 Up Bio Up Bio
TIMP1/Timp1 TIMP Metallopeptidase Inhibitor 1 Up Bio Up Bio
PTX3/Ptx3 Pentraxin 3 Up Bio Up Bio
PMEPA1/Pmepa1 Prostate Transmembrane Protein Androgen Induced 1 Up Bio Up Bio
PLAUR/Plaur Plasminogen Activator Urokinase Receptor Up Bio Up Bio
DPYSL3/Dpysl3 Dihydropyrimidinase like 3 Up Bio Up Bio
TAGLN/Tagln Transgelin Up Bio Up Bio
TGM2/Tgm2 Transglutaminase 2 Up Bio Up Bio
THBS1/Thbs1 Thrombospondin 1 Up Bio Up Bio
NT5E/Nt5e 5′-Nucleotidase Ecto Up Bio Up Bio
MMP3/Mmp3 Matrix Metallopeptidase 3 Up Bio Up Bio
EMP3/Emp3 Epithelial Membrane Protein 3 Up Bio Up Bio
TPM4/Tpm4 Tropomyosin 4 Up Bio Up Bio
SERPINE1/Serpine1 Serpin Family E Member 1 Up Bio Up Bio
ADAM12/Adam12 ADAM Metallopeptidase Domain 12 Up Bio Up Bio
FLNA/Flna Filamin A Up Bio Up Bio
TNC/Tnc Tenascin C Up Bio Up Bio
GEM/Gem GTP Binding Protein Overexpressed in Skeletal Muscle Up Bio Up Bio
PDLIM4/Pdlim4 PDZ and LIM Domain 4 Up Bio Up Bio
PLOD3/Plod3 Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 3 Up Bio Up Bio
ACTA2/Acta2 Actin Alpha 2, Smooth Muscle Up Bio Up Bio
TNFRSF11B/Tnfrsf11b TNF Receptor Superfamily Member 11b Up Bio Up Bio
CCN1/Ccn1 Cellular Communication Network Factor 1 Up Bio Up Bio
SLIT3/Slit3 Slit Guidance Ligand 3 Down Bio Down Bio
PCOLCE/Pcolce Procollagen C-Endopeptidase Enhancer Down Bio Down Bio
FMOD/Fmod Fibromodulin Down Bio Down Bio
ABI3BP/Abi3bp ABI Family Member 3 Binding Protein Down Bio Down Bio
MAGEE1/Magee1 MAGE Family Member E1 Down Bio Down Bio
SFRP1/Sfrp1 Secreted Frizzled Related Protein 1 Down Bio Down Bio

Up Bio means upregulated; Down Bio means downregulated and meets biologic significance filtering criteria.
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the need to validate results obtained in the mouse model with 
human tissue whenever possible if seeking to relate findings 
from mouse models to human clinical care.

Aged human lens epithelial cells placed in organ culture for 
24 h undergo similar transcriptomic changes as aged mouse 
lens epithelial cells 24 h post lens injury: Mouse LECs rapidly 
remodel their transcriptome when separated from their 
underlying lens fiber cells in both in vivo mouse cataract 
surgery models [15,17,56] and during explant culture [86], 
leading these cells to express elevated levels of cytokines/
modulators of the innate immune response and genes associ-
ated with fibrotic tissue, while downregulating the expres-
sion of classical markers of the lens epithelium. While this 
response appears to be conserved in embryonic chick LECs 
as well since they upregulate proinflammatory cytokines 
after just 1 h in explant culture [87], it was unknown whether 
human LECs left behind following cataract surgery respond 
similarly.

Here we found that human equatorial lens epithelial cells 
derived from human cadaver lenses also massively reprogram 
their transcriptome by 24 h of culture in the lens capsular 
bag organ culture model of PCO and the global nature of 
this reprogramming mirrors that seen in the mouse cataract 
surgery model. Notably, human equatorial LECs were found 
to downregulate the expression of many LEC preferred genes, 
while upregulating the expression of fibrotic markers, genes 
mapping to the KEGG pathway “cytokine-cytokine receptor 
interactions” as well as other genes known to participate in 
the innate immune response to tissue injury. Notably, two of 
the top three most upregulated genes in human equatorial 
epithelial cells after 24 h in culture, PTGS2/COX2 [88], and 
CSF3 [89], both participate in tissue inflammation and are 
also highly upregulated in mouse LECs at both 6 h [56] and 
24 h [15,17] after lens fiber cell removal surgery, suggesting 
that the acute transcriptional response of LECs to lens fiber 
cell removal is evolutionarily conserved. Further, the cyto-
kines whose levels elevate in human aqueous humor at 20 
h following cataract surgery [19] partially overlap with the 
inflammatory cytokine genes that upregulate in human (and 
mouse) equatorial LECs after 24 h of culture suggesting that 
remnant LECs may influence ocular inflammation following 
cataract surgery by changing the balance of aqueous humor 
cytokines. However, this overlap is not complete as some 
cytokines which upregulate in aqueous humor are not 
expressed in cultured human equatorial epithelial cells. These 
additional proteins may come from the immune cells which 
begin to invade the in vivo eye by 18 h PCS [15,90], or other 
ocular tissues which are influenced by cataract surgery.

Limitations of this study: The present study revealed that 
human and mouse lens epithelial cells have similar transcrip-
tomes which change similarly in response to lens fiber cell 
removal such as what is performed during cataract surgery. 
However, the study design does limit some of the conclusions 
that can be made.

1) The mouse transcriptomes used for study were 
derived from inbred mice which were housed in controlled 
environments, had no apparent pathologies, and lens tissue 
was isolated immediately after death. In contrast, the human 
lenses studied were genetically diverse, came from individ-
uals who died natural deaths at a range of ages from diverse 
causes, with tissue collected at a range of post-mortem times. 
While the principal component analysis (PCA) revealed that 
samples obtained from the same cell population isolated from 
different individuals have quite similar global transcriptomes 
(Figure 1), it is likely that some genes with bona fide expres-
sion differences across cell types were not revealed due to the 
intrinsic variability of the samples studied and the analysis of 
samples from only three individuals.

2) The mice and humans used for comparison were “age 
matched” based on a “frailty” index [55] which assesses a 
variety of physiologic parameters to set “equivalent ages” 
between these two species. However, it is recognized that 
different tissues age at different rates even within an indi-
vidual [91], and the comparative rates of lens aging between 
mice and humans have not been directly assessed outside of 
propensity to develop cataract [92].

3) The human central epithelial samples were preserved 
in RNAlater immediately after capsulorhexis, but the 
“uncultured” equatorial epithelial samples were collected 
approximately 5 - 10 min after hydroexpression of the lens 
fiber cells. This may have led to an overestimate of the gene 
expression differences between the central and equatorial 
epithelium in this study as LECs can trigger gene expression 
changes as soon as 30 min following a stress [93], which leads 
to differential expression of approximately 10% of the LEC 
transcriptome by 6 h PCS [56]. Notably, some genes whose 
expression rapidly changes in mouse LECs upon lens fiber 
cell removal, such as the immediate early genes FOS and 
FOSB which can be upregulated as soon as 30 min after a 
stress [94], and the inflammatory mediators CXCL14 and 
CCL2 were detected at lower levels in the central lens epithe-
lium which was immediately preserved versus the equatorial 
epithelium whose collection was delayed due to its placement 
within the capsular bag model.

4) The human ex vivo capsular bag model of PCO 
requires pinning the ciliary body/capsular bag complex 
into place followed by incubation in cell culture media 

http://www.molvis.org/molvis/v30/348


362

Molecular Vision 2024; 30:348-367 <http://www.molvis.org/molvis/v30/348> © 2024 Molecular Vision 

supplemented by 5% serum which exposes the equatorial 
LECs to both the factors present in serum and those that may 
be produced by the injured ciliary complex, while the injury 
response of mouse lens epithelial cells was assessed in the 
eye of a living mouse. These differences likely result in the 
remnant lens epithelial cells being exposed to a different 
growth factors/cytokines milieu which could lead to different 
transcriptomic responses.

Conclusions: This work revealed the baseline similarities and 
differences between the mouse and human transcriptome and 
compared their responses to lens fiber cell removal models 
that mimic modern cataract surgery. Notably, this work 
confirmed that human LECs, like those in mice, induce the 
expression of pro-inflammatory cytokines and fibrotic marker 
genes by 24 h after fiber cell removal, further validating the 
mouse as a model to study the acute lens injury responses that 
likely set the stage for the development of posterior capsular 
opacification, a common negative consequence of modern 
cataract surgery.
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