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Introduction

Botulinum toxin is among the most potent toxins known. 
Fatal at sufficient doses, the controlled use of botulinum 
toxin has been demonstrated to be an effective treatment for 
a variety of disorders, including those of the lower urinary 
tract (LUT). The therapeutic use of botulinum toxin A 
(BTA) to treat LUT disorders was first described in 1988 (1).  
Since that time, BTA has been used to treat a variety of 
LUT disorders, including painful bladder syndrome/
interstitial cystitis (PBS/IC). The outcome of treatment of 
PBS/IC symptoms with BTA has varied, and this may relate 
to the heterogeneity of causes underlying PBS/IC, plasticity 
of the nervous system induced by PBS/IC, and disparity of 
effects of BTA in individual patients.

This review discusses potential mechanisms of action 
of BTA, locations at which BTA may have an effect, and 
emerging evidence that chronic PBS/IC may induce 

plasticity within the central nervous system (CNS) that 
results in persistence of symptoms. Interestingly, there has 
also been an increase in descriptions of transport of BTA 
to the CNS and its activity within the CNS. Although it 
is recognized that there are multiple formulations of BTA 
and that all are not identical in potency and biological 
availability (2), BTA is used as an abbreviation herein to 
refer to all commercially available forms of BTA.

Brief overview of mechanism

BTA is a neurotoxin produced by the bacteria Clostridium 
botulinum (3). Several serotypes of the toxin are produced, 
among which type A is the most potent (4). BTA is a zinc-
dependent endopeptidase, which binds to and is taken up 
by, neurons via a high-affinity interaction with synaptic 
vesicle protein 2 (SV2) (5). Additionally, there are low-
affinity interactions with polysialogangliosides on the 
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surface of the cell that facilitate entry of BTA (6). The 
intracellular substrate of the type A toxin used clinically is 
the synaptosomal-associated protein of 25 kDa (SNAP-25),  
a member of the SNARE protein superfamily necessary for 
docking and fusion of synaptic vesicles that mediate release of 
neurotransmitters, including acetylcholine (ACh) (Figure 1).  
It is extremely potent, demonstrating a ~50 pM IC50 for 
inhibition of potassium-induced substance P (SP) release 
in primary cultures of rat dorsal root ganglia neurons (3). 
BTA poses a serious health risk with respect to accidental 
exposure (i.e., botulism), but the toxin has been utilized 
therapeutically, initially for treatment of movement disorders 
such as facial spasm, cerebral palsy, and spasticity, as well as 
treatment of chronic pain (4). More recently, BTA has been 
utilized to treat LUT dysfunctions, including incontinence (7)  
and detrusor overactivity (8), which have not responded 
to other medications. It was initially thought to act via 
inhibition of ACh release from efferent nerves, thereby 
dampening smooth muscle contractions (9). Importantly, 
its effects can last up to several months (4), but it does 
not appear to kill the neurons that absorb the toxin (10).  
Evidence is accumulating that BTA is also working by other 
mechanisms and in other cell types, but this idea has only 
recently been explored. Here we will briefly review the 
existing evidence of BTA acting on various cell types in the 
LUT, as well as clinical data that may help explain why it 
has not been effective in all patients.

Evidence of BTA effects on afferent nerves/
sensation

Clinically, the sensation of urgency is thought to be directly 
related to increased afferent activity. BTA injections are 
known to reduce episodes of urgency in patients with 
LUT dysfunction (11), and may therefore be expected 
to influence afferent activity, either directly or indirectly 
(Figure 2). Increased afferent activity is thought to play an 
important role in a number of LUT pathologies, including 
PBS/IC, overactive bladder, and spinal cord injury (SCI), 
and may therefore explain the efficacy of BTA in these 
patients.

Two types of nerve fibers transmit sensory information 
from the bladder: unmyelinated C-fibers that are 
primarily nociceptive in humans and largely innervate the 
suburothelium, as well as lightly myelinated Aδ-fibers that 
are mostly low-threshold, mechanosensative fibers that 
primarily innervate the detrusor smooth muscle (12). These 
fibers travel primarily within the pelvic and hypogastric 

nerves. C-fibers are normally silent in the absence of 
pathology and do not play a role in the micturition reflex (13).  
C-fibers become active in pathological conditions, 
contributing to bladder overactivity (increasing afferent 
drive, resulting in hyperreflexia) and transmission of painful 
stimuli (13). One mechanism by which this happens is 
alterations in potassium channels resulting in increased 
excitability (14). This may be a result of increased expression 
of nerve growth factor (NGF), since chronic NGF 
administration in rats mimics this effect (15). In addition, 
increases in receptor expression of purinergic (P2X3) and 
transient receptor potential channels (in particular TRPV1, 
which responds to a number of noxious stimuli including 
capsaicin) in the suburothelium have been demonstrated 
in humans with neurogenic detrusor overactivity (NDO) 
relative to controls (16), which is reversed following BTA 
treatment (17).

C-fibers also release peptides, such as calcitonin 
gene-related peptide (CGRP) and SP, which promote 
inflammation and are upregulated in patients with PBS/
IC (18-20). BTA has been shown to attenuate the enhanced 
release of these peptides from isolated bladders of rats with 
acute HCl-induced injury (21,22), and BTA decreased SP (21)  
and CGRP (23) expression in rats with chronic bladder 
inflammation induced by cyclophosphamide (CYP). BTA has 
also been shown to suppress potassium-induced SP release 
from primary cultures of rat dorsal root ganglia neurons (3), 
as previously mentioned.

TRPV1 is involved in pain transmission, and its 
expression is used to differentiate C- from Aδ-fiber afferents 
innervating the bladder. In bladder biopsies from PBS/IC  
patients, severity of inflammation was correlated with 
higher TRPV1-immunoreactive nerve fiber density in the 
suburothelium, as well as increased NGF levels (24), which 
were both significantly increased relative to controls. This 
is consistent with animal models of LUT pathology, and 
supports the idea that silent C-fiber activation is responsible 
for increased afferent activity in a number of pathologies. 
BTA has been shown to reduce the elevated levels of 
TRPV1, as well as NGF, in a rat model of bladder outlet 
obstruction (25). BTA injections into the detrusor caused 
a progressive decrease in elevated suburothelial P2X3 and 
TRPV1 expression (10), and these eventually returned to 
normal levels. It has also been shown that trafficking of 
TRPV1 to the plasma membrane is a SNARE-dependent 
process disrupted by BTA (26), suggesting that alteration of 
receptor expression may be another mechanism by which 
BTA exerts its effects.
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Figure 2 BTA dampens afferent input. This occurs by both direct (blocking of ATP release in response to stretch), and indirect mechanisms 
(normalizing NO release, while preventing increased TRPV1/P2X3 receptor expression and NGF-mediated increase in excitability and 
innervation density). Increased NO release may act via myofibroblasts to attenuate afferent activity. However, the effects of BTA on NO 
release may be context-dependent, varying among LUT disorders. BTA, botulinum toxin A; NGF, nerve growth factor; ATP, adenosine 
triphosphate; ACh, acetylcholine; NO, nitric oxide.

Figure 1 BTA entry and mechanism of action. BTA binds with low affinity to polysialogangliosides on the surface of the cell, and with high 
affinity to synaptic vesicle protein SV2. After endocytosis, the light chain is cleaved and released into the cystosol, where it cleaves SNAP-
25 thereby disrupting SNARE-dependent exocytosis of neurotransmitters and receptor trafficking to the plasma membrane. BTA decreases 
neurogenic inflammation by blocking NGF and neuropeptide (CGRP and SP) release from afferent nerves. It also disrupts receptor 
trafficking to the plasma membrane (TRPV1, P2X3). ATP, adenosine triphosphate; ACh, acetylcholine; CGRP, calcitonin gene-related 
peptide; SP, substance P; NGF, nerve growth factor; BTA, botulinum toxin A; SV2, synaptic vesicle protein 2.
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Consistent with the observed effect of BTA on TRPV1, 
BTA has been shown to provide analgesia against acetic 
acid-induced bladder pain in rats (22). This study also 
showed that animals treated with BTA had less CGRP 
immunoreactivity than controls in response to intravesical 
acetic acid, again demonstrating an effect of BTA on 
neuropeptide release from afferent nerves in response to 
noxious stimuli.

Direct measurement of afferent firing with simultaneous 
bladder pressure recording in mice showed that BTA 
attenuated both low- and high-threshold afferent unit 
firing during distension (27), suggesting that it acts on both 
Aδ- and C-fibers. This study also demonstrated that acute 
BTA administration resulted in a 5-fold increase in luminal 
nitric oxide (NO) above basal levels 1 hour later. A similar 
study in SCI rats demonstrated a significant increase in 
hypoosmotic stretch-induced NO release 2 days after BTA 
treated vs. untreated SCI rats (28). This increase in NO 
may dampen afferent activity indirectly via inhibitory effects 
on myofibroblasts or the urothelium (29). Conversely, there 
was a decrease in neuronal NO synthase immunoreactivity 
following injection of BTA into the rat parotid gland (30). 
This may suggest that the increase in bladder NO content 
was a result of BTA effects on the urothelium. In the 
bladder, the balance between inhibitory NO and excitatory 
adenosine triphosphate (ATP) has been proposed to 
modulate afferent activity, and it appears that BTA helps to 
normalize that balance (28). 

Less direct measures of afferent activity come from 
cystometry data, in which endpoints such as number of 
non-voiding contractions have been interpreted as indirect 
measurements of afferent activity. Following transection 
SCI at the T4 level, intravesical BTA given 48 hours before 
cystometry suppressed maximal voiding pressure and 
decreased the number of non-voiding contractions (31,32). 
BTA effectively prevents the increased NGF levels in both 
the spinal cord and the bladder in response to SCI (31),  
which is likely an important mechanism by which it 
suppresses afferent activity in this model. This study 
also demonstrated that increased arterial pressure and 
bradycardia in response to bladder distension, a pathological 
reflex termed autonomic dysreflexia, was also suppressed 
with BTA via an inhibition of afferent activity.

Evidence of BTA effects on urothelium

The urothelium, in addition to providing a permeability 
barrier to the urine, is thought to be able to sense and transmit 

information about fullness, pH, temperature, and infection. It 
contains a large number of receptors and channels for sensing 
the luminal environment, and releases a number of mediators 
in response to those changes (33). Defects in sensation or 
signaling by the urothelium are thought to play a role in 
various diseases, including PBS/IC (34).

ATP is released from the urothelium in response to 
stretch, which has been demonstrated in vitro in normal 
rabbit bladders (35), as well as primary cultures of human 
urothelial cells (36). The latter study also showed that 
urothelial cells from patients with PBS/IC released more 
ATP than normal controls, both at rest and in response to 
stretch, which was also seen in cultured urothelial cells from 
cats with feline interstitial cystitis (37). This urothelial-
released ATP acts on purinergic receptors (primarily P2X3)  
on afferent nerves (38), and transmits information on 
bladder fullness. BTA has been shown to normalize this 
increased ATP release in response to stretch in SCI rats (28).

BTA has been shown to diffuse from detrusor injection 
sites to the suburothelium (39), where it may act on the 
urothelium or myofibroblasts in addition to neurons. SV2 
immunoreactivity has been shown in cultured rat and human 
urothelial cells (40); however, it was not seen in urothelium 
from normal cadaveric human organ donors (41).  
To our knowledge, no study has examined whether SV2 is 
expressed in human urothelium as a result of pathology.

Intravesical administration of BTA is effective in animal 
preparations, in which it reduces stretch-induced ATP 
release into the bladder lumen (presumably from the 
urothelium) in both rats (40) and mice (27). In another 
rat study of intravesical delivery, BTA packaged in lipid 
micelles (liposomes) was more effective than BTA alone in 
minimizing acetic acid-induced changes in intercontractile 
interval and maximal voiding pressure (22). Taken together, 
these lines of evidence suggest that BTA has actions on 
the release of mediators from the urothelium, which are 
upregulated in conditions such as PBS/IC. Interestingly, 
ACh release from the urothelium does not appear to be 
vesicular (42), in contrast to release from cholinergic nerves. 
This may permit sensory information on fullness to be 
conveyed despite disruption of vesicular release of ATP by 
BTA.

Evidence of BTA effects on detrusor smooth 
muscle

In early studies, the presumed mechanism of action of 
BTA was thought to be primarily on efferent signals, via 
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inhibition of vesicular ACh release from the neuromuscular 
junction. SV2 expression is lacking on detrusor smooth 
muscle (41), and exocytosis of mediators from smooth 
muscle cells is not known to play a role in micturition. 
Intravesical delivery of BTA to an ex vivo mouse bladder 
preparation showed no effect on bladder compliance, 
despite effectively dampening afferent signaling (27), 
suggesting that passive mechanical properties of the bladder 
were not acutely altered by BTA. This is consistent with 
studies in SCI rats showing no decreases in contraction 
amplitude with cystometry after intravesical delivery of 
BTA (43). Another study using isolated detrusor smooth 
muscle strips from guinea pig and mouse showed no effect 
of BTA incubation of up to 72 hours on contractile response 
to electric field stimulation (44), which may suggest that 
acute effects of BTA in vitro may be largely due to effects on 
afferent activity. A study of rat bladder strips showed only a 
modest effect of BTA after 2 hours of a stimulation protocol 
designed to promote BTA uptake; however, the mucosa was 
not removed from the muscle strips in this study, allowing 
for the possibility that the effects seen were a result of BTA 
on the urothelium (45). In summary, experimental evidence 
in animal models shows little evidence of a direct effect of 
BTA on detrusor smooth muscle.

Evidence of BTA effects on suburothelial 
myofibroblasts

Myofibroblasts (also referred to as interstitial cells, thought 
to be functionally similar to the interstitial cells of Cajal 
in the gut) are located throughout the bladder wall, but 
in the suburothelium are located in close proximity to 
axonal varicosities of both afferent and efferent nerves (46). 
Extensive coupling via connexin 43 gap junctions creates a 
functional syncytium that helps coordinate and synchronize 
detrusor smooth muscle function (47). Physical contact with 
nearby myofibroblasts enhances the response to ATP (47). 
They are thought to function as a variable gain amplifier, 
integrating information on stretch prior to relaying it to 
afferent nerves. NO is thought to act to attenuate afferent 
information relayed by myofibroblasts (29)

Dysfunctional myofibroblasts can lead to increased 
afferent activity. For instance, connexin 43-mediated 
electrical coupling is upregulated in patients with both 
neurogenic and idiopathic detrusor overactivity (48). 
However, BTA treatment did not appear to affect connexin 
43 expressions in these patients (48). There is currently no 
evidence that myofibroblasts express SV2, or take up BTA. 

However, myofibroblast activity is modulated by NO and 
ATP, and thus indirectly influenced by BTA treatment. BTA 
increased NO levels while preventing ATP release, which 
resulted in decreased afferent firing, as demonstrated using 
nerve recording in mice (27). This may be mediated, at least 
in part, by myofibroblasts.

BTA efficacy in patients

As previously mentioned, injection of BTA for treatment of 
LUT dysfunction was first described in 1988 by Dykstra et al.  
who reported its use in 11 men with detrusor-sphincter 
dyssynergia subsequent to SCI (1). Since that time, BTA 
injection has been used to treat a variety of LUT disorders, 
including NDO (49,50), idiopathic detrusor overactivity, 
bladder outflow obstruction (49,51), pelvic pain (due to 
a variety of causes including muscle spasm or myofascial 
pain) (52,53), and LUT symptoms in men with benign 
prostatic hyperplasia (54). Numerous publications have 
described cystoscopically-guided injection of BTA into the 
bladder wall to manage pain and other symptoms of LUT 
dysfunction associated with PBS/IC in patients [reviewed 
in (53,55-57)]. Two articles in particular have scrutinized 
the use of BTA for treatment of LUT disorders, including  
PBS/IC (56,57). In 2011, these authors reported a lack of 
high-level evidence reports evaluating the efficacy of BTA 
for treatment of PBS/IC (56). In an updated study published 
in 2014 that evaluated publications on this topic since the 
previous study (56), the same authors identified 14 reports 
that provided sufficient data to assess the level of evidence, 
and 11 of these reports were considered to present low-level  
evidence, and three high-level evidence, regarding the 
efficacy for treatment of symptoms resulting in a diagnosis 
of PBS/IC (57).

Direct comparisons among studies of efficacy of 
treatment of symptoms of BPS/IC are complicated by 
the inherent heterogeneity of this patient population, as 
well as variations in techniques used to deliver BTA to the 
bladder such as the number of injection sites, total amount 
of BTA delivered, formulation of BTA used, and other 
procedures (such as bladder distention) that may or may not 
be performed concurrent to BTA injection (53,55). These 
studies have typically entailed a small number of patients, 
some lack appropriate control groups, and the duration 
of study after injection of BTA varies. Further, multiple 
variants of BTA are commercially available (56), and these 
are sufficiently different in formulation and strength 
that they should not all be considered pharmacologically 
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equivalent (2). The duration of improvement varies among 
studies, and one study was judged to provide high-level 
evidence of improvement in response to repeated injection 
of BTA at 6 months intervals (57,58). While the general 
conclusion of these studies is that injection of BTA into the 
bladder results in improvement of symptoms of BPS/IC,  
particularly pain, in a majority of patients, the validity of 
this conclusion has been called into question because of 
factors previously discussed, as well as well-documented 
placebo effects in clinical trials of treatment of symptoms of 
BPS/IC.

A positive response to placebo treatments is commonly 
reported in studies that seek to assess the efficacy of BTA 
for treatment of PBS/IC symptoms. A positive response 
to placebo by 15-30% of PBS/IC patients who participate 
in randomized treatment trials (59) has been described, 
and more recent studies of the efficacy of systemic 
administration of amitriptyline or adalimumab (monoclonal 
ant ibody to  tumor necros is  factor-α )  to  PBS/IC  
patients reported a 45-50% response to placebo (60-62).  
In at least one study, the placebo effect may have been 
enhanced by providing patients that received placebo 
treatment advice, counseling and support, education, and 
behavioral modification, while patients in the treatment arm 
(adalimumab) of the protocol also received education and 
behavioral modification training (62).

Experiments using rodents have demonstrated a 
correlation of chronic bladder inflammation with plasticity 
of afferent nerves, as well as alterations in the relevant 
segments of the spinal cord (20,63-68). Examination of 
bladder biopsies obtained from PBS/IC patients have also 
provided evidence of afferent neural plasticity (18,19), 
and increased concentrations of trophic factors capable of 
stimulating neurogenesis have been identified in the bladder 
wall (69) and urine (70) of PBS/IC patients. For obvious 
reasons, less information is available regarding alterations 
in the spinal cords of PBS/IC patients. However, a series 
of articles has recently been published describing results of 
non-invasive evaluation of brain structure and function in 
PBS/IC patients.

Evidence of CNS alterations in PBS/IC patients

It has been speculated that central processing of neural input 
may play a significant role in symptoms of PBS/IC (71).  
Alterations in brain anatomy and function have been 
identified on magnetic resonance imaging (MRI) images 
obtained from patients with chronic pain associated with 

fibromyalgia (72,73), back pain (74,75), chronic tension type 
headache (76), and various other disorders (77). Differences 
were observed in relative abundance of gray matter in 
regions of the brain associated with pain processing when 
MRI images of patients with chronic pelvic pain were 
compared to those of controls without pain (78,79). In a 
study of 33 PBS/IC patients without comorbidities (e.g., 
fibromyalgia, migraines, inflammatory bowel disease, 
chronic fatigue syndrome, etc.) compared to 33 age- and 
gender-matched normal controls, a positive correlation 
was observed in MRI images of PBS/IC patients between 
increased gray matter in areas of the brain associated with 
nociceptive processing (right primary somatosensory cortex, 
bilateral superior parietal lobules, and right somatosensory 
cortex) and increased pain, anxiety, and LUT symptoms 
that was absent in controls (80). Functional MRI (fMRI) 
imaging of 82 female PBS/IC patients and 85 female 
controls revealed altered frequency in viscerosensory, 
somatosensory, and motor regions of the brains of PBS/IC 
patients relative to that observed in controls, and increased 
functional connectivity was most apparent in patients 
with pain upon bladder filling (81). Signal attenuation 
by water diffusion is an important contrast mechanism 
for interpretation of MR images, and diffusion tensor 
imaging has been used to map and characterize the three-
dimensional structure of the brain due to spatial diffusion of 
water (82,83). Significant white matter abnormalities were 
observed by diffusion tensor imaging of brain magnetic 
resonance (MR) images obtained from PBS/IC patients that 
were not observed in controls, and a strong correlation was 
observed between PBS/IC symptoms and abnormalities 
of white matter (84). These observations are of particular 
interest because changes in brain white matter structure 
accurately predicted the transition from acute to chronic 
back pain in at least one study (85).

The observation of altered brain anatomy or function in 
PBS/IC patients may help to explain the variable response 
to treatment by PBS/IC patients and also offers potentially 
intriguing insight into mechanisms underlying response to 
placebo treatment in PBS/IC and similar disorders. The 
concept that chronic bladder irritation results in long-term  
alterations in the CNS is also intriguing because of studies 
examining the effects of peripherally-administered BTA on 
higher structures. Although BTA has been used to effectively 
treat pain associated with a wide variety of disorders, 
the mechanism(s) by which BTA exerts anti-nociceptic  
effects remains unknown (86). The most commonly accepted 
theory is that BTA acts at peripheral sites to suppress 
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transmission of nociceptive stimuli (53,87-92). However, there 
are increasing reports that peripherally-administered BTA may 
be transported to the CNS and that it may be this mechanism 
that allows BTA to suppress pain (93-100).

Evidence of BTA effects in CNS

Radiolabeled BTA was injected into the bladders of rats, 
and radioactivity was evaluated in the bladder, L6-S1 dorsal 
root ganglia, and the L6-S1 spinal cord segments at 1, 3, 
and 6 hours after injection of BTA (93). Concentrations of 
radiolabeled BTA increased over time in both the L6-S1 
dorsal root ganglia and L6-S1 spinal cord segments (93).  
Intrathecal administration of BTA effectively suppressed 
pa in  in  ra t s  a r i s ing  f rom CYP- induced  b ladder 
inflammation (23) or abdominal pain in rats induced 
by intraperitoneal injection of 1% acetic acid or colitis 
resulting from intraluminal infusion of capsaicin (101). BTA 
has been shown to suppress release of neurotransmitters 
by inhibition of SNARE complex proteins, and cleavage 
of synaptosomal-associated protein of 25 kDa (SNAP-25; 
a component of the SNARE complex) has been used as an 
indicator of BTA activity (102). Intrathecal injection of BTA 
at the L5-6 region of the spinal cord in rats with cystitis 
resulted in increased cleavage of SNAP-25 in the dorsal 
horn of the L6 segment of the spinal cord associated with 
neurons penetrating through lamina X, as well as evidence 
of cleavage of SNAP-25 in the L6 ventral horn around the 
cell bodies of motor neurons (23). It is interesting to note 
that a similar extent of cleavage of SNAP-25 within the L6 
spinal cord segment persisted was observed 30 days after 
intrathecal BTA, and that injection of BTA into the cysterna 
magna had no effect on CYP-induced visceral pain (23). 
These findings strongly suggest that the anti-nociceptive 
effect of BTA in this model was the result of activity within 
the spinal cord and that the CNS effects of BTA may be 
prolonged.

Further evidence of central action of peripherally-
administered BTA is provided by reports of bilateral 
analgesia subsequent to unilateral BTA administration to 
animals in which pain was induced by bilateral intramuscular 
injection of acidic saline (103). Neuronal transport of 
BTA by afferent fibers to the CNS is supported by the 
observation that treatment of afferent nerves or ganglia 
with the axonal transport inhibitor colchicine blocked the 
analgesic effects of BTA (97,104). Interestingly, injection 
of colchicine into the ipsilateral sciatic nerve proximal to 
the site of injury inhibited bilateral anti-nociceptive effects 

of unilateral injection of BTA, but injection of colchicine 
into the contralateral sciatic nerve relative to the site of 
BTA treatment failed to prevent BTA-induced analgesia, 
indicating that BTA does not have to reach peripheral nerve 
endings to exert an anti-nociceptive effect (103).

There appears to be less experimental data regarding 
neuronal transport of BTA to the brain, but when BTA 
is injected directly into the eye or brain, it is distributed 
by neuronal transport and exerts effects similar to those 
reported in peripheral tissue as evidenced by cleavage of 
SNAP-25 (98,99). It appears highly probable that BTA is 
transported to the brain. In 2010, the FDA approved BTA 
for prophylactic treatment of chronic migraine headaches. 
The studies cited in support of this approval reported 
the results of treatment of patients with a total dose of  
155 units distributed among 31 injection sites (105,106). 
A meta-analysis of studies describing the efficacy of BTA 
for treatment of various categories of chronic head ache 
confirmed that BTA is an effective treatment alternative 
in many patients and also provides further support for the 
concept that BTA may exert its analgesic effects via action 
within the CNS (107).

Summary

BTA clearly has the potential to manage symptoms of PBS/IC;  
however, results vary among patients. This appears to 
reflect a continued lack of understanding of the causes of 
initiation and persistence of PBS/IC. As with other chronic 
disorders, it is highly probable that there is a progressive 
change in mechanisms underlying symptoms of PBS/IC  
that is accompanied by anatomical and physiological 
changes that occur as PBS/IC persists. The observation 
of changes in anatomy and function of the gray and white 
matter in the brains of PBS/IC patients suggests that more 
comprehensive assessment of patients is required to identify 
treatment options that are tailored to the needs of individual 
patients. These observations may also underlie the relatively 
strong response to placebo treatment of PBS/IC symptoms 
that has been reported.

BTA appears to have significant potential for effective 
treatment of PBS/IC, but it remains unlikely that a single 
therapeutic approach will provide relief in all patients. 
Multiple mechanisms of action with a number of cell types 
may account for some of the interindividual variability. 
Recent findings of CNS changes in PBS/IC patients 
strongly support the concept that a more sophisticated and 
comprehensive understanding of mechanisms resulting 
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in symptoms of PBS/IC, as well as other disorders 
characterized by chronic pain, are crucial to identifying 
improved therapeutic options.
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