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The coronavirus disease 2019 (COVID-19) pandemic has led to 4,255,892 deaths
worldwide. Although COVID-19 vaccines are available, mutant forms of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) have reduced the effectiveness of
vaccines. Patients with cancer are more vulnerable to COVID-19 than patients without
cancer. Identification of new drugs to treat COVID-19 could reduce mortality rate, and
traditional Chinese Medicine(TCM) has shown potential in COVID-19 treatment. In this
study, we focused on lung adenocarcinoma (LUAD) patients with COVID-19. We aimed
to investigate the use of curcumol, a TCM, to treat LUAD patients with COVID-19, using
network pharmacology and systematic bioinformatics analysis. The results showed that
LUAD and patients with COVID-19 share a cluster of common deregulated targets. The
network pharmacology analysis identified seven core targets (namely, AURKA, CDK1,
CCNB1, CCNB2, CCNE1, CCNE2, and TTK) of curcumol in patients with COVID-19 and
LUAD. Clinicopathological analysis of these targets demonstrated that the expression of
these targets is associated with poor patient survival rates. The bioinformatics analysis
further highlighted the involvement of this target cluster in DNA damage response,
chromosome stability, and pathogenesis of LUAD. More importantly, these targets
influence cell-signaling associated with the Warburg effect, which supports SARS-CoV-2
replication and inflammatory response. Comparative transcriptomic analysis on in vitro

LUAD cell further validated the effect of curcumol for treating LUAD through the control
of cell cycle and DNA damage response. This study supports the earlier findings that
curcumol is a potential treatment for patients with LUAD and COVID-19.
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KEY POINTS

• COVID-19-/LUAD-associated and curcumol targets
were identified.

• Prognostic value of curcumol against LUAD and COVID-19
was characterized.

• We identified seven core pharmacological targets of curcumol,
namely, AURKA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2,
and TTK, in treating LUAD and COVID-19.

• Comparative transcriptomic analysis specified the effects of
curcumol for treating LUAD through control of cell cycle,
DNA damage response, and cell apoptosis.

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a novel disease
characterized by high infectivity and rapid spread. Widespread
community transmission of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has led to a global pandemic. As
of 4 March 2022, 440,807,756 confirmed cases of COVID-19
and 5,978,096 deaths had been reported worldwide, according to
the World Health Organization (WHO) (https://worldhealthorg.
shinyapps.io/covid/). A considerable proportion of patients with
COVID-19 related critical illness have comorbidities, which are
associated with increased mortality.

The prospective cohort studies have demonstrated that
patients with COVID-19 with underlying malignancies have a
higher mortality rate than those without cancer (1, 2). The
recent studies have shown that the levels of angiotensin-I-
converting enzyme 2 (ACE2) and transmembrane serine protease
2 (TMPRSS2) in patients with lung adenocarcinoma (LUAD)
are significantly increased, and the increased levels of these
enzymes are associated with susceptibility of patients with LUAD
to SARS-CoV-2 (3), because ACE2 serves as an important
binding site for SARS-CoV-2, leading to facilitate viral entry
into target host cells (4). Lung adenocarcinoma is the most
common subtype of lung cancer. The development of LUAD
is stepwise, beginning with atypical adenomatous hyperplasia
(AAH), and progressing to adenocarcinoma in situ (AIS) and
then to minimally invasive adenocarcinoma (MIA) (5, 6). Most
of the patients are diagnosed with advanced disease and have
poor prognosis. Gene mutations (such as EGFR, KRAS, and
BRAF mutations) and tumor inflammatory microenvironment
are strongly associated with LUAD pathogenesis (7, 8).

A meta-analysis of patients with lung cancer and COVID-
19, which included 13 studies, showed that the pooled mortality
of patients with lung cancer and COVID-19 (up to 25–42%)
was significantly higher than the mortality of patients with other
cancers (9, 10). This may be due to different pathophysiological
factors, such as pulmonary compromise and smoking history,
in patients with lung cancer, compared with other cancers (11).
Therefore, there is an urgent need to identify drugs to treat

Abbreviations: LUAD, lung adenocarcinoma; COVID-19, coronavirus disease
2019; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; BP, Biological
process; KEGG, Kyoto Encyclopedia of Genes and Genomes; IPA, Ingenuity
Pathway Analysis.

patients with lung cancer and COVID-19. In addition to helping
these patients, identification of such drugs will also relieve the
pressure on respiratory healthcare services.

The current research findings have shown that traditional
Chinese medicine (TCM), such as Lianhua Qingwen Keli,
Honeysuckle Flower Cold-Relieving Granules, and Xuebijing
injection can be effective in preventing COVID-19 and
relieving clinical symptoms of COVID-19. These TCM were
officially recommended by the National Medical Products
Administration, as adjunctive therapy, in the treatment of
COVID-19 (12). TCM can potentially be used for the treatment
of comorbidities associated with COVID-19, and has received
worldwide attention. Curcumol, a sesquiterpenoid isolated from
Curcumae rhizoma, has been shown to have various therapeutic
effects, including anticancer, antioxidant, antimicrobial, and anti-
inflammatory effects (13). An in vitro study by Li et al. showed
that curcumol suppresses proliferation of the LUAD cells, A549
and H460, by arresting the cell cycle, altering the expression of
apoptosis signaling pathways and inducing tumor cell apoptosis
(14). In chronic asthmatic mice, curcumol was found to reduce
pulmonary inflammation and airway remodeling by decreasing
cytokine levels (15). In addition, curcumol was reported to inhibit
LUAD growth and metastasis and overcome tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) resistance in
lung cancer (16). The results of the aforementioned studies show
that curcumol may be a potential treatment for patients with
LUAD and COVID-19.

In the current study, we used network pharmacology,
comparative transcriptome, and systematic bioinformatics
analysis to investigate the use of curcumol for COVID-19 and
LUAD treatment. We aimed to identify possible therapeutic
targets and to unfold the molecular mechanisms underlying
the therapeutic effects of curcumol in COVID-19 and LUAD,
using clinicopathological analysis, gene ontology, KEGG
enrichment analysis, ingenuity pathway analysis (IPA) and
molecular docking.

MATERIALS AND METHODS

Identification of Common Deregulated
Targets Between COVID-19 and LUAD
For the identification of COVID-19-associated targets, the
keywords “coronavirus COVID-19,” “coronavirus Disease
2019,” “severe acute respiratory syndrome coronavirus 2,” and
“COVID-19” were subjected to different databases, including
the Genecards database (17), Online Mendelian Inheritance
in Man (OMIM) database (https://omim.org/), Therapeutic
Target Database (TTD) (18), Comparative Toxicogenomics
Database (CTD) (19), and National Center for Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/), genes
with the relevance score >1 were obtained from the databases.
To identify LUAD-associated targets, the transcriptome data of
patients with LUAD were obtained from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/) on 26
July 2021. Using the limma package in R on Bioconductor
software, genes with FDR < 0.05, and |logfold change| > 2 were
considered as differentially expressed genes (DEGs) (20).
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Identification of Pharmacological Targets
of Curcumol in LUAD and COVID-19
Treatment
The pharmacological targets of curcumol were determined
using various online tools and databases, including Swiss
Target Prediction database and Bioinformatics Analysis Tool
for Molecular mechANism of TCM (BATMAN-TCM) (21). The
target genes were subjected to UniProt for human database
correction. The common deregulated genes between COVID-
19 and LUAD, that were previously identified, were intersected
and compared with the targets of curcumol. Interactions between
common targets were analyzed using the STRING database
(version 11.0) (22) and Cytoscape software (version 3.6.1) (23).
The Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.8 was used for the gene ontology (GO)
function enrichment analysis and KEGG enrichment analysis, to
understand the functional roles of targets and signaling pathways
controlled by the genes.

Binding of Curcumol to Predicted Targets
Molecular docking analysis was used to investigate the possible
binding between curcumol and its predicted targets. The protein
structures of the core targets were searched for from the Protein
Data Bank (PDB) database (24). Identified protein structures
were then docked with curcumol using the AutoDock Vina
program and docking analysis was conducted (25).

The Roles of Curcumol Target Genes in
LUAD Pathogenesis
To determine the pathological roles of the core targets in LUAD,
Cox proportional hazards models were applied in univariate
analysis of survival as a function of clinical variables and
gene expression.

Cell Culture
The human lung adenocarcinomic cell lines of A549
were incubated with high glucose dulbecco’s modified
eagle medium (DMEM) medium (ThermoFisher, Cat. No.
11965118), supplemented with 0.5% penicillin–streptomycin
(ThermoFisher, Cat. No. 15140122) and 5% fetal bovine serum
(ThermoFisher, Cat. No. 10082147) under 5% CO2 at 37◦C.

Cell Proliferation Assays
The cells were seeded in a 96-well plate at a cell density of 2
× 104 cells per well, with eight replicate wells. The cells were
treated with different concentrations of curcumol (0.1–100µM)
for 48 h. After the incubation, the cell viability was measured by
the CCK-8 assay (Data Inventory Biotechnology) as described
previously (26). The colorimetric product formed was measured
at an absorbance of 450 nm and 600 nm, 1OD = OD450nm

– OD600nm.

The RNA Sequencing
After the treatment of the cell with 100µM curcumol for 48 h,
the total RNA of the cell was extracted using Trizol reagent
(Thermofisher) following the manufacturer’s instruction. The
RNA quality and quantity were assessed by using Bioanalyzer

2,100 and RNA 6,000 Nano LabChip Kit (Agilent), high-quality
RNA samples with RNA integrity number (RIN) number higher
than 7.0 were used to construct sequencing library. The average
insert size for the final complementary DNA (Cdna) library was
about 300 bp. Then 2 × 150 bp paired-end sequencing (PE150)
was performed on an Illumina NovaseqTM. The high-quality
clean reads were mapped to the Human genome reference
(Homo sapiens Ensembl v96) using HISAT2 software (version:
hisat2-2.0.4) (27). StringTie and ballgownwere used to determine
the gene expression level (28). The genes with a 1.5< fold change
(treatment/control) < 0.75 and –log10 (q-value) > 1.3 were
considered as DEGs. The DEGs were subjected to the DAVID
v6.8 analysis (29) and IPA (https://www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis) to delineate the
molecular mechanism underlying the effect of curcumol for
treating LUAD.

RESULTS

Identification of Pharmacological Targets
of Curcumol in COVID-19 and LUAD
Treatment
Using the relevant databases, we identified a total of 8,339
targets associated with COVID-19 (Figure 1A). Using the TCGA
database, we found 5,538 differential expressed genes associated
with LUAD (Figure 1A). When we compared the COVID-
19- and LUAD-associated targets, we found 882 shared targets
(Figure 1A), amongwhich 216were downregulated and 666were
upregulated, in patients with LUAD (Figure 1B). To understand
the pharmacology of curcumol, a network pharmacology
analysis was conducted. We identified 151 curcumol-associated
targets using the mentioned databases (Figure 1A) and, after
comparison of the curcumol-associated targets with the COVID-
19/ LUAD-associated targets, we found 28 targets shared by
curcumol, COVID-19, and LUAD (Figure 1A). The molecular
network analysis using Cytoscape highlighted seven core targets
of curcumol, namely, AURKA, CDK1, CCNB1, CCNB2, CCNE1,
CCNE2, and TTK in COVID-19 and LUAD (Figure 1C
and Table 1).

Binding of Curcumol to Targets CDK1,
TTK, and AURKA
Three protein structures, CDK1, TTK, and AURKA, out of the
seven core targets were available on the PDB database (AURKA,
ID:2J50; CDK1, ID:5HQ0, and TTK, ID:6N6O). These protein
structures were subjected to docking analysis with curcumol
using the AutoDock Vina program. The results were displayed
using PyMOL (version 2.3), which showed that curcumol formed
a hydrogen bond with LYS-162 (3.2 Å) of AURKA (PDB ID: 2J50)
(Figure 2A), and the binding affinity of curcumol for AURKA
was −6.4 kcal/mol. A similar bindings were observed between
curcumol and the amino acid residue LEU-83 (2.2 Å) of CDK1
(PDB ID: 5HQ0) (Figure 2B) and between curcumol and the
amino acid residue LYS-529 (3.0 Å) of TTK (PDB ID: ID:6N6O)
(Figure 2C). The binding affinities of curcumol for CDK1 and
TTK were −3.2 kcal/mol and −4.7 kcal/mol, respectively. Our
data suggested the direct binding of curcumol to its targets.
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FIGURE 1 | Identification of curcumol-targeted COVID-19- LUAD-associated targets. (A) Venn diagram showing the intersecting targets of curcumol
/COVID-19/LUAD. (B) Volcano plot showing the expression level of differential expressed COVID-19- LUAD-associated genes in patients with LUAD. The genes with
|log2 (fold change)| > 1 and –log10(FDR) > 1.3 were considered as differential expressed genes. (C) Protein–protein interaction analysis of
curcumol/COVID-19/LUAD-intersecting genes using STRING tool.

The Roles of Curcumol Target Genes in
LUAD Pathogenesis
The results of the hazards models showed that the expression
of curcumol targets in COVID-19 and LUAD was significantly

associated with the relative risk of survival [AURKA (p = 0.001,
hazard ratio, 1.086–1.399); CDK1 (p< 0.001, hazard ratio, 1.099–
1.401); CCNB1 (p< 0.001, hazard ratio, 1.144–1.499); CCNB2 (p
< 0.001, hazard ratio, 1.089–1.388); CCNE1 (p = 0.012, hazard
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ratio, 1.032–1.283); CCNE2 (p = 0.026, hazard ratio, 1.019–
1.341); TTK (p = 0.004, hazard ratio, 1.053–1.307)] in patients
with LUAD (Figure 3A). The results of survival analysis using the
Kaplan–Meier estimator also showed that patients with LUAD
with greater expression of the genes, AURKA, CDK1, CCNB1,
CCNB2, CCNE2, and TTK, had poorer overall survival rates
(Figure 3B). In addition, the correlation analysis highlighted that
increased expression of AURKA was associated with advanced
stages of LUAD and the increased number of lymph nodes
containing tumor (Figure 3C).

Curcumol Target Genes Mediated DNA
Damage Response and Cell Cycle Control
To further understand the biological roles of curcumol in
the treatment of COVID-19 and LUAD, the identified core
targets were subjected to GO enrichment analysis and KEGG
pathway enrichment analysis. The results of GO analysis
showed that curcumol targets (AURKA, CDK1, and CCNB1)
could mediate biological processes related to DNA damage
response by controlling DNA integrity and the DNA damage
checkpoint (Figure 4A and Supplementary Table 1), or by
regulating cyclin-dependent protein kinase activity, which could
lead to cell cycle arrest at different cell cycle checkpoints,
such as cell cycle G1/S phase transition and cell cycle
G2/M phase transition (Figure 4B and Supplementary Table 1).
These responses are controlled by the seven curcumol targets
(Figure 4B and Supplementary Table 1). The other possible
outcome of mediation of biological processes related to the DNA
damage response by these targets is the alteration of cellular
assembly processes, such as organelle fission, mitotic nuclear
envelope disassembly, chromosome segregation, and mitotic
spindle organization (Figure 4C and Supplementary Table 1).
In addition, curcumol targets were found to regulate many
important processes involved in LUAD carcinogenesis, such as
histone phosphorylation, oxidative phosphorylation, and cellular
respiration (Figure 4D and Supplementary Table 1).

The GO cellular components and molecular functions
analyses showed that the curcumol targets play roles in many
enzymatic complexes related to cell cycle control, such as
in cyclin-dependent protein kinase holoenzyme complex
and in serine/threonine protein kinase complex (Figure 5A
and Supplementary Table 2). More importantly, the targets
are involved in chromosome organization, specifically,
in organization of centromeric region of chromosomes,
kinetochores, mitotic spindle pores, and telomeric regions
(Figure 5A and Supplementary Table 2). The results of the
molecular function analysis further highlighted the effects of
curcumol on cyclin-dependent protein serine/threonine kinase
regulator activity, histone kinase activity, and cyclin binding
(Figure 5A and Supplementary Table 2). KEGG pathway
analysis was used to investigate the pharmacological effect of
curcumol on the regulation of cell-signaling pathways. The
results showed that curcumol could target many cell-signaling
pathways related to cancer development (Figure 5B and
Supplementary Table 3), including the p53 signaling pathway,
FoxO signaling pathway, and PI3K–Akt signaling pathway
(Figure 5B and Supplementary Table 3). The curcumol targets
were also found to play a role in immune response to viral

TABLE 1 | All seven core genes of curcumol against COVID-19 and LUAD.

Protein Name Symbol Uniprot ID

Aurora kinase A AURKA O14965

Cyclin-dependent kinase 1 CDK1 P06493

G2/mitotic-specific cyclin-B1 CCNB1 P14635

G2/mitotic-specific cyclin-B2 CCNB2 O95067

G1/S-specific cyclin-E1 CCNE1 P24864

G1/S-specific cyclin-E2 CCNE2 O96020

Dual specificity protein kinase TTK TTK P33981

infections, like T-cell leukemia virus 1 infection, papillomavirus
infection, and immunodeficiency virus 1 infection (Figure 5B
and Supplementary Table 3).

Curcumol Inhibited the Cell Proliferation of
LUAD Through the Control of Cell Cycle
and DNA Damage
To investigate the effect of curcumol on lung cancer, an in
vitro LUAD model A549 was used. Our result showed that
the treatment of curcumol caused a significant dose-dependent
inhibition of cell proliferation in LUAD as compared to the
control group (Figure 6A). Then comparative transcriptomic
analysis was conducted to delineate the corresponding molecular
mechanism. By comparing the gene expression profile of
control and curcunol treatment group, we found 348 DEGs,
including 206 upregulated genes and 142 downregulated genes
(Figure 6B and Supplementary Table 4). The DEGs were used
for the DAVID and IPA analysis to understand the biological
alteration and gene network mediated by curcumol treatment
in LUAD. The result of GO enrichment showed that the
curcumol treatment controlled biological processes related to
cell cycle and gene transcription of LUAD (Figure 6C and
Supplementary Table 5). More importantly, curcumol could
trigger DNA damage response, leading to cell death and cell
apoptosis in LUAD (Figure 6C and Supplementary Table 5).
These results further supported the above findings from network
pharmacology. Finally, gene networking of IPA highlighted the
involvement of transcription and translation factors, enzymes,
kinases, phosphatases, and receptors in curcumol-mediated cell
cycle and DNA response (Figure 6D and Table 2).

DISCUSSION

Using the network pharmacology analysis, we identified seven
core targets of curcumol against COVID-19 and LUAD. These
seven targets, namely, CCNB1, CCNB2, CCNE1, CCNE2,
AURKA, CDK1, and TTK, have been reported to play critical
roles in the carcinogenesis and development of LUAD. These
targets mediate signaling pathways, such as PI3K/AKT and
p53, that are associated with the Warburg effect, which
supports SARS-CoV-2 replication and inflammatory response
(30, 31). Four cyclin family members (CCNB1, CCNB2,
CCNE1, and CCNE2) were identified as core targets in
our analysis. Also, cyclin B1 (CCNB1) is associated with
poor prognosis in LUAD (32). It is a downstream effector
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FIGURE 2 | The direct binding of curcumol to CDK1, TTK, and AURKA. The protein structures of CDK1, TTK, and AURKA, obtained from the PDB database. Using
the programs Autodock and Visual Molecular Dynamics for visualization, hydrogen bonds can be seen between curcumol and (A) the amino acid residue LYS-162
(3.2 Å) of AURKA (PDB ID: 2J50), (B) the amino acid residue LEU-83 (2.2 Å) of CDK1 (PDB ID: 5HQ0), and (C) the amino acid residue LYS-529 (3.0 Å) of TTK (PDB
ID: ID:6N6O).
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FIGURE 3 | Clinicopathologic analysis of curcumol-targeted COVID-19/LUAD-associated targets. (A) The Univariate Cox proportional hazards models showing that
the expression of curcumol target genes in COVID-19 and LUAD was significantly associated with relative risk of survival in the patients with LUAD. (B) The survival
analysis using Kaplan–Meier estimator showing that the patients with LUAD with higher expression of AURKA, CDK1, CCNB1, CCNB2, CCNE2, and TTK had poorer
overall survival rates. (C) The higher expressions of AURKA in patients with LUAD are associated with advanced stages of LUAD. T, Staging of tumor; N, Number of
lymph nodes containing tumor.
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FIGURE 4 | Functional characterization of curcumol-targeted COVID-19/ LUAD-associated targets. (A) The GO enrichment analysis highlighted the biological
processes related to DNA damage response that are controlled by curcumol-targeted COVID-19/LUAD-associated targets. The circos plot showing the involvement
of AUKRA, CDK1, and CCNB1 in the enriched biological processes. (B) The GO enrichment analysis highlighted the biological processes related to cell cycle control
regulated by curcumol-targeted COVID-19/LUAD-associated targets. Circos plot showing the involvement of AUKRA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2, and
TTK in the enriched biological processes. (C) The GO enrichment analysis highlighted the biological processes related to cellular assembly processes controlled by
curcumol targeted COVID-19/LUAD-associated targets. Circos plot showing the involvement of AUKRA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2, and TTK in the
enriched biological processes. (D) The GO enrichment analysis highlighted the biological processes related to carcinogenesis of LUAD. Circos plot showing the
involvement of AUKRA, CDK1, CCNB1, and TTK in the enriched biological processes. The size of the dot represents the number of targets. The color intensity of the
dot represents the significance of the processes.

Frontiers in Nutrition | www.frontiersin.org 8 April 2022 | Volume 9 | Article 870370

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Yang et al. Curcumol Treats LUAD and COVID-19

FIGURE 5 | Molecular functions and signaling pathways controlled by curcumol-targeted COVID-19/LUAD-associated targets. (A) The GO enrichment analysis
highlighted the involved enzymatic complexes, chromosome compartments, and molecular functions in curcumol-targeted COVID-19/LUAD-associated targets. The
size of the dot represents the number of targets. The color intensity of the dot represents the significance of the terms. The Circos plot shows the involvement of
AUKRA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2, and TTK in the enriched terms. (B) The KEGG analysis highlighted the cell-signaling pathways related to cancer
development, mediated by curcumol, against COVID-19 and LUAD. The size of dot represents the number of targets. The color intensity of the dot represents the
significance of the pathways. The Circos plot shows the involvement of AUKRA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2, and TTK in the enriched signaling.

of monoacylglycerol lipase (MGLL), a key enzyme in lipid
metabolism which plays an oncogenic role in LUAD progression
and metastasis (33). The cyclin family member CCNB1 also

contributes to lung inflammation and oxidative stress (34,
35); CCNB2 is an independent predictor of the prognosis
of patients with LUAD (36). The functional characterization
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FIGURE 6 | Curcumol-targeted genes involved in cell cycle and DNA damage of LUAD cell model A549. (A) The curcumol treatment (100µM) inhibited cell
proliferation of LUAD cell in a dose-dependent manner; N = 8 and three experiments. (B) The comparative transcriptomic analysis showed the differential gene
expression in LUAD cell caused by curcumol treatment (100µM). Genes with a 1.5 < fold change (treatment/control) < 0.75 and –log10 (q-value) > 1.3 were
considered as DEGs. Blue dots represented downregulated genes and red dots represented upregulated genes. (C) The GO enrichment analysis highlighted the
importance of curcumol-dysregulated genes in cell cycle, DNA damage, and cell apoptosis of LUAD cell. The size of bubble represented the number of DEGs involved
in the processes, the color of bubble represented the significance of the processes. (D) Gene networking of IPA highlighted the involvement of DEGs in cell cycle and
DNA damage response. Red color represented the upregulated genes, green color represented downregulated genes. Orange represented the predicted activated
molecules and blue color represented the predicted inhibited molecules in the signaling. * represented p < 0.05, as compared to control group.

further highlighted the involvement of CCNB2 in inducing cell
cycle arrest and apoptosis in LUAD cells (37). Moreover, the
high levels of CCNB2 activate inflammation-induced motility
in LUAD (38). Additionally, a study by Ma et al. revealed
that knockdown of CCNB2 suppressed proliferation of the
LUAD cell line (39). In addition to cyclin B members, our
results show that cyclin E members, such as CCNE1 and
CCNE2, are also targeted by curcumol; CCNE1 plays a role in

progression, cell proliferation, and cell cycle arrest of lung cancer
cells (40–42).

Using molecular docking, we found that curcumol binds
directly to a group of kinases, including CDK1, TTK, and Aurora
kinase A (AURKA). AURKA, a cell cycle kinase, is associated with
many cancer types (43). An in vitro study of human LUAD cell
lines demonstrated that AURKA plays an important role in the
proliferation of LUAD cells, through the regulation of multiple
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TABLE 2 | Highlighted IPA canonical pathways.

Ingenuity canonical pathways –log (p-value) Gene symbol

Kinetochore metaphase signaling pathway 1.61E+01 AURKB,BUB1B,CDCA8,CDK1,CENPK,CENPL,CENPO,H2AC18/H2AC19,KIF2C,KNL1,
KNTC1,MASTL,NUF2,PMF1/PMF1-BGLAP,PPP1R14A,SKA1,SPC25, STAG3,TTK,ZWINT

Cell cycle control of chromosomal replication 4.89E+00 CDC45,CDC6,CDK1,MCM2,MCM5,ORC1,TOP2A

Role of BRCA1 in DNA damage response 3.04E+00 BLM,BRCA2,BRIP1,E2F7,FAAP24,RFC4

Tumor microenvironment pathway 3.00E+00 CCL2,COL1A1,COL1A2,COL3A1,CSPG4,FGF14,MMP1, MMP17,MMP28

NER (Nucleotide Excision Repair, Enhanced Pathway) 1.82E+00 CHAF1B,GTF2H4,POLD3,RFC4,TOP2A

Mismatch repair in eukaryotes 1.68E+00 EXO1,RFC4

Cyclins and cell cycle regulation 1.51E+00 CDK1,E2F7,HDAC10,SUV39H1

Role of CHK proteins in cell cycle checkpoint control 1.34E+00 CDK1,E2F7,RFC4

downstream effectors, such as RAF-1, CCND2, CCND3, CDK4,
PAK4, and EGFR (44). In addition to its function as a cell cycle
kinase, AURKA is considered as an inhibitor which prevents
the chromatin assembly of functional replisomes, leading to
sensitization of cancer cells to combination therapy (45).
Further functional characterization studies of AURKA report
that AURKA suppression enhances the radiosensitivity of lung
cancer and its response to EGFR inhibitors (46, 47). In addition,
the downregulating AURKA inhibits docetaxel chemoresistance
in LUAD (48), suggesting that AURKA is a promising target
for LUAD therapy. Many studies have also demonstrated the
autoimmune and inflammatory roles of AURKA via regulation
of M1 macrophage polarization (49, 50).

Our results showed that the curcumol targets the other cell
cycle gatekeeper kinases, such as cyclin-dependent kinase 1
(CDK1); CDK1 is a potential prognostic biomarker of/and target
for lung cancer (51); CDK1 activity is critical for JAK/STAT3
signaling activation, and the inhibition of CDK1 can suppress
lung cancer (52). In addition, an in vitro study of LUAD cells
showed that reduced CDK1 activity led to cell cycle arrest and
promotion of apoptosis in LUAD (53, 54). CDK1 controls many
effectors involved in cell cycle regulation, such as FOXM1,
TRAP1, and GCN1 (55–57). Furthermore, CDK1 plays a role
in the DNA damage response. For example, CDK1 ensures
optimal Fun30 phosphorylation and checkpoint activation at
DNA double-strand breaks and plays an important role in
the DNA damage response by preventing the formation of
lagging chromosomes (58, 59). Also, CDK1 ensures accurate
chromosomal segregation via the activity of acetyltransferase
TIP60 and chromatin remodeller RSF1 (60, 61). Cumulative
studies have reported that DNA damage is associated with higher
mortality in patients with COVID-19 (62). Kinase threonine
tyrosine kinase (TTK) is a critical component of the spindle
assembly checkpoint (63). Also, TTK is a biomarker for prognosis
of Non-small cell lung cancer (64), and the upregulation of
TTK increases the cancer progression in lung cancer (65).
In addition, the TTK antagonism has marked antineoplastic
effects against LUAD (66). The targeting of CDK1 and TTK
by curcomol provides an opportunity to treat patients with
LUAD and COVID-19. The results were further validated by
using comparative transcriptomic analysis on LUAD cell. The
treatment of curcumol could inhibited cell proliferation of LUAD
through its control on cell cycle and DNA damage response.

CONCLUSIONS

In conclusion, we identified the pharmacological targets and
the therapeutic mechanisms of curcumol in the treatment
of COVID-19 and LUAD, including immune response, DNA
damage response, and cell cycle arrest, and regulation of cell-
signaling pathways such as the p53 signaling pathway, FoxO
signaling pathway, and PI3K-Akt signaling pathway. The results
were further supported by the comparative transcriptomic
analysis on in vitro LUAD cell, suggesting that curcumol has
potential for treating patients with LUAD and COVID-19.
However, further Pre-clinical study is needed to warrant the
findings of the present study before the clinical use.
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