

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Synthesis and structure-activity relationship study of new biaryl amide derivatives and their inhibitory effects against hepatitis C virus

Yonghua Liu, Jianrui Li, Yuxi Gu, Ling Ma, Shan Cen*, Zonggen Peng**, Laixing Hu***
Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China

A R T I C L E I N F O

Article history:

Received 27 September 2020
Received in revised form
12 November 2020
Accepted 28 November 2021
Available online 1 December 2021

Keywords:

HCV
Biaryl amide
Structure-activity relationship
Pharmacokinetics
Nitro group
hA3G

Abstract

A series of novel biaryl amide derivatives were synthesized and evaluated for anti-HCV virus activity. Some significant SARs were uncovered. The intensive structural modifications led to fifteen novel compounds with more potent inhibitory activity compared to the hit compounds IMB 26 and IMB1f. Among them, compound $\mathbf{8 0}$ was the most active, with EC_{50} values almost equivalent to the clinical drug telaprevir $\left(\mathrm{EC}_{50}=15 \mathrm{nM}\right)$. Furthermore, it also had a good safety and in vitro and oral pharmacokinetic (oral bioavailability in rats: 34%) profile, suggesting a highly drug-like nature. Compound $\mathbf{8 0}$ represents a more promising scaffold for anti-HCV virus activity for further study.

© 2021 Published by Elsevier Masson SAS.

1. Introduction

Hepatitis C virus (HCV) infection seriously threatens global health, with approximately 170 million individuals infected and causing up to 350,000 related deaths per year worldwide [1,2]. HCV infection is an insidious disease, and the early stages of infection are largely asymptomatic such that most are unaware of their infection. HCV-infected people are at high risk for developing chronic liver disease, cirrhosis, and hepatocellular carcinoma [3]. As many as $50-80 \%$ of patients newly infected with HCV develop chronic infection; of those chronically infected individuals, approximately 30% progress to liver cirrhosis, and up to 4% will go on to develop life-threatening hepatocellular carcinoma and end-stage liver disease $[2,4]$. The combination of pegylatedinterferon (PEG-IFN) with ribavirin is the conventional treatment for HCV infection, which requires $24-48$ weeks and causes frequent, sometimes severe, side

[^0]effects. Moreover, the regimen is only effective in the range of one half to two-thirds of persons treated, depending on clinical stage and genotype [5]. The recent approval of several small-molecule direct-acting antiviral (DAA) therapies for HCV infection has dramatically improved the standard of care for HCV. These drugs target viral proteins (NS3/4 A protease, NS5B polymerase, and NS5A) involved in the replication stage of HCV infection [6]. For example, Epclusa: a combination of sofosbuvir (a nucleotide analog inhibitor of HCV NS5B polymerase) with velpatasvir (NS5A inhibitor), is the backbone of the first oral, pangenotype, single-tablet regimen for the treatment of adults with genotype 1-6 chronic HCV infection [7]. Two newly approved combination hepatitis C drugs (Zepatier: elbasvir + grazoprevir and Viekira and PaK: ombitasvir + paritaprevir + ritonavir + dasabuvir) have demonstrated improved safety and efficacy for treating genotype 1 or 4 HCV-infected persons [8]. Although these treatments offer renewed hope toward curing HCV infection, the issues of drug resistance, narrow genotype specificity, lack of vaccines, and high cost remain [9-12]. It is still imperative to develop new anti-HCV agents, especially those with novel mechanisms of action (MOAs) and new molecular structures.

Many compounds with biaryl amide moieties have been studied continuously because of their diverse roles in biological functions and diseases, such as viral infection [13], bacterial infection [14], diabetes [15], spinal muscular atrophy [16], human African
trypanosomiasis [17] and cancers [18-22]. As shown in Fig. 1, ML336 was found to inhibit potently several Venezuelan equine encephalitis viruses in the low nanomolar range without cytotoxicity [13]. Compound $\mathbf{2}$ was found to have antibiofilm activity as an adjuvant that enhances the susceptibility of drug-resistant strains of bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, to meropenem [14]. Compound $\mathbf{3}$ showed potent activity in ex vivo diabetic retinopathy models as a new class of selective Rho kinase inhibitors [15]. SCYX-7158 was used to treat human African trypanosomiasis(HAT) and has begun human clinical trials [17]. Compounds $\mathbf{5 - 9}$ show effective anticancer activities. Compound 5inhibited autotoxin-dependent invasion of A2058 human melanoma cells in vitro and reduced B16 melanoma metastasis in vivo [18]. Compound $\mathbf{8}$ was found to be an efficacious RAF protein inhibitor targeting RAS mutant cancer [21]. Compound 9 (Ponatinib) is an orally active multitargeted kinase inhibitor and has been approved to treat chronic myeloid leukemia by the FDA [22].

Human APOBEC3G (apolipoprotein B messenger RNA [mRNA]editing enzyme catalytic polypeptide-like 3G, hA3G) is a cytidine deaminase and belongs to the APOBEC superfamily. Accumulated evidence shows that hA3G in human T lymphocytes represents an innate immunity factor that displays broad-spectrum antiviral activity, including inhibiting human immunodeficiency virus type 1(HIV-1) [23-26], hepatitis B virus (HBV) [27], HCV [28,29], paramyxovirus [30], enterovirus 71(EV71) [31,32], and T-cell leukemia virus type 1 (HTLV-1) [33]. In continuation of our research on antiviral drugs, some biaryl amid ederivatives were found to display significant anti-HIV-1, anti-HCV, and anti-EV17 activities (Fig. 2). An antiviral mechanism study demonstrated that IMB-26, as an hA3G stabilizer, directly binds to the hA3G protein and infectively protects hA3G from Vif-mediated degradation and inhibits HIV-1 viral replication [23]. IMB-1f, as an analog of IMB-26, inhibited hepatitis C virus replication [29,31]. IMB-Z was found to increase hA3G encapsidation into EV17 progeny virion particles and to inhibit EV17 replication [32]. In addition, Young et al. reported that biaryl amide derivative 10, as a small molecule inhibitor of microRNA miR-122, can reduce HCV RNA levels [34]. Since these biaryl amide derivatives target host innate components (hA3G is an innate immunity factor, and microRNA miR-122 is a human liver-
specific miRNA), the virus will most likely not be able to develop resistance to these molecules. Therefore, biaryl amide derivatives could be a new class of broad spectrum antiviral agents that merit exploration.

Here, we synthesized a series of new N-aryl benzamide analogs by changing R_{1}, R_{2}, and R_{3} (Fig. 2) and evaluated their ability to inhibit hepatitis C virus replication in acutely infected Huh7.5 cells. The medicinal chemistry effort led to the discovery of more potent new lead compounds of anti-HCV 68, 78, and 80, which exhibited strong anti-HCV activity comparable to the clinical drug VX950 $\left(\mathrm{EC}_{50}=0.015-0.083 \mu \mathrm{M}\right)$. More importantly, a novel pharmacophore of N-aryl-(3-nitro-4-alkoxy)benzamide against HCV infection was revealed by structure-activity relationship (SAR) analysis. The physicochemical and ADME properties of compound $\mathbf{8 0}$ were evaluated. The primary study of some compounds inhibiting Vifmediated hA3G degradation progressed.

2. Results and discussion

2.1. Chemistry

The synthesis of compounds $\mathbf{1 3}$ (IMB-1f) and $\mathbf{1 4}$ was performed according to a previously reported method (Scheme 1) [31]. Hydrogenation of the nitro group followed by amide coupling reaction with propanoyl chloride furnished compounds 13 and 14, respectively. Compounds $\mathbf{1 6 - 2 0}$ were obtained by amide coupling reaction between various substituted anilines and benzoic acid derivative 15, which was obtained by a selective amide coupling reaction between 4-methoxy-3-aminobenzoic acid and propanoyl chloride.

Compounds 22-35 were obtained as depicted in Scheme 2. 4-hydroxy-3-nitrobenzoic acid acted as a starting compound through an amide coupling reaction with 4-methoxy aniline to afford intermediate 21, which was reacted with various desired alkyl bromides by nucleophilic substitution to afford corresponding nitro intermediates 22-25. Hydrogenation of the nitro group offered corresponding amino derivatives $29-32$, which were then reacted with propanoyl chloride to give final products 36-39. Compound 25 was reacted with various secondary amines in the presence of potassium carbonate to afford corresponding nitro

1 (ML336)

7 (DC-S100)

2

5

8 (RAF709)

3

6

9 (Ponatinib)

Fig. 1. Representative biaryl amide derivatives.

Fig. 2. Indicated structural modifications of IMB-26.

Scheme 1. Synthesis of compounds 14 and $\mathbf{1 6 - 2 0}$. Reagents and conditions: (i) various substituted anilines, $\mathrm{EDCI}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{rt}, 8 \mathrm{~h}$; (ii) a. $\mathrm{H}_{2}(30 \mathrm{psi}), \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} / \mathrm{EtOAc}(1: 1)$, $\mathrm{rt}, 2 \mathrm{~h}$; b. propanoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 3-5 \mathrm{~h}$.
compounds 26-28. Hydrogenation of the nitro group offered corresponding amino intermediates $33-35$, which were reacted with propanoyl chloride to give final products 40-42.

Compound 45 was synthesized through a 4-step reaction, including two amide coupling reactions, an intramolecular nucleophilic substitution, and a hydrolysis reaction. Using methyl 3,4-dihydro-2H-benzo [1,4]oxazine-6-carboxylate as the starting compound, compound 48 was synthesized through hydrolysis reactions and an amide coupling reaction (Scheme 3).

Compounds 50-57 were obtained as depicted in Scheme 4. Starting from methyl 4-hydroxy-3-nitrobenzoate, a nucleophilic substitution reaction with 2 -bromo propane and subsequent hydrolysis reaction under basic conditions afforded 49, which was
coupled with substituted anilines to afford corresponding nitro compounds 50 and 51. Reduction of the nitro group with palladium-catalyzed hydrogenation offered corresponding amino derivatives 52 and 53. Compounds 52 and 53 were reacted with propanoyl chloride or 2-bromo propanoyl chloride in the presence of $E t_{3} \mathrm{~N}$ to give products $54,56,55$, and 57 , respectively.

Compounds 60-70 were obtained according to the synthetic route depicted in Scheme 5. Starting from various R_{2}-substituted methyl 4-hydroxy benzoate analogs 58a-e, a nucleophilic substituted reaction with 1-bromo-3-chloropropane and subsequent hydrolysis reaction yielded the corresponding benzoic acid derivatives 59a-e. Compounds 59a-e were coupled with 3-trifluoromethyl-4-(4-methylpiperazin-1-yl)-aniline in the

Scheme 2. Synthesis of compounds 36-42. Reagents and conditions: (i) a. 4-methoxy anilines, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}$, rt, 6 h . (ii) a. various alkyl alcohols, PPh 3 , $\mathrm{DEAD}, \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 10 \mathrm{~h}$ (afforded corresponding compounds $\mathbf{2 2 - 2 5}$); b. secondary amines, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 4 \mathrm{~h}$ (afforded corresponding compounds $\mathbf{2 6}$ - $\mathbf{2 8}$ from compound $\mathbf{2 5}$). (iii) H_{2} (30 psi), Pd / C, $\mathrm{MeOH} / \mathrm{EtOAc}(1: 1)$, rt, $1.5-3 \mathrm{~h}$ (iv)propanoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}-\mathrm{rt}, 3 \mathrm{~h}$.

Scheme 3. Synthesis of compounds $\mathbf{4 5}$ and 48. Reagents and conditions: (i) 2-bromoacetyl bromide, $\mathrm{NaHCO}_{3}, \mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(1: 1)$, rt, 12 h. (ii) $\mathrm{K}_{2} \mathrm{CO} 3, \mathrm{DMF}, 80{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$ (iii) a. $\mathrm{NaOH}, \mathrm{H} 2 \mathrm{O} /$ MeOH (1:2), reflux, 3 h ; b. 4-methoxyaniline, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 6 h . (iv) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, $\mathrm{CH}_{3} \mathrm{CN}$, rt. (v) $30 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 3 \mathrm{~h}$.

Scheme 4. Synthesis of compounds $\mathbf{5 0 - 5 7}$. Reagents and conditions: (i) a. 2-Bromo propane, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{NaI}, \mathrm{DMF}, 65^{\circ} \mathrm{C}, 5 \mathrm{~h}$; b. LiOH, MeOH/THF (1:1), $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$. (ii) substituted anilines, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 6 \mathrm{~h}$; (iii) $\mathrm{H}_{2}(30 \mathrm{psi}), \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} / \mathrm{EtOAc}(1: 1)$, rt, 2 h ; (iv) propanoyl chloride or 2-bromopropanoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 3 \mathrm{~h}$.
presence of EDCI and DMAP to afford the corresponding amide derivatives 60-64. Reduction of the nitro compound 60 via palladium-catalyzed hydrogenation offered the corresponding
amino product 65, which was reacted with propanoyl chloride to give the desired product 66. Compound 58a was reacted with different brominated alkanes and subsequently hydrolyzed to give

Scheme 5. Synthesis of compounds 60-70. Reagents and conditions: (i) a. 1-bromo-3-chloropropane (1-bromo-2-chloroethane for 67a; 1-bromo-4-chlorobutane for 67b; 1 -bromo-5-chloropentane for 67 c), $\mathrm{K}_{2} \mathrm{CO}_{3}$, NaI, DMF, $65^{\circ} \mathrm{C}, 5 \mathrm{~h}$; b. LiOH, MeOH/THF ($1: 1$), $0^{\circ} \mathrm{C}$, 1 h . (ii) 3-trifluoromethyl-4-(4-methylpiperazin-1-yl)-aniline, EDCI, DMAP, CH ${ }_{2} \mathrm{Cl}_{2}$, rt, 6 h (iii) $\mathrm{H}_{2}(30 \mathrm{psi}), \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} / \mathrm{EtOAc}(1: 1)$, rt, 3 h . (iv) Propanoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 3 \mathrm{~h}$.
intermediates $\mathbf{6 7 a}-\mathbf{c}$, which were coupled with 3-trifluoromethyl-4-(4-methylpiperazin-1-yl)-aniline to give compounds 68-70.

Compounds 71-80 were prepared as described above through an amide coupling reaction between compound 59a or 67a and various substituted anilines (Scheme 6). The substituted anilines $\mathbf{8 3 a}-\mathbf{f}, \mathbf{8 6}$, and $\mathbf{8 8}$ that were not commercially available were readily synthesized by a short three-step sequence (Scheme 7). Briefly, the bromination of 2-trifluoromethyl-4-nitrotoluene with N -bromosuccinimide followed by a nucleophilic substituted
reaction with various appropriate second amines gave nitro derivatives 82a-f, which were hydrogenated by palladium-catalyzed hydrogenation reduction to afford corresponding amino derivatives 83a-f. Compound 88 was synthesized by a nucleophilic substituted reaction followed by a reduction of the nitro group.
2.2. SAR analysis for anti-HCV activity in vitro

All analogs were screened for inhibition of HCV RNA replication

76

77

78
79

Scheme 6. Synthesis of compounds $\mathbf{7 1 - 8 0}$. Reagents and conditions: (i) a. various substituted anilines, $\mathrm{EDCI}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl} 2, \mathrm{rt}, 6 \mathrm{~h}$; $\mathrm{b} . \mathrm{LiOH}, \mathrm{MeOH} / \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}$, for compound $\mathbf{3 9}$.

Scheme 7. Synthesis of compounds 83a-f, 86, and 88. Reagents and conditions: (i) NBS, AIBN, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux for 12 h ; (ii) substituted second amine, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{NaI}, \mathrm{DMF}, 65{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (iii) H_{2} (14-30 psi), Pd/C, MeOH/EtOAc (1:1), rt, 3-24 h.
in Huh7.5 cells infected with virus J6/JFH/JC-1(recombinant HCV genotype 2a). In the HCVcc (a cell culture system for HCV) system, Huh7.5 cells were infected with HCV vital stock ($45 \mathrm{IU} /$ cell) and treated simultaneously with test compounds or the positive control telaprevir (VX-950) and simeprevir (SIM). Total intracellular HCV RNA was extracted and quantified with one-step qRT-PCR. The cytotoxicity was determined using MTT assay. The EC_{50} and CC_{50} values were calculated with the Reed and Muench method.

Among the 43 novel synthesized compounds summarized in Table 1-4, twenty-three compounds showed higher potent activity against HCV than IMB-1f (IC_{50} : $<1.31 \mu \mathrm{M}$). Six compounds showed strong anti-HCV activities ($\mathrm{IC}_{50}: 0.015-0.083 \mu \mathrm{M}$) and high selectivity indices (SI: 113-431). Compound $\mathbf{8 0}$ showed the highest activity comparable to the positive control VX-950 (80: $\mathrm{EC}_{50}=0.015 \mu \mathrm{M}$ vs. VX-950: $\left.\mathrm{EC}_{50}=0.022 \mu \mathrm{M}\right)$. Most compounds displayed suitable values of physicochemical parameters, such as the calculated $\log P(c \log P<5)$ and topological polar surface area (tPSA between 50 and $100 \AA$), and could have good bioavailability and drug-like features [35,36].

As shown in Fig. 2, the structural elements of $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} were first investigated during the SAR study. In a previous report, $4-\mathrm{OCH}_{3}$ in the A ring was considered to be important for antiviral activity, and replacement of the α-bromocarbonyl group with a propionyl group led to lower cytotoxicity [29,31]. Therefore, we first fixed R_{2} as a propionamino group and R_{3} as a methyl group and varied the
R_{1} moiety. Compounds $\mathbf{1 4}$ and $\mathbf{1 6 - 2 0}$ were synthesized to probe the effect of R_{1} moieties on anti-HCV activity. As shown in Table 1, compound 18 with a 4-(4-methylpiperazin-1-yl)-methyl-3-trifluoromethyl-phenyl group, which is an important part of ponatinib, a clinical antitumor drug with multitargeted tyrosinekinase inhibition, exhibited definitive anti-HCV activity similar to the reported compounds, IMB-26 and 13 (IMB-1f), with selectively index (SI) values higher than 20 and EC_{50} values lower than $1.5 \mu \mathrm{M}$. Compounds 14, 19, and 20 showed rather modest anti-HCV activity, but IS values were higher than those of IMB-26. Compounds 16 and 17 completely lost their antiviral activity. The SAR data pointed to the choice of the R_{1} moieties being crucial for high potency, which was not limited to lipophilic or hydrophilic groups but would need suitable volume and polarity distributions.

As compound 13 had a high SI value, we fixed R_{1} as a 4-methoxy phenyl group and R_{2} as a propionamino group and varied the R_{3} moiety to synthesize compounds $\mathbf{3 6} \mathbf{- 4 2}$ (Table 2). Replacing the methyl group in the R_{3} moiety with ethyl or propanyl groups, as shown in compounds $\mathbf{3 6}$ and 37, slightly decreased anti-HCV activities. Compound 38 with isopropyl substitution displayed higher anti-HCV activity and SI value than IMB-26 and compound 13. Introduction of the 3 -chloro group in compound 37, as shown in compound 39, retained partial antiviral activities. Installation of bimethylamino, 4-methyl piperizin-1-yl, or morpholinyl hydrophilic moieties on the head of $\mathrm{R}_{3}(40,41$, and 42) resulted in

Table 1
SAR exploration focused on the R_{1} moieties.

Compd.	Structure of R_{1}	$\mathrm{CC}_{50}(\mu \mathrm{M})$	$\mathrm{EC}_{50}(\mu \mathrm{M})$	SI	ClogP	tPSA
IMB 26		15 ± 1.1	2.1 ± 0.40	7	2.72	95.1
13 (IMB-1f)		109 ± 3.5	1.30 ± 0.24	84	2.01	76.7
14	-N	171	2.56 ± 1.24	66	2.13	70.7
16		>200	>22.2	1	1.86	73.9
17		>200	>22.2	1	2.15	73.9
18		35.3 ± 2.4	1.48 ± 0.72	24	3.46	73.9
19		65.6 ± 4.6	7.41 ± 2.03	9	5.38	79.5
20		>200	14.4	>14	-0.32	95.4
VX-950		23.7 ± 7.4	0.022 ± 0.008	1078	2.75	179.5
SIM		38.04 ± 4.02	0.008 ± 0.006	4755	1	1

Table 2
SAR exploration focused on the R_{3} Moieties.

Compd.	Structure of R_{3}	$\mathrm{CC}_{50}(\mu \mathrm{M})$	$\mathrm{EC}_{50}(\mu \mathrm{M})$	SI	ClogP	tPSA
36	入	73.15 ± 4.91	1.47 ± 0.23	48	2.54	76.6
37		106.2	1.55 ± 0.53	68	3.07	76.6
38		112.7 ± 21.4	1.10 ± 0.40	103	2.85	76.6
39	京	158.2	7.41 ± 1.31	21	3.80	76.6
40		153.78	>22.2	1	2.46	79.9
41		126.5	13.47	9.4	1.51	83.1
42		49.18 ± 7.84	>22.2	1	2.44	89.1
45		77.31 ± 2.10	7.46 ± 1.40	10	1.71	76.7
48		152.8	>22.2		2.53	59.6

significant activity loss. Cyclizing R_{2} and R_{3} moieties gave compounds 45 and 48 . Compound 45 retained partial antiviral activities, while $\mathbf{4 8}$ lost activity. The above results showed that the R_{3} position may be lipophilic required for anti-HCV activity, and the isopropyl moiety is the most advantageous group, as shown in Table 2.

Next, we investigated the importance of the R_{2} moiety for antiHCV activity. As shown in Table 3, because intermediates $\mathbf{1 2}$ and 24-26 with nitro groups in the R_{2} position showed modest inhibitory activity against HCV with EC_{50} values in the range of $2.39-8.96 \mu \mathrm{M}$, we synthesized two series of compounds ($\mathbf{5 0}-\mathbf{5 3}$ and 54-57) with four different R_{2} moieties and intensively
investigated the relationship between R_{2} moieties and anti-HCV activity. In the two series of compounds, compounds $\mathbf{5 0}$ and $\mathbf{5 4}$ with nitro groups displayed the most dominant anti-HCV activity ($\mathrm{EC}_{50}=0.095$ and $3.10 \mu \mathrm{M}$, respectively) in the four kinds of substituent derivatives, and the corresponding reduction products $\mathbf{5 1}$ and $\mathbf{5 5}$ showed the weakest activity. Compounds $\mathbf{5 2}, 53,56$, and 57 with amide groups in the R_{2} moiety showed moderate inhibitory activity. Compounds 53 and 57 with α-bromo propionyl groups displayed higher cytotoxicity than compounds 52 and 56 with propionyl groups, which was consistent with previous results [29]. Notably, compounds $\mathbf{5 4 - 5 7}$ exhibited higher potent activity than IMB 26 and compound 13 with EC_{50} values in the range of $0.09-1.32 \mu \mathrm{M}$, which means that the 4-(4-methylpiperazin-1-yl)-methyl-3-trifluoromethyl-phenyl group may be more dominant than the 4 -methoxy phenyl group in the anti-HCV activity. Compound $\mathbf{2 5}$ with a 3-chloropropyl group at the R_{3} position exhibited similar antiviral activity to compound $\mathbf{2 4}$ with an isopropyl group but possessed lower cytotoxicity. To obtain analogs with various structures and good solubility, compound $\mathbf{6 0}$ was synthesized. Compound $\mathbf{6 0}$ not only unexpectedly displayed the highest inhibitory activity ($\mathrm{EC}_{50}=0.044 \mu \mathrm{M}$) but also exhibited the highest SI value ($\mathrm{SI}=154$) among the above target compounds. Replacing the nitro group ($\mathbf{6 0}$) with a fluoro ($\mathbf{6 1}$), chloro ($\mathbf{6 2}$) trifluoromethyl (63) or sulfamoyl group (64) deteriorated the anti-HCV activity. Replacing the nitro group (60) with an amino or amido group (65 and 66) decreased the activity, which is consistent with the above two series of compounds $\mathbf{5 0}-\mathbf{5 3}$ and $\mathbf{5 4 - 5 7}$. These data indicate that the nitro group in the R_{2} fragment would be an advantage in the anti-HCV activity of these compounds. Decreasing the tether length by one $-\mathrm{CH}_{3}$ group in the R_{3} fragment ($\mathbf{6 8}$) retained similar activity as compound $\mathbf{6 0}$. Increasing the tether length by one or two $-\mathrm{CH}_{3}$ groups in the R_{3} fragment ($\mathbf{6 9}$ and 70, respectively) did not improve the potency but rather the cell toxicity.

Because of the dominance of the 4-(4-methylpiperazin-1-yl)-methyl-3-trifluoromethyl-phenyl group in the anti-HCV activity, novel analogs 71-79 were synthesized to explore further the structure-activity relationship (Table 4). Replacing the

Table 3
SAR exploration focused on the R_{1}, R_{2}, and R_{3} moieties.

Compd.	Structure			$\mathrm{CC}_{50}(\mu \mathrm{M})$	$\mathrm{EC}_{50}(\mu \mathrm{M})$	SI	ClogP	tPSA
	R_{1}	R_{2}	R_{3}					
12		NO_{2}	Me	88.2 ± 1.6	4.07 ± 1.63	22	2.82	93.4
24				23.4 ± 2.8	2.86 ± 1.80	8	3.44	99.4
25			Cl	39.7 ± 7.4	2.39 ± 2.08	17	3.52	99.4
26				126.5 ± 9.6	8.96 ± 3.57	14	3.05	102.6
50				50.0 ± 18.4	3.10 ± 0.17	16	3.66	93.4
51		NH_{2}		72.1 ± 9.2	7.41 ± 2.23	10	2.99	67.6
52		$\mathrm{NHCOCH}_{2} \mathrm{CH}_{3}$		80.6 ± 20.7	6.03 ± 1.74	13	2.96	70.7
53		$\mathrm{NHCOCHBrCH}_{3}$		7.9 ± 0.9	4.34 ± 0.86	2	3.72	70.7
54		NO_{2}		3.5 ± 0.3	0.095 ± 0.021	39	4.70	96.6
55		NH_{2}		21.6 ± 2.3	1.32 ± 0.22	16	4.32	70.8
56		$\mathrm{NHCOCH}_{2} \mathrm{CH}_{3}$		15.3 ± 0.7	0.30 ± 0.04	51	4.30	73.9
57		$\mathrm{NHCOCHBrCH}_{3}$		8.7 ± 1.2	0.32 ± 0.04	27	5.05	73.9
60		NO_{2}	Cl	6.8 ± 0.07	0.044 ± 0.014	154	4.91	96.6
61		F		8.8 ± 1.2	0.49 ± 0.25	18.9	5.33	44.8
62		Cl		4.1 ± 1.3	0.58 ± 0.35	7.0	5.89	44.8
63		CF_{3}		13.4 ± 0.97	0.13 ± 0.02	99.6	6.28	44.8
64		$\mathrm{SO}_{2} \mathrm{NH}_{2}$		5.47 ± 2.92	1.14 ± 0.56	6.2	3.31	104.9
65		NH_{2}		12.9 ± 1.75	1.18 ± 0.53	10.9	4.52	70.8
66		$\mathrm{NHCOCH}_{2} \mathrm{CH}_{3}$		7.87 ± 0.54	0.22 ± 0.18	36.3	4.38	73.9
68		NO_{2}	$\mathrm{Cl} \sim$	$\mathbf{9 . 0 4} \pm \mathbf{2 . 0 2}$	$\mathbf{0 . 0 4 4} \pm 0.002$	204	4.58	96.6
69			C-	3.74 ± 0.61	0.100 ± 0.095	37	5.28	96.6
70			C-	2.14 ± 0.65	0.060 ± 0.011	36	5.81	96.6

trifluoromethyl group in the B ring with a cyano group afforded less potent activity, as shown in compounds 60 and 71. Replacing 4-methylpiperazin-1-yl with 4-(dimethylamino)piperidinyl afforded a less potent analog, as shown in compounds $\mathbf{6 0}$ and $\mathbf{7 2}$. However, the introduction of smaller substitutions, such as 4-(dimethylamino)cyclopentylamino and 3-(dimethylamino)azetidin-1-yl groups, as shown in compounds 73 and 74, restored and even increased anti-HCV activity. Replacing the N, N-dimethyl group in compound $\mathbf{7 4}$ with a carboxy group resulted in a distinct loss of activity (75). Introduction of morpholinyl and dimethyl-substituted morpholinyl groups, as in 76 and 77, compared to compound 60, led to 3-6-fold decreased activity. Introduction of 4-(4-methylpiperazin-1-yl)-methyl-pyridin-3-yl group, as shown in compound 78, led to dropped potency of only 2 -fold (compared 78 to 60, Table 4), showing that the pyridine-3-yl moiety was tolerated in the place of 3-trifluoromethyl-phenyl. Replacing the (4-methylpiperazin-1-yl)-methyl group (78) with 4methylpiperidinyl (79) led to 8 -fold decreased potency. Compound $\mathbf{8 0}$ with a 3 -(dimethylamino)azetidin-1-yl group in the R_{1} fragment and a 2-chloroethyl group in the R_{3} fragment displayed the highest activity ($\mathrm{EC}_{50}=0.015 \mu \mathrm{M}$) and SI value $(\mathrm{SI}=431)$ among all synthesized novel target compounds.

2.3. Safety assessment of compound 80

Because compounds $\mathbf{6 0}$ and $\mathbf{8 0}$ showed strong anti-HCV activities (EC_{50} : 0.044 and $0.015 \mu \mathrm{M}$) and high selectivity indices (SI: 154 and 431), we chose compounds $\mathbf{6 0}$ and $\mathbf{8 0}$ to investigate their safety profiles. Acute toxicity tests of compounds $\mathbf{6 0}$ and $\mathbf{8 0}$ were performed in KunMing mice. Each compound was given
intraperitoneally in a single-dosing experiment at $50,100,150$, or $200 \mathrm{mg} / \mathrm{kg}$ ($\mathrm{n}=6$ per group). The mice were closely monitored for 7 days. Compound $\mathbf{6 0}$ displayed low safety profiles with median lethal dose $\left(\mathrm{LD}_{50}\right)$ values lower than $100 \mathrm{mg} / \mathrm{kg}$. Compound $\mathbf{8 0}$ demonstrated modest safety profiles with LD_{50} values higher than $150 \mathrm{mg} / \mathrm{kg}$. The results suggested that compound $\mathbf{8 0}$ was relatively safe in vivo.

2.4. In vitro pharmacokinetic property assessments of compound 80

Compound $\mathbf{8 0}$ showed the highest activity among all synthesized novel compounds and low toxicity. While compound $\mathbf{8 0}$ has poor solubility in water ($<5 \mu \mathrm{~g} / \mathrm{mL}$), the aqueous solubility of the corresponding hydrochloride salt was improved to $7.8 \mathrm{mg} / \mathrm{mL}$ (at pH 7.0). Thus, compound $\mathbf{8 0}$ was further profiled in four assays to assess in vitro drug-like properties: logD, microsomal stability, cell permeability and plasma stability (Table 5). Compound $\mathbf{8 0}$ showed decent plasma stability ($\mathrm{t}_{1 / 2}$, rat $=16.9 \mathrm{~h}$ and $\mathrm{t}_{1 / 2, \text { human }}=19.9 \mathrm{~h}$), which could ensure that a high concentration of the compound reached the bloodstream. Compound $\mathbf{8 0}$ showed moderate permeability ($0.5<\mathrm{P}_{\mathrm{app}}<2.5\left(\times 10^{-6} \mathrm{~cm} / \mathrm{s}\right)$) and was likely an efflux transporter substrate based on Caco-2 assays. In data from HLM/RLM, it appeared that compound $\mathbf{8 0}$ had low to medium metabolic stability based on liver microsome assays.

2.5. In vivo pharmacokinetic property assessments of compound 80

Given its favorable in vitro ADME profile, the in vivo pharmacokinetics of compound $\mathbf{8 0}$ were evaluated in a rat (SpragueDawley) model after a single dose of $2 \mathrm{mg} / \mathrm{kg}$ through the

Table 4
SAR exploration focused on the R_{1} fragments.

Compd.	Structure			$\mathrm{CC}_{50}(\mu \mathrm{M})$	$\mathrm{EC}_{50}(\mu \mathrm{M})$	SI	cLog	tPSA
	R_{1}	R_{2}	R_{3}					
71		NO_{2}	$\sim_{c l}$	15.5 ± 11.1	0.65 ± 0.057	23	3.74	120.4
72		NO_{2}	Cl	5.5 ± 2.5	0.38 ± 0.13	14	4.32	96.6
73		NO_{2}		5.8 ± 0.77	0.051 ± 0.042	113	4.76	96.6
74		NO_{2}	$\widehat{c l}$	7.8 ± 0.57	0.021 ± 0.005	371	5.20	96.6
75		NO_{2}	cl	>200	4.72 ± 2.49	>42	2.12	124.7
76		NO_{2}		6.1 ± 1.7	0.315 ± 0.380	19.3	4.34	102.6
77		NO_{2}		2.3 ± 0.54	0.174 ± 0.115	13.3	5.38	102.6
78		NO_{2}	$\mathrm{Cl}^{\text {coser }}$	12.6 ± 1.2	0.083 ± 0.029	151.4	2.90	103
79		NO_{2}	Cl	9.2 ± 1.1	0.64 ± 0.377	14.4	4.50	99.75
80		NO_{2}		6.47 ± 1.05	0.015 ± 0.005	431	4.87	96.6

Table 5
Solubility data and ADME for Compound 80.

Compd	$\operatorname{logD} 7.4^{\text {a }}$	Solubility of hydrochloride ($\mathrm{mg} / \mathrm{mL}$)	Caco2 AB ${ }^{\text {b }}$	Caco2 ER ${ }^{\text {c }}$	$\underline{\mathrm{T}_{1 / 2}(\mathrm{~h})^{\text {d }}}$			HLM/RLM ($\mu \mathrm{L} / \mathrm{min}$)/mg
					rat		human	
80	3.50	7.8	1.25	20.73	16.9	19.9		65.5/81.5

${ }^{\mathrm{e}} \mathrm{HLM} / \mathrm{RLM}:$ Human liver microsome intrinsic clearance, in ($\mu \mathrm{L} / \mathrm{min}$)/mg protein (high stability, <6.5; low stability, >35); Rat liver microsome intrinsic clearance, in ($\mu \mathrm{L} / \mathrm{min}$)/ mg protein (high stability, <15; low stability, >90).
a 1-octanol/buffer 7.4.
${ }^{\text {b }}$ Permeability coefficient, in $10^{-6} \mathrm{~cm} / \mathrm{s}$; low permeability: Papp $\leq 0.5(\times 10-6 \mathrm{~cm} / \mathrm{s})$; moderate permeability: $0.5<\mathrm{P}_{\text {app }}<2.5\left(\times 10^{-6} \mathrm{~cm} / \mathrm{s}\right)$; high permeability: Papp ≥ 2.5 ($\times 10-6 \mathrm{~cm} / \mathrm{s}$).
${ }^{c}$ Ratio of $\mathrm{BA} / \mathrm{AB}$ permeability coefficients.
${ }^{\mathrm{d}}$ Half-life in rat and human plasma.
intravenous (i.v.) route and $10 \mathrm{mg} / \mathrm{kg}$ via the oral route of administration (Fig. 3). The plasma profiles obtained from the pharmacokinetic experiments are shown in Table 6 and Fig. 3. The results indicated that compound $\mathbf{8 0}$ has satisfying PK properties with an oral total exposure (AUC) of $1502 \mathrm{ng} \mathrm{h} / \mathrm{mL}$, medium in vivo clearance ($38.3 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$), $C_{\max }$ of $452 \mathrm{ng} / \mathrm{mL}$, and moderate bioavailability of 34%. Considering that sustained exposure to PK in vivo should exceed at least several times the in vitro EC_{50} expected to be useful in human efficacy studies, we used $100 \mathrm{ng} / \mathrm{mL}$, equating to 10 -fold above the EC_{50} for HCV , as a minimum requirement efficacy concentration. At the $10 \mathrm{mg} / \mathrm{kg}$ dose, plasma concentrations remained above $100 \mathrm{ng} / \mathrm{mL}$ for over 4 h , indicating a modest stability to metabolism in vivo of this kind of compound.

2.6. Some compounds protecting hA3G from Vif-mediated degradation

Twenty-two compounds were subjected to a preliminary screening test to identify their inhibition of Vif-mediated hA3G degradation using our previously reported assay [23]. Briefly, 293T cells were cotransfected with the expression vectors for hA3G and Vif and then treated with $20 \mu \mathrm{M}$ test compounds and MG132, a well-known proteasome inhibitor, as a positive control. The results in Fig. 4 show that compared with that in the cells treated with DMSO, seven compounds (12, 13, 18, 19, 20, 40, and 41) were effective in inhibiting Vif-mediated hA3G degradation in this assay ($>50 \%$). Four compounds (17, 36, 37, and 45) displayed modest

Fig. 3. Exposure curves for compound $\mathbf{8 0}$ following oral and i. v. dosing in rat.

Table 6
Pharmacokinetic parameters of compound $\mathbf{8 0}$ in rat plasma after i.v. and p.o. administration. ${ }^{\text {a }}$.

parameter	unit	i.v. ${ }^{\text {b }}$	p.o. $^{\text {c }}$
AUC $_{0-\text { last }}$	$\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$	889 ± 179	1502 ± 342
AUC $_{0-\text { inf }}$	$\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$	898 ± 184	1525 ± 360
$\mathrm{MRT}_{0-\text { last }}$	h	1.36 ± 0.182	2.95 ± 0.276
$\mathrm{MRT}_{0-\mathrm{inf}}$	h	1.45 ± 0.211	3.10 ± 0.290
$\mathrm{C}_{\max }$	$\mathrm{ng} / \mathrm{mL}$	1	452 ± 149
$\mathrm{~T}_{1 / 2}$	h	1.24 ± 0.101	1.90 ± 0.492
$\mathrm{~T}_{\text {last }}$	h	8.00	12.0
$\mathrm{~T}_{\text {max }}$	h	1	1.00
$\mathrm{Vd}_{\text {ss }}$	L / kg	3.26 ± 0.426	
Cl^{l}	$\mathrm{mL} / \mathrm{min} / \mathrm{kg}$	38.3 ± 8.89	
$\mathrm{~F}^{\mathrm{d}}$	$\%$	34	

${ }^{a}$ PK parameters (mean \pm SD, $n=6$).
${ }^{\mathrm{b}}$ Dosed intravenously at $2 \mathrm{mg} / \mathrm{kg}$.
${ }^{\text {c }}$ Dosed orally at $10 \mathrm{mg} / \mathrm{kg}$.
${ }^{\mathrm{d}}$ Bioavailability (\%) was calculated using $100 \times\left(\mathrm{AUC}_{0-\mathrm{inf}}(\right.$ p.o. $) \times 2 \mathrm{mg} / \mathrm{kg} / \mathrm{AUC}_{0-\mathrm{inf}}$ (iv) $\times 10 \mathrm{mg} / \mathrm{kg}$).
activity ($25 \%-50 \%$). Eleven compounds showed weak activity $(<25 \%)$. According to the structure-action relationship, the amido group in the R_{2} moiety was superior in inhibiting Vif-mediated hA3G degradation, while nitro and amino groups were adverse (except compound 12). R_{1} and R_{3} moieties would be versatile and tolerant to hydrophobic or hydrophilic groups. Compounds 13 and 18 with propionyl moieties in the R_{2} moiety had good anti-HCV activity and simultaneously displayed potent inhibition of Vifmediated hA3G degradation. Compound 54 with a nitro group displayed excellent anti-HCV activity but poor inhibition of Vifmediated hA3G degradation. Since most nitro compounds displayed poor inhibition of Vif-mediated hA3G degradation, subsequent synthesized compounds were not evaluated for activity. The antiviral mechanism of these nitro compounds is still in process.

3. Conclusion

A series of novel biaryl amide derivatives were synthesized and
assayed for anti-HCV activity in vitro. Intensive structural modifications led to fifteen novel compounds with higher potent inhibitory activity than IMB 26 , especially compound $\mathbf{8 0}$, with EC_{50} values almost equivalent to those of the clinical drug telaprevir. Additionally, some significant SARs were uncovered. Among the structures of the anti-HCV compounds, R_{1} moieties are apt to be hydrophobic moieties (for example, an aromatic nucleus) through a methylene linked to hydrophilic moieties (for example, cyclic amine), R_{2} moieties should be a hydrogen bond acceptor (for example, a nitro group) and R_{3} moieties prefer to be hydrophobic moieties as requirements for anti-HCV activity. Such SARs provided valuable implications for further lead optimizations. Compound $\mathbf{1 8}$ showed comparable inhibitory activity against HCV to IMB-26 and moreover displayed effective inhibitory activity against Vifmediated hA3G degradation, although it possessed obviously different structures at the R_{1} position. Most compounds with nitro groups, however, displayed poor inhibition of Vif-mediated hA3G degradation. Compound $\mathbf{8 0}$ displayed the highest anti-HCV activity and SI value and possessed good physicochemical properties, making it a more promising scaffold for further study.

4. Experimental section

4.1. Chemistry

All reagents and solvents were purchased from commercial sources and used as obtained. All reactions were carried out in flamedried glassware and monitored by thin layer chromatography using aluminum TLC plate 60F254D (Merck Millipore) and visualized under UV light. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker 400 or a Varian Inova 500 or 600 NMR spectrometer. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent peak. The following notations are used: singlet (s); doublet (d); triplet (t); quartet (q); multiplet (m); broad (br). Data are reported in the following manner: chemical shift (multiplicity, coupling constant if appropriate, integration). Signals are quoted as δ values in ppm and coupling constants (J) are reported in Hertz. Using

Fig. 4. Compounds targeting the interface of the hA3G/Vif interaction.
residual protonated solvent signals as internal standard $\left({ }^{1} \mathrm{H}\right.$: $\delta\left(\mathrm{CHCl}_{3}\right)=7.26 \mathrm{ppm}, \delta\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right)=2.50 \mathrm{ppm}, \delta\left(\mathrm{CH}_{3} \mathrm{OH}\right)=3.31 \mathrm{ppm}$, $\delta\left(\mathrm{H}_{2} \mathrm{O}\right)=4.67 \mathrm{ppm} ;$ and ${ }^{13} \mathrm{C}: \delta\left(\mathrm{CHCl}_{3}\right)=77.16 \mathrm{ppm}$, $\left.\delta\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right)=39.52 \mathrm{ppm}, \delta\left(\mathrm{CH}_{3} \mathrm{OH}\right)=49.00 \mathrm{ppm}\right)$. Mass spectra were recorded on Micromass Q-ToF (ESI) spectrometer. HRMS data were measured using a Thermo LTQ Orbitrap XL mass spectrometer. Flash column chromatography was conducted using silica gel (Silicycle $40-64 \mu \mathrm{M})$.

General Procedure A: Coupling of 4-substituted-3-nitrobenzoic acid and various substituted anilines fragment. To a mixture of 4-substituted-3-nitrobenzoic acid, substituted anilines (1.0-1.2 equiv), DMAP (0.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5-4 \mathrm{~mL}$, ca. 0.05 M) was added N -ethyl- N^{\prime}-(3-dimethylaminopropyl)carbodiimide hydrochloride (2.0 equiv). The reaction was stirred at room temperature for 16 h . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by silica gel flash chromatography (eluents: $10-50 \%$ THF in petroleum ether) to offer the coupled nitro product in $78-93 \%$ yield.

General Procedure B: Hydrogenation of nitro compounds. The nitro compound (0.5 mmoL) was dissolved in ethyl acetate (5 mL), and methanol (5 mL) and $\mathrm{Pa} / \mathrm{C}(0.05 \mathrm{~g}, 10 \%$) was added. The resulting mixture was hydrogenated at hydrogen gas pressure of $14-35$ psi for $2.5-24 \mathrm{~h}$. The catalyst was removed by filtration and the filtrate was concentrated under vacuo to give amino derivatives, which was used in the next step without further purification.

General procedure C: Coupling of various substituted anilines and acyl chloride. Propionyl chloride (1.0 eq) was added dropwise to a solution of substituted aniline (1.0 mmoL) and TEA (1.5 mmoL) in dichloromethane at $0^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature until the starting material was completely disappeared. The reaction was quenched with water and extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and further purified by flash chromatography on silica gel (eluents: $1-10 \% \mathrm{MeOH}$ in dichloromethane with $\left.0.2 \% \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}\right)$ or $\mathrm{C}-18$ functionalized silica chromatography (eluents: $5-90 \% \mathrm{MeOH}$ in deionized water with $\left.0.5 \% \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}\right)$ to give the product.
N-(4-bimethylamino-phenyl)-3-nitro-4-methoxy-benzamide (12) 4-methoxy-3-nitrobenzoic acid ($0.197 \mathrm{~g}, 1.0 \mathrm{mmoL}$) and 4-dimethylamino-aniline ($0.136 \mathrm{~g}, 1.0 \mathrm{mmoL}$) were reacted according to general procedure A to afford $12(0.280 \mathrm{~g}$, yield $89 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), 4.01 (s, 3H), 2.93 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8$, 155.1, 148.3, 138.9, 133.4, 127.3, 126.9, 124.2, 122.3, 113.5, 112.8, 56.8, 40.7. ESI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$316.1292; found 316.1284.

4.1.1. N-(4-bimethylaminophenyl)-3-propionamido-4-methoxybenzamide (14)

Compound 12 ($0.157 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reduced according to general procedure B to afford N -(4-bimethylamino-phenyl)-3-amino-4-methoxy-benzamide, which was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound $14(0.136 \mathrm{~g}$, yield 80%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 3 \mathrm{H})$, 7.49 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 2.48(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.4, 164.9, 150.1, 148.1, 128.0, 127.8, 127.4, 124.5, 122.2, 116.9, 113.1, 110.0, 56.0, 41.0, 31.0, 9.6. ESI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$342.1812; found 342.1806.

4.1.2. 3-Propionamido-4-methoxy-benzoic acid (15)

4-methoxy-3-aminobenzoic acid (6.0 mmoL), propionyl chloride ($0.58 \mathrm{~mL}, 6.6 \mathrm{mmoL}$) and TEA ($1.26 \mathrm{~mL}, 9.0 \mathrm{mmoL})$ were reacted according to general procedure C to afford compound 15 (1.02 g , yield 76\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.59$ (br s, 1H), 9.13 (s, $1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. LC/MS (ESI, m / z): $222.1[\mathrm{M}-\mathrm{H}]^{+}$.

4.1.3. N-((4-(4-methylpiperazin-1-yl)phenyl)-3-propionamido-4-methoxy-benzamide (16)

Compound 15 ($0.223 \mathrm{~g}, 1.0 \mathrm{mmoL}$) and 4-(4-methylpiperazin-1yl)aniline ($0.191 \mathrm{~g}, 1.0 \mathrm{mmoL}$) were reacted according to general
procedure A to afford compound $16(0.278 \mathrm{~g}$, yield $70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.78$ (dd, $J=8.4,1.6, \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ (d, $J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93$ (d, J = 7.6 Hz, 2H), $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{~m}, 4 \mathrm{H})$, $2.49(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,164.8,150.0,148.1,130.5,127.2,124.5$, 121.7, 116.8, 116.5, 109.9, 55.9, 55.0, 49.3, 46.0, 30.9, 9.5. LC/MS (ESI, $\mathrm{m} / \mathrm{z}): 397.2[\mathrm{M}+\mathrm{H}]^{+}$.
4.1.4. N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-3-propionamido-4-methoxy-benzamide (17)

Compound 15 ($0.223 \mathrm{~g}, 1.0 \mathrm{mmoL}$) and 4-((4-methylpiperazin-$1-\mathrm{yl})$ methyl)aniline ($0.205 \mathrm{~g}, 1.0 \mathrm{mmoL}$) were reacted according to general procedure A to afford compound $17(0.298 \mathrm{~g}$, yield $73 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.89$ (s, 1H), 7.94 (br s, 1H), 7.82 (br s, 1H), 7.78 (dd, $J=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (dd, $J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.47$ (m, 10H), $2.29(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.4,165.1,150.3,137.1,134.3,127.5,124.7,120.2,117.0$, 110.1, 62.6, 56.1, 55.2, 53.2, 46.1, 31.1, 9.6. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$411.2391; found 411.2397.
4.1.5. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-propionamido-4-methoxy-benzamide (18)

Compound 15 ($0.223 \mathrm{~g}, 1.0 \mathrm{mmoL}$) and 4-((4-methylpiperazin1 -yl)methyl)-3-(trifluoromethyl)aniline ($0.273 \mathrm{~g}, 1.0 \mathrm{mmoL}$) were reacted according to general procedure A to afford compound 18 $\left(0.358 \mathrm{~g}\right.$, yield 75%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.89$ (br s, 1H), 8.19 (br s, 1H), 7.91 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 (m, 2H), 7.82 (dd, $J=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 1 H), 3.96 (s, 3H), 3.63 (s, 2H), 2.49 (m, 10H), 2.32 (s, 3H), 1.28 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,165.3,150.6$, 137.1, 131.3, 129.3 (q, $J=20.0 \mathrm{~Hz}$), 127.4, 127.0, 125.2, 125.0, 123.4, $123.3,117.8$ ($q, J=3.9 \mathrm{~Hz}$), 117.1, 110.3, 57.9, 56.1, 55.3, 53.2, 46.1, 31.1, 9.6. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+} 479.2265$; found 479.2267.
4.1.6. N-(4-(1H-indol-2-yl)phenyl)-3-propionamido-4-methoxybenzamide (19)

Compound 15 ($0.223 \mathrm{~g}, 1.0 \mathrm{mmoL}$) and 4-(1 H -indol-2-yl)aniline ($0.208 \mathrm{~g}, 1.0 \mathrm{mmoL}$) were reacted according to general procedure A to afford compound $19\left(0.338 \mathrm{~g}\right.$, yield 82%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.46$ (br s, 1H), 10.21 (br s, 1H), 9.19 (br s, 1H), 8.56 (br s, $1 \mathrm{H}), 7.86(\mathrm{~m}, 4 \mathrm{H}), 7.78(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, 1.09 (t, $J=5.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta 163.1,156.8$, 154.8, 139.0, 133.3, 130.5, 126.6, 124.2, 122.4, 114.3, 114.2, 71.4, 55.4, 22.2, 10.3. ESI-HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$414.1812; found 414.1805.
4.1.7. N -(3-mercapto-5-methyl-4H-1,2,4-triazol-4-yl)-3-propionamido-4-methoxy-benzamide (20)

Compound 15 ($0.223 \mathrm{~g}, 1.0 \mathrm{mmoL}$) and 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol ($0.130 \mathrm{~g}, 1.0 \mathrm{mmoL}$) were reacted according to general procedure A to afford compound $20(0.216 \mathrm{~g}$, yield $65 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97$ (br s, 1H), 7.74 (s, 2H), 6.96 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,169.6,165.4,151.9,149.5,128.0,127.4,124.2,122.5,109.7$, 56.2, 31.1, 10.9, 9.6. ESI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 358.0944; found 358.0936 .
4.1.8. N-(4-methoxyphenyl)-3-nitro-4-hydroxy-benzamide (21)

4-hydroxy-3-nitrobenzoic acid ($5.00 \mathrm{~g}, 27.3 \mathrm{mmoL}$) and 4-
methoxylaniline ($4.03 \mathrm{~g}, 32.8 \mathrm{mmoL}$) were reacted according to general procedure A to afford 21 (4.08 g , yield 52%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.6,1 \mathrm{H})$, $7.52(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$. LC/MS (ESI, m/z): $289.1[\mathrm{M}+\mathrm{H}]^{+}$.

4.1.9. N-(4-methoxyphenyl)-3-nitro-4-ethoxy-benzamide (22)

To a solution of compound $21(0.289 \mathrm{~g}, 1.0 \mathrm{mmoL})$ in tetrahydrofuran (8.0 mL) was added ethanol ($67 \mu \mathrm{~L}, 1.2 \mathrm{mmoL}$) and triphenylphosphine ($0.520 \mathrm{~g}, 2.0 \mathrm{mmoL}$). The mixture was cooled at $0{ }^{\circ} \mathrm{C}$ and Diethyl azodicarboxylate in toluene ($40 \%, 0.77 \mathrm{~mL}, 1.7$ mmoL) was added dropwise. The mixture was then stirred at room temperature until the starting material was completely disappeared. The reaction was quenched with water and extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and further purified by flash chromatography on silica gel to give $22(0.240 \mathrm{~g}, 76 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.27(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{t}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{4}$) $\delta 162.9,156.9,154.7,139.3,133.2,130.4$, 126.7, 124.1, 122.3, 114.3, 65.8, 55.5, 14.4. LC/MS (ESI, m / z): 317.1 $[\mathrm{M}+\mathrm{H}]^{+}$.
4.1.10. N-(4-methoxyphenyl)-3-propionamido-4-ethoxybenzamide (36)

Compound 22 (0.5 mmoL) was reduced according to general procedure B to afford 29, which was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound $36(0.145 \mathrm{~g}$, yield $85 \%) .{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.78$ (br s, 1H), 7.76 (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.97 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=14.0,7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{q}, J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,165.1$, $156.5,149.6,131.3,127.3,124.7,122.3,116.9,114.2,110.9,64.6,55.5$, 31.1, 14.8, 9.6. ESI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 343.1652$; found 343.1650.
4.1.11. N-(4-methoxyphenyl)-3-nitro-4-propoxy-benzamide (23)

Compound 21 was reacted with n -propanol ($90 \mu \mathrm{~L}, 1.2 \mathrm{mmoL}$) according to a method similar to that of compound 22 to afford 23 $(0.280 \mathrm{~g}, 85 \%) .{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d d_{6}) $\delta 8.30(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{dd}, J=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) δ 163.1, 156.8, 154.8, 139.0, 133.3, 130.5, 126.6, 124.2, 122.4, 114.3, 114.2, 71.4, 55.4, 22.2, 10.3. LC/MS (ESI, m/z): 331.1 [M + $\mathrm{H}]^{+}$.
4.1.12. N-(4-methoxyphenyl)-3-propionamido-4-propoxybenzamide (37)

Compound 23 ($0.165 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reduced according to general procedure B to afford 30 , which was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound 37 (0.145 g , yield 85%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.86(\mathrm{~s}, 1 \mathrm{H}), 7.78$ (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, $J=6.8,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=6.8$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,164.9,156.4,149.5,131.2,127.2,124.5$, 122.1, 116.7, 114.0, 110.8, 70.3, 55.4, 31.0, 22.3, 10.4, 9.5. ESI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$357.1809; found 357.1795.
4.1.13. N-(4-methoxyphenyl)-3-nitro-4-(isopropoxy)-benzamide (24)

Compound 21 was reacted with isopropanol ($93 \mu \mathrm{~L}, 1.2 \mathrm{mmoL}$) according to a method similar to that of compound 22 to afford 24 ($0.264 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27$ (s, 1H), 8.06 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2 H), 6.89 (dd, $J=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.44$ (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$). LC/MS (ESI, m / z): $331.1[\mathrm{M}+\mathrm{H}]^{+}$.
4.1.14. N-(4-methoxyphenyl)-3-propionamido-4-isopropoxybenzamide (38)

Compound 24 ($0.165 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reduced according to general procedure B to afford 31, which was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound 38 (0.128 g , yield 72%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.89$ (s, 1H), 7.87 (br s, 2H), 7.76 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (dd, $J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 2.48(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,165.0,156.3,148.4,131.2$, 127.0, 124.4, 122.2, 116.9, 114.0, 112.0, 71.5, 55.4, 30.9, 22.0, 9.5. ESIHRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$357.1809; found 357.1809.
4.1.15. N-(4-methoxyphenyl)-3-nitro-4-(3-chloropropoxy)benzamide (25)

Compound 21 was reacted with 3-chloropropanol ($0.10 \mathrm{~mL}, 1.2$ mmoL) according to a method similar to that of compound 22 to afford 25 ($0.316 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H})$, $8.22(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ ($\mathrm{s}, 5 \mathrm{H}$), $2.29(\mathrm{~m}, 2 \mathrm{H})$. LC/MS (ESI, m / z): $365.1[\mathrm{M}+\mathrm{H}]^{+}$.
4.1.16. N-(4-methoxyphenyl)-4-(3-chloropropoxy)-3propionamidobenzamide (39)

Compound 25 ($0.183 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reduced according to general procedure B to afford 32 , which was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound 39 (0.116 g , yield 65%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 3 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.30(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,165.0,156.6,131.3,127.6,122.4,117.3,114.3,111.3,66.2,55.6$, 41.5, 31.9, 31.2, 9.7. ESI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$ 391.1419; found 391.1411.
4.1.17. N-(4-methoxyphenyl)-3-nitro-4-(3-
bimethylaminopropoxy)-benzamide (26)
To a solution of compound $25(0.300 \mathrm{~g}, 0.82 \mathrm{mmoL})$ in DMF $(5.0 \mathrm{~mL})$ was added sodiumiodide ($0.246 \mathrm{~g}, 1.64 \mathrm{mmoL}$) and dimethylamine ($0.82 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF). The mixture was stirred at $70^{\circ} \mathrm{C}$ for 4 h . After cooling to rt, the solvent was removed, and the residue was purified by $\mathrm{C}-18$ functionalized silica chromatography (eluents $5-90 \% \mathrm{MeOH}$ in deionized water with $0.5 \% \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}$ to afford compound $26(0.178 \mathrm{~g}, 58 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36$ ($\mathrm{s}, 1 \mathrm{H}$), 8.08 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 (br s, 1H), $7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, $J=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{q}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 2.69 (m, 2H), 2.41 (s, 6H), 2.13 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,155.0,139.3,133.3,130.6,126.9$, 124.3, 122.4, 114.7, 114.4, 68.3, 55.8, 55.6, 45.6, 29.8, 27.1. ESI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$374.1710; found 374.1713.

4.1.18. N-(4-methoxyphenyl)-3-amino-4-(3-(dimethylamino) propoxy)benzamide (33)

Compound 26 ($0.183 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reduced according to
general procedure B to afford $33(0.163 \mathrm{~g}, 95 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.90$ $(\mathrm{m}, 3 \mathrm{H}), 4.91(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~m}$, $2 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 1.91(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.9,158.1,150.9,138.1,132.9,128.7,124.1,119.1,114.9,111.7,67.6$, 57.3, 55.8, 45.4, 28.1. LC/MS (ESI, m / z): $344.2[\mathrm{M}+\mathrm{H}]^{+}$.
4.1.19. N-(4-methoxyphenyl)-4-(3-(dimethylamino)propoxy)-3propionamidobenzamide (40)

Compound 33 ($0.150 \mathrm{~g}, 0.43 \mathrm{mmol}$) was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound $40(0.92 \mathrm{~g}$, yield 54%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.0,1 \mathrm{H})$, $7.54(\mathrm{~d}, J=7.5,2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.22(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}$, $6 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.6,167.9,158.2,154.2,132.8,128.6,127.8$, 126.7, 124.2, 124.0, 114.9, 112.7, 67.3, 56.7, 55.8, 44.2, 30.8, 26.3, 10.3. ESI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 400.2231$; found 400.2227.

4.1.20. N-(4-methoxyphenyl)-4-(3-(4-methylpiperazin-1-yl) propoxy)-3-nitrobenzamide (27)

To a solution of compound $25(0.530 \mathrm{~g}, 1.46 \mathrm{mmoL})$ in DMF $(5.0 \mathrm{~mL})$ was added 1-methylpiperazine ($0.23 \mathrm{~mL}, 2.12 \mathrm{mmol}$) according to a method similar to that of compound 26 to afford 27 $(0.490 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ NMR $\left.\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 1 \mathrm{H}\right)$, $8.18(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.12(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 2.54(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 8 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.3,156.9,154.8,139.1,133.5,130.7$, 126.9, 124.4, 122.6, 114.5, 114.3, 68.3, 55.5, 55.1, 54.4, 53.1, 46.0, 29.8, 26.2. LC/MS (ESI, m / z): $429.2[M+H]^{+}$.
4.1.21. N -(4-methoxyphenyl)-3-amino-4-(3-(4-methylpiperazin-1yl)propoxy)benzamide (34)

Compound 27 ($0.214 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reduced according to general procedure B to afford compound $34 .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), 2.29 ($\mathrm{s}, 6 \mathrm{H}$), 2.03 ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.9$, 158.0, 150.9, 138.2, 132.9, 128.7, 124.1, 119.0, 115.1, 114.9, 111.8, 67.7, 56.1, 55.8, 55.6, 53.6, 45.9, 27.4. LC/MS (ESI, m / z): $399.2[M+H]^{+}$.
4.1.22. N-(4-methoxyphenyl)-3-propionamido-4-(3-bimethylaminopropoxy)-benzamide (41)

Compound 34 ($0.189 \mathrm{~g}, 0.5 \mathrm{mmol}$) was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound 41 (0.111 g , yield 49%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.86$ (s, 1H), 7.73 (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 2.60(\mathrm{~m}, 10 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}$, 2H), 1.25 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,165.1,156.6$, 149.7, 131.4, 127.6, 127.5, 124.7, 122.4, 117.4, 114.3, 111.1, 67.1, 55.6, 54.7, 54.5, 45.4, 31.1, 26.4, 9.7. LC/MS (ESI, m / z): $455.2[\mathrm{M}+\mathrm{H}]^{+}$.
4.1.23. N-(4-methoxyphenyl)-4-(3-morpholinopropoxy)-3nitrobenzamide (28)

To a solution of compound $25(0.200 \mathrm{~g}, 0.54 \mathrm{mmoL})$ in DMF $(3.0 \mathrm{~mL})$ was added morpholine ($0.12 \mathrm{~mL}, 0.81 \mathrm{mmol}$) according to a method similar to that of compound 26 to afford $28(0.133 \mathrm{~g}, 59 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33$ ($\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.10(\mathrm{dd}, J=8.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (br s, 1 H), 7.52 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (d, $J=8.8$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74$
$(\mathrm{m}, 4 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}) . \operatorname{LC} / \mathrm{MS}(\mathrm{ESI}, m / z)$: $416.2[\mathrm{M}+\mathrm{H}]^{+}$.

4.1.24. N-(4-methoxyphenyl)-3-amino-4-(3-morpholinopropoxy) benzamide (35)

Compound 28 ($0.214 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reduced according to general procedure B to afford $35 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.63$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 3 \mathrm{H})$, $4.04(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 4 \mathrm{H})$, $1.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 165.2, 155.2, 147.9, $137.5,132.5,127.6,121.7,115.9,113.1,110.6,66.0,61.3,60.5,55.0$, 54.5, 53.0, 30.5. LC/MS (ESI, m / z): $386.2[\mathrm{M}+\mathrm{H}]^{+}$.

4.1.25. N-(4-methoxyphenyl)-4-(3-morpholinopropoxy)-3propionamidobenzamide (42)

Compound 35 ($0.194 \mathrm{~g}, 0.5 \mathrm{mmol}$) was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound $42(0.100 \mathrm{~g}$, yield 45%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1 H), 6.90 (d, J = $9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.09 (m, 2H), 3.81 (s, 3H), 3.75 (m, 4H), $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 6 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8,163.7,156.6,156.3,131.4,130.1,129.0$, 127.7, 127.2, 121.9, 113.9, 112.3, 66.6, 66.5, 55.4, 54.9, 53.5, 31.4, 25.7, 8.9. LC/MS (ESI, m / z): $442.2[\mathrm{M}+\mathrm{H}]^{+}$.

4.1.26. Methyl 3-oxo-3,4-dihydro-2H-benzo[b] [1,4]oxazine-6carboxylate (44)

2-bromoacetyl bromide ($0.48 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added dropwise to a solution of methyl 3-amino-4-hydroxybenzoate (0.84 g , $5.0 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.69 \mathrm{~g}, 8.25 \mathrm{mmol})$ in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL}$, $1: 1$) at $0^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature until the starting material was completely disappeared. The reaction was extracted with EtOAc (50 mL). The organic layer was orderly washed with $10 \% \mathrm{HCl}$, water, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give methyl 3-(2-bromoacetamido)-4hydroxybenzoate ($43,1.07 \mathrm{~g}$). The compound was dissolved in DMF (5.0 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.56 \mathrm{~g}, 5.25 \mathrm{mmol})$ was added the above mixture. The mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 3 h until the starting material was completely disappeared. After cooling to room temperature, the solvent was removed, and the residue was extracted with ethyl acetate, washed with water and brine in turn, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, compound 44 was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71$ (s, 1H), 7.70 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.00 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.

4.1.27. N-(4-methoxyphenyl)-3-oxo-3,4-dihydro-2H-benzo[b] [1,4]

 oxazine-6-carboxamide (45)To a solution of compound $44(0.72 \mathrm{~g}, 3.48 \mathrm{mmoL})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($12 \mathrm{~mL}, 2: 1$) was added sodium hydroxide ($0.28 \mathrm{~g}, 7.0 \mathrm{mmoL}$). The mixture was stirred at $70^{\circ} \mathrm{C}$ for 3 h to give substituted benzoic acid, which was reacted 4 -methoxy aniline according to general procedure A to give the target compound 45 ($0.593 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta 10.9(\mathrm{~s}, 1 \mathrm{H}), 10.03(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H), 7.57 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LC} /$ MS (ESI, m / z): $299.1[\mathrm{M}+\mathrm{H}]^{+}$.

4.1.28. tert-butyl 6-((4-methoxyphenyl)carbamoyl)-2,3-dihydro-

 4H-benzo[b] [1,4]oxazine-4-carboxylate (47)To the solution of methyl 3,4-dihydro-2H-benzo[b] [1,4]oxa-zine-6-carboxylate ($0.20 \mathrm{~g}, 1.03 \mathrm{mmol}$) in acetonitrile (2.5 mL) was added DMAP ($0.025 \mathrm{~g}, 0.2 \mathrm{mmol}$) and Ditertbutyl dicarbonate $(0.23 \mathrm{~g}, 1.14 \mathrm{mmol})$. The mixture was stirred at room temperature
for 3 h until the starting material was completely disappeared. The solvent was removed, and the residue was extracted with ethyl acetate, washed with water and brine in turn, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residual material was purified by flash column chromatography (silica gel) eluted with petroleum ether and ethyl acetate (20:1) to yield N-Boc substituted product. The compound was dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($5 \mathrm{~mL}, 2: 1$) and added sodium hydroxide ($0.054 \mathrm{~g}, 1.36 \mathrm{mmoL}$). The mixture was stirred at $70^{\circ} \mathrm{C}$ for 3 h to give substituted benzoic acid (46). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54$ (s, 1 H), 7.74 (dd, $J=8.4$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}$, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H})$. Compound 46 was reacted with 4 methoxy aniline according to general procedure A to give the compound $47(0.341 \mathrm{~g}, 89 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38$ (s , $1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 1.57$ (s , (9H). LC/MS (ESI, m / z): $385.2[\mathrm{M}+\mathrm{H}]^{+}$.

4.1.29. N-(4-methoxyphenyl)-3,4-dihydro-2H-benzo[b] [1,4]

 oxazine-6-carboxamide (48)To a solution of compound $47(0.21 \mathrm{~g}, 0.52 \mathrm{mmol})$ in dichloromethane (4.0 mL) was added trifluoroacetic acid (2.0 mL) at ${ }^{\circ} \mathrm{C}$ and the mixture was stirred for 3 h until the starting material was completely disappeared. The reaction was extracted with dichloromethane (20 mL) and the organic layer was orderly washing with 0.5 M sodium hydroxide solution, water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, compound 48 was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{t}$, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H})$. LC/MS (ESI, m / z): $285.1[\mathrm{M}+\mathrm{H}]^{+}$.

4.1.30. 4-Isopropoxy-3-nitrobenzoic acid (49)

To a solution of methyl 4-hydroxy-3-nitrobenzoate ($1.50 \mathrm{~g}, 7.6$ mmoL) in DMF (15.0 mL) was added 2-bromopropane ($1.10 \mathrm{~mL}, 11.4$ mmoL) and potassium carbonate ($1.57 \mathrm{~g}, 11.4 \mathrm{mmoL}$). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After cooling to rt , the solvent was removed, and the residue was extracted with ethyl acetate, washed with water and brine in turn, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the obtained residue was dissolved in methanol and THF ($10 \mathrm{~mL}, 1: 1$) and $1 \mathrm{~N} \mathrm{NaOH} \mathrm{(} 10 \mathrm{~mL}$) was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 1.5 h . After cooling to rt , the solvent was removed, and the residue was extracted with ethyl acetate, washed with 1 N HCl , water, and brine in turns, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered, and the solvent was removed to give compound 49 ($1.10 \mathrm{~g}, 64 \%$). LC/MS (ESI, m / z): $224.0[\mathrm{M}-\mathrm{H}]^{+}$.

4.1.31. N-(4-dimethylaminophenyl)-3-nitro-4-isopropoxy-

 benzamide (50)Compound 49 ($0.450 \mathrm{~g}, 2.0 \mathrm{mmoL}$) and 4-dimethylamino-aniline ($0.272 \mathrm{~g}, 2.0 \mathrm{mmoL}$) were reacted according to general procedure A to afford $50(0.597 \mathrm{~g}$, yield $87 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.13$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~m}, 1 \mathrm{H}), 2.94$ (s, 6H), $1.42(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1$, 153.7, 148.4, 140.2, 133.2, 127.2, 127.0, 124.2, 122.5, 115.6, 113.0, 73.1, 40.9, 21.9. ESI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$344.1605; found 344.1601.

4.1.32. N-(4-dimethylaminophenyl)-3-amino-4-isopropoxybenzamide (51)

Compound 50 ($0.514 \mathrm{~g}, 1.5 \mathrm{mmoL}$) was reduced according to general procedure B to afford $51 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59$ (s,

1H), 7.45 (d, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26 ($\mathrm{s}, 1 \mathrm{H}$), 7.18 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.80 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 2.93$ ($\mathrm{s}, 6 \mathrm{H}$), 1.38 (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,147.9,137.1,128.1,127.7,121.9,117.1,113.9,113.1,112.0,70.6$, 40.9, 22.1. LC/MS (ESI, m / z): $314.2[\mathrm{M}+\mathrm{H}]^{+}$.
4.1.33. N -(4-dimethylaminophenyl)-3-propionamido-4-isopropoxy-benzamide (52)

Compound 51 ($0.156 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound 52 (0.127 g , 69%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}$, $1 \mathrm{H}), 7.76$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (q, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H})$, $2.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,165.0,148.4,128.0,127.5,124.6$, 122.2, 117.1, 113.3, 112.2, 71.6, 41.1, 31.1, 22.1, 9.6. ESI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$370.2125; found 370.2117.
4.1.34. N-(4-dimethylaminophenyl)-3-(2-bromopropionamido)-4-isopropoxy-benzamide (53)

Compound $51(0.156 \mathrm{~g}, 0.5 \mathrm{mmoL})$ was reacted with 2bromopropionyl chloride ($50 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA (0.105 mL , 0.75 mmoL) according to general procedure C to afford compound $53(0.134 \mathrm{~g}$, yield $60 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.79$ (s, 1H), 7.78 (s, 1H), 7.78 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{q}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 6 \mathrm{H}), 1.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.3, 164.9, 149.1, 147.8, 128.2, 127.5, 127.4, 125.1, 117.2, 113.2, 112.4.72.0, 45.7, 41.0, 23.1, 22.1. ESIHRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 448.1230$; found 448.1235.
4.1.35. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-nitro-4-isopropoxy-benzamide (54)

Compound 49 ($0.450 \mathrm{~g}, 2.0 \mathrm{mmoL}$) and 3-(trifluoromethyl)-4((4 -methylpiperazin- 1 -yl)methyl) aniline ($0.546 \mathrm{~g}, 2.0 \mathrm{mmoL}$) were reacted according to general procedure A to afford $54(0.538 \mathrm{~g}$, yield $56 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~m}, 3 \mathrm{H}), 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dd}$, $J=8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 8 \mathrm{H}), 2.32(\mathrm{~m}$, $3 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5$, 154.0, 139.9, 136.4, 133.7, 133.4, 131.4, 129.2 (q, $J=30.1 \mathrm{~Hz}), 125.9$, $124.5,124.1(\mathrm{q}, J=260.1 \mathrm{~Hz}), 123.7,118.1(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 115.5,73.1$, 57.7, 55.1, 52.8, 45.8, 21.6. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{~F}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+}$481.2057; found 481.2043.
4.1.36. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-amino-4-isopropoxy-benzamide (55)

Compound $54(0.481 \mathrm{~g}, 1.0 \mathrm{mmoL})$ was reduced according to general procedure B to afford compound $55 .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.52$ $(\mathrm{m}, 8 \mathrm{H}), 2.31(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H})$.
4.1.37. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-propionamido-4-isopropoxy-benzamide (56)

Compound 55 ($0.225 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reacted with propionyl chloride ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA ($0.105 \mathrm{~mL}, 0.75 \mathrm{mmoL}$) according to general procedure C to afford compound $56(0.131 \mathrm{~g}$, yield 52%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.91$ $(\mathrm{s}, 1 \mathrm{H}), 7.86(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 8 \mathrm{H}), 2.47$ $(\mathrm{m}, 5 \mathrm{H}), 1.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,165.6,149.0,137.7,132.1,131.3,129.2$ (q, $J=30.6 \mathrm{~Hz}), 127.7,126.5,124.9,124.2(\mathrm{q}, J=272.6 \mathrm{~Hz}), 123.5,118.1$ (d ,
$J=6.3 \mathrm{~Hz}), 117.7,112.1,71.7,54.5,51.4,45.9,44.8,31.0,9.6$. ESIHRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}_{4} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+} 507.2578$; found 507.2577.
4.1.38. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-(2-bromopropionamido)-4-isopropoxy-benzamide (57)

Compound 55 ($0.225 \mathrm{~g}, 0.5 \mathrm{mmoL}$) was reacted with 2bromopropionyl chloride ($50 \mu \mathrm{~L}, 0.5 \mathrm{mmoL}$) and TEA (0.105 mL , 0.75 mmoL) according to general procedure C to afford compound $57\left(0.134 \mathrm{~g}\right.$, yield 46%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.81$ (s, 1H), 8.16 (s, 1H), $7.88(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H})$, $4.60(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 8 \mathrm{H}), 2.28(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,165.2,149.6,136.9,133.4,131.4,129.4,127.7,126.6,125.4$, $123.4,118.4,117.9,117.0,112.5,72.2,60.5,59.7,57.9,55.3,53.0,46.0$, 45.7, 42.2, 23.2, 22.1, 14.3. ESI-HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{BrF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+}$585.1683; found 585.1684.
4.1.39. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-nitro-4-(3-chloropropoxy)-benzamide (60)

To a solution of methyl 4-hydroxy-3-nitrobenzoate (58a, 1.50 g , 7.6 mmoL) in DMF (15.0 mL) was added 1-bromo-3-chloropropane ($1.12 \mathrm{~mL}, 11.4 \mathrm{mmoL}$) and potassium carbonate ($1.56 \mathrm{~g}, 11.4 \mathrm{mmoL}$). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After cooling to rt, the solvent was removed, and the residue was extracted with ethyl acetate, washed with water and brine in turn, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the obtained residue was purified by flash column chromatography (silica gel) eluted with petroleum ether and ethyl acetate $(V=5: 1)$ to yield methyl 3-chloropropoxy-3-nitrobenzoate ($1.95 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~m}$, $2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H})$. The compound (1.16 g , 4.25 mmoL) was dissolved in tetrahydrofunan (10 mL) and methanol (10 mL) and lithium hydroxide ($0.117 \mathrm{~g}, 5.10 \mathrm{mmoL}$) was added. The mixture was stirred at room temperature for about 3.0 h . The solvent was removed, and the residue was extracted with ethyl acetate, washed with 1 N HCl , water, and brine in turns, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After 2 h , the mixture was filtered, and the solvent was removed to give 4-(3-chloropropoxyl)-3-nitrobenzoic acid (59a, $1.10 \mathrm{~g}, 98 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H})$, 8.27 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (t, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$. Compound 59a $(0.518 \mathrm{~g}, \quad 2.0 \mathrm{mmoL})$ and 3 -(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl)aniline ($0.546 \mathrm{~g}, 2.0 \mathrm{mmoL}$) were reacted according to general procedure A to afford $60(0.894 \mathrm{~g}$, yield 87%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~m}$, $2 \mathrm{H}), 7.82$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.86(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 8 \mathrm{H}), 2.37(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5,154.8,149.7,139.0,136.5,133.9$, 129.3 ($\mathrm{q}, J=30.6 \mathrm{~Hz}$),126.7, 124.8, $124.2(\mathrm{q}, J=273.9 \mathrm{~Hz}$), 123.7, 118.1 (d, $J=4.5 \mathrm{~Hz}), 114.6,66.3,57.8,55.2,52.9,45.9,41.0,31.7$. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$515.1667; found 515.1667.
4.1.40. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-fluoro-4-(3-chloropropoxy)-benzamide (61)

Compound 61 was synthesized using a method similar to that of 60. Methyl 4-hydroxy-3-fluorobenzoate (58b, $0.204 \mathrm{~g}, 1.20 \mathrm{mmoL}$) and 1-bromo-3-chloropropane ($0.14 \mathrm{~mL}, 1.44 \mathrm{mmoL}$) was using the starting materials to yield the intermediate methyl 4-isopropoxy-3fluorobenzoate ($0.250 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1.4 \mathrm{H}), 3.57(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.32(\mathrm{t}, J=5.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.24(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1.4 \mathrm{H})$. The intermediate was hydrolyzed to yield 4-(3-chloropropoxyl)-3fluorobenzoic acid (59b, $0.150 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1.47 \mathrm{H}), 3.63(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $0.62 \mathrm{H}), 2.39(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.62 \mathrm{H}), 2.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1.47 \mathrm{H})$. Compound 59 b ($0.140 \mathrm{~g}, 0.60 \mathrm{mmoL}$) and 3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl)aniline ($0.160 \mathrm{~g}, 0.60 \mathrm{mmoL}$) were reacted according to general procedure A to afford $61(0.260 \mathrm{~g}$, yield $89 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22$ (br s, 1 H), $7.88(\mathrm{~s}, 1 \mathrm{H}), 7.83$ $(\mathrm{m}, 2 \mathrm{H}), 7.74(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 8 \mathrm{H}), 2.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5,157.2,136.7,133.9,131.4,131.3,129.4$, $129.1,127.6,127.4,124.1$ (q, $J=273.3 \mathrm{~Hz}$), 123.5, 123.3, 117.8 (d, $J=6.1 \mathrm{~Hz}$), 112.7, 65.6, 57.9, 55.3, 53.2, 46.1, 41.2, 32.0. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{ClF}_{4}[\mathrm{M}+\mathrm{H}]^{+} 488.1722$; found 488.1716 .
4.1.41. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-chloro-4-(3-chloropropoxy)-benzamide (62)

Compound 62 was synthesized using a method similar to that of 60. Methyl 4-hydroxy-3-chlorobenzoate (58c, $0.204 \mathrm{~g}, 1.07 \mathrm{mmoL}$) and 1-bromo-3-chloropropane ($0.16 \mathrm{~mL}, 1.60 \mathrm{mmoL}$) was using the starting materials to yield the intermediate methyl 4-isopropoxy-3chlorobenzoate ($0.249 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ (s, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.89$ ($\mathrm{s}, 3 \mathrm{H}$), $3.80(\mathrm{~m}, 1.4 \mathrm{H}), 3.66(\mathrm{~m}, 0.6 \mathrm{H}), 2.39(\mathrm{~m}, 0.6 \mathrm{H}), 2.31(\mathrm{~m}, 1.4 \mathrm{H})$. The intermediate was hydrolyzed to yield 4-(3-chloropropoxyl)-3chlorobenzoic acid (59c, $0.250 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}$, $2 \mathrm{H}), 3.81(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1.32 \mathrm{H}), 3.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.61 \mathrm{H}), 2.41(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 0.67 \mathrm{H}), 2.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1.37 \mathrm{H})$. Compound 59c (0.250 g, 1.08 mmoL$)$ and 3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl)-aniline ($0.273 \mathrm{~g}, 1.00 \mathrm{mmoL}$) were reacted according to general procedure A to afford $62(0.468 \mathrm{~g}$, yield 93\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~m}$, $2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}$, 2H), $2.46(\mathrm{~m}, 8 \mathrm{H}), 2.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7$, $157.1,136.8,133.7,131.3,131.3,129.5,129.1(\mathrm{q}, J=30.4 \mathrm{~Hz}), 127.6$, $127.5,124.1(\mathrm{q}, J=272.6 \mathrm{~Hz}), 123.6,123.2,117.9(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 112.5$, $65.5,57.8,55.3,53.1,46.1,41.2,32.0$. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$504.1427; found 504.1415 .
4.1.42. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-trifluoromethyl-4-(3-chloropropoxy)-benzamide (63)

Compound 63 was synthesized using a method similar to that of 60. Methyl 4-hydroxy-3-(trifluoromethyl)benzoate (58d, 0.204 g , 0.91 mmoL) and 1-bromo-3-chloropropane ($0.13 \mathrm{~mL}, 1.36 \mathrm{mmoL}$) was using as the starting materials to yield the intermediate methyl 4-(3-chloropropoxyl)-3-(trifluoromethyl)benzoate ($0.253 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 1.63 \mathrm{H}), 3.63(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.37 \mathrm{H}), 2.37(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $0.37 \mathrm{H}), 2.30(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1.65 \mathrm{H})$. The intermediate was hydrolyzed to yield 4-(3-chloropropoxyl)-3-(trifluoromethyl)benzoic acid (59d, $0.223 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34$ (s, 1H), 8.26 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 1.65 \mathrm{H}), 3.64(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.37 \mathrm{H}), 2.39(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $0.40 \mathrm{H}), 2.31(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1.66 \mathrm{H})$. Compound 59d ($0.100 \mathrm{~g}, 0.35$ mmoL) and 3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl) methyl)aniline ($0.097 \mathrm{~g}, 0.35 \mathrm{mmoL}$) were reacted according to general procedure A to afford $63(0.101 \mathrm{~g}$, yield $53 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~m}$, $8 \mathrm{H}), 2.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,159.4,136.6$, $134.0,133.0,131.3,129.2(\mathrm{q}, J=30.5 \mathrm{~Hz}), 126.5,126.3,124.1$ (q, $J=272.6 \mathrm{~Hz}), 123.7,123.1(\mathrm{q}, J=272.6 \mathrm{~Hz}), 119.0(\mathrm{q}, J=30.6 \mathrm{~Hz})$,
118.0 (d, $J=5.2 \mathrm{~Hz}), 112.7,65.3,57.8,55.3,53.2,46.1,41.0,31.9,30.4$. ESI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{ClF}_{6}[\mathrm{M}+\mathrm{H}]^{+}$538.1690; found 538.1681.
4.1.43. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-sulfamoyl-4-(3-chloropropoxy)-benzamide (64)

Compound 64 was synthesized using a method similar to that of 60. Methyl 4-hydroxy-3-(sulfamoyl)benzoate (58e, $0.231 \mathrm{~g}, 1.00$ mmoL) and 1-bromo-3-chloropropane ($0.13 \mathrm{~mL}, 1.36 \mathrm{mmoL}$) was using as the starting materials to yield the intermediate methyl 4-(3-chloropropoxyl)-3-(trifluoromethyl)benzoate. The intermediate was hydrolyzed to yield 4-(3-chloropropoxyl)-3-(trifluoromethyl) benzoic acid (59e, $0.223 \mathrm{~g}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 2.28$ (s, 2H). Compound 59e ($0.100 \mathrm{~g}, \quad 0.34 \mathrm{mmoL})$ and 3 -(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) aniline ($0.097 \mathrm{~g}, 0.35 \mathrm{mmoL}$) were reacted according to general procedure A to afford $64(0.093 \mathrm{~g}$, yield $50 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 10.65(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.25$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.87$ (s, 2H), 3.63 (s, 2H), 2.93 (br s, 4H), 2.57 (br s, 4H), $2.30(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 164.1, 157.8, 138.5, 133.3, 131.3, 127.9, 127.6, 125.6, 123.6, 117.0, 113.1, 65.9, 56.8, 53.2, 50.2, 42.1, 40.0, 31.2. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{~F}_{3} \mathrm{SCl}[\mathrm{M}+\mathrm{H}]^{+} 549.1545$; found 549.1550.
4.1.44. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-amino-4-(3-chloropropoxy)-benzamide (65)

Compound 60 was hydrogenated according to general procedure B to afford 65. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.743(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 8 \mathrm{H}), 2.31(\mathrm{~m}, 5 \mathrm{H})$. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$485.1927; found 485.1923.
4.1.45. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-propionamido-4-(3-chloropropoxy)-benzamide (66)

Acylation of compound 65 afforded 66 according to general procedure C. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H})$, $7.91(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 8 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 5 \mathrm{H}), 1.24(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,165.4,149.8$, $137.3,133.0,131.3,129.2(\mathrm{q}, ~ J=30.6 \mathrm{~Hz}), 127.4,127.3,125.1,124.2(\mathrm{q}$, $J=271.0 \mathrm{~Hz}), 123.4,123.3,117.9(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 117.7,111.2,66.1,57.8$, 55.0, 52.7, 45.7, 41.4, 31.8, 31.0, 9.6. ESI-HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~N}_{4} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$541.2188; found 541.2174.

Compounds 68-70 were synthesized using a method similar to that of 60 .
4.1.46. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-nitro-4-(4-chloroethoxy)-benzamide (68)

Compound 58a ($0.20 \mathrm{~g}, 1.0 \mathrm{mmoL})$ was reacted with 1-bromo-2chloroethane ($0.125 \mathrm{~mL}, 1.5 \mathrm{mmoL}$) and potassium carbonate ($0.28 \mathrm{~g}, 2.0 \mathrm{mmoL}$) to give methyl 2-chloroethoxy-3-nitrobenzoate ($0.181 \mathrm{~g}, 70 \%$). The compound was hydrolyzed to give 4-(2-chloroethoxy)-3-nitrobenzoic acid (67a, $0.168 \mathrm{~g}, 98 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 13.35$ (br s, 1 H) $, 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.16$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H})$. Compound 67a ($0.15 \mathrm{~g}, 0.61 \mathrm{mmoL}$) and 3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl)aniline ($0.167 \mathrm{~g}, 0.61 \mathrm{mmoL}$) were reacted according to general procedure A to afford $68(0.265 \mathrm{~g}$, yield 87%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 2H), 3.61 (s, 2H), $2.49(\mathrm{~m}, 8 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 163.3,154.1,139.4,136.3,134.4,133.8,131.5,129.3$ (q, $J=30.6 \mathrm{~Hz}), 127.3,124.7,124.2(\mathrm{q}, J=273.9 \mathrm{~Hz}), 123.7,118.1(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}), 115.0,69.9,57.8,55.2,53.2,46.2,41.0,30.4,29.8$. ESIHRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$501.1511; found 501.1503.

4.1.47. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl)

 phenyl)-3-nitro-4-(4-chlorobutoxy)-benzamide (69)${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.05(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), 7.17 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 2.51(\mathrm{~m}, 8 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4,155.1$, $139.3,136.4,134.4,133.8,131.6,129.4(\mathrm{q}, J=30.3 \mathrm{~Hz}), 126.6,124.6$, $124.2(\mathrm{q}, J=273.9 \mathrm{~Hz}), 123.7,118.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 114.7,69.4,57.9$, $55.3,53.2,46.2,44.6,29.0,26.4$. ESI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{ClF}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 529.1824$; found 529.1827.
4.1.48. N-(3-(trifluoromethyl)-4-((4-methylpiperazin-1-yl)methyl) phenyl)-3-nitro-4-((5-chloropentyl)oxy)-benzamide (70)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37$ (s, 1H), 8.12 (m, 2H), 7.85 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 8 \mathrm{H}), 2.32$ ($\mathrm{s}, 3 \mathrm{H}$), $1.88(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,155.1,139.1$, 136.2, 133.8, 131.4, 126.2, 124.4, 123.4, 117.8, 114.5, 69.8, 57.7, 55.1, 52.9, 45.9, 44.7, 32.0, 28.1, 23.2. ESI-HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{ClF}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$543.1980; found 543.1981.
4.1.49. N-(3-cyano-4-((4-methylpiperazin-1-yl)methyl)phenyl)-3-nitro-4-(3-chloropropoxy)-benzamide (71)

Compound 59a ($0.259 \mathrm{~g}, 1.00 \mathrm{mmoL}$) and 3-cyano-4-((4-methylpiperazin-1-yl)methyl)aniline ($0.230 \mathrm{~g}, 1.00 \mathrm{mmoL}$) were reacted according to general procedure A to afford $71(0.315 \mathrm{~g}$, yield $67 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.17$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 8 \mathrm{H}), 2.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5,155.0,139.1,138.6,137.4,134.1,131.0$, $126.4,124.9,124.7,124.5,117.6,114.7,113.5,66.3,60.0,55.1,52.7$, 45.9, 41.1, 31.8. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{5} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$ 472.1746; found 472.1741.
4.1.50. N-(3-(trifluoromethyl)-4-((4-(dimethylamino)piperidin-1-yl)methyl))phenyl)-3-nitro-4-(3-chloropropoxy)-benzamide (72)

Compound 59a ($0.259 \mathrm{~g}, 1.00 \mathrm{mmoL}$) and 3-(trifluoromethyl)-4-((4-(dimethylamino)piperidin-1-yl)methyl)aniline (83a, 0.302 g , 1.00 mmoL) were reacted according to general procedure A to afford $72(0.411 \mathrm{~g}$, yield $76 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~s}$, $1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ $(\mathrm{m}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}$, $8 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4,154.9,139.1,136.3,134.8,133.9,131.3$, $129.2(\mathrm{q}, J=30.1 \mathrm{~Hz}), 126.8,124.8,124.2(\mathrm{q}, J=272.7 \mathrm{~Hz}), 123.8$, $118.0(\mathrm{q}, J=5.3 \mathrm{~Hz}), 114.7,66.3,62.4,57.8,53.2,41.8,41.1,31.8,28.6$. ESI-HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 543.1980$; found 543.1965.
4.1.51. N-(3-(trifluoromethyl)-4-((3-dimethylaminopyrrolidin-1-yl) methyl)phenyl)-3-nitro-4-(3-chloropropoxy)-benzamide (73)

Compound 59a ($0.259 \mathrm{~g}, 1.00 \mathrm{mmoL}$) and 3-(trifluoromethyl)-4-(3-dimethylamino)-pyrrolidin-1-yl)methylaniline (83b, 0.288 g , 1.00 mmoL) were reacted according to general procedure A to afford $73(0.205 \mathrm{~g}$, yield $39 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.12$ (br s, $1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}$,
$J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{dd}$, $J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (dd, $J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,154.7,148.9,138.8,136.5,134.6,133.9$, $131.0,128.4(\mathrm{q}, J=37.7 \mathrm{~Hz}), 126.7,124.1(\mathrm{q}, J=272.7 \mathrm{~Hz}), 123.9$, 118.1 $(\mathrm{d}, J=6.0 \mathrm{~Hz}), 114.3,106.8,66.1,65.5,58.4,55.5,53.5,43.8,41.0,31.7$, 29.3. ESI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 529.1824$; found 529.1812.
4.1.52. N-(3-(trifluoromethyl)-4-((3-dimethylaminoazetidin-1-yl) methyl)phenyl)-3-nitro-4-(3-chloropropoxy)-benzamide (74)

Compound 59a ($0.145 \mathrm{~g}, 0.56 \mathrm{mmoL}$) and 3-(trifluoromethyl)-4-(3-dimethylamino)azetidin-1-yl)methylaniline (83c, $0.140 \mathrm{~g}, 0.51$ mmoL) were reacted according to general procedure A to afford 74 (0.107 g , yield 41%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 1 H), 8.17 (s, 1H), 8.14 (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (s, 1H), 7.84 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}$, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,154.9,139.1,136.3,133.9,133.8$, $130.6,128.7,126.7,124.7,123.6,118.0,114.7,66.3,59.9,57.0,42.2$, 41.1, 31.8. ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 515.1667$; found 515.1665.
4.1.53. 1-(4-(4-(3-chloropropoxy)-3-nitrobenzamido)-2-(trifluoromethyl)benzyl)azetidine-3-carboxylic acid (75)

Compound 59a ($0.259 \mathrm{~g}, 1.00 \mathrm{mmoL}$) and methyl 1-(4-amino-2-(trifluoromethyl)benzyl)azetidine-3-carboxylate (83d, $0.288 \mathrm{~g}, 1.00$ mmoL) were reacted according to general procedure A to afford methyl ester intermediate (0.238 g , yield 45%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H})$, 7.80 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 5 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 3 \mathrm{H})$, $2.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,163.6,154.9,138.8$, $136.5,134.1,133.1,130.3,128.5,(q, J=29.4 \mathrm{~Hz}), 126.5,124.8,124.0$ (q, $J=272.5 \mathrm{~Hz}), 123.8,118.2,66.2,58.5,57.1,52.2,41.1,34.2,31.7$. To а solution of the intermediate ($0.200 \mathrm{~g}, 0.38 \mathrm{mmoL}$) in MeOH/THF ($4 \mathrm{~mL}, 1: 1$) was added lithium hydroxide ($18 \mathrm{mg}, 0.76 \mathrm{mmoL}$). The mixture was stirred for 4 h , the reaction was neutralized by diluted hydrochloric acid to give white solid, then filtering and drying derived product $75(0.185 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 8.51$ $(\mathrm{s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.67 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 2 \mathrm{H}), 4.37$ (s, $2 \mathrm{H}), 4.09(\mathrm{~m}, 5 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}$, 1H); ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) δ 166.1, 155.9, 141.2, 140.9, 134.8, 133.0, 130.5, 126.1, 125.1, 119.6, 118.6, 115.8, 68.7, 67.7, 59.0, 56.9, 41.9, 35.9, 33.0, 30.1. ESI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 516.1144; found 516.1139.
4.1.54. N -(3-(trifluoromethyl)-4-(morpholinmethyl)phenyl)-3-nitro-4-(3-chloropropoxy)-benzamide (76)

Compound 59a $(0.164 \mathrm{~g}, 0.63 \mathrm{mmoL})$ and 3 -(trifluoromethyl)-4(morpholinmethyl)aniline ($83 \mathrm{e}, 0.151 \mathrm{~g}, 0.58 \mathrm{mmoL}$) were reacted according to general procedure A to afford $76(0.210 \mathrm{~g}$, yield 72%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}$, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 4 \mathrm{H}), 2.48(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,155.0,139.2,136.4,133.9,133.8,131.6$, $129.6(\mathrm{q}, J=30.4 \mathrm{~Hz}), 126.7,124.6,124.1(\mathrm{q}, J=272.1 \mathrm{~Hz}), 123.6$, $118.0(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 114.8,67.2,66.3,58.3,53.7,41.1,31.8$. ESI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 502.1351$; found 502.1348 .
4.1.55. N-(3-(trifluoromethyl)-4-((3,5-dimethylmorpholin)methyl) phenyl)-3-nitro-4-(3-chloropropoxy)-benzamide (77)

Compound 59a ($0.164 \mathrm{~g}, 0.63 \mathrm{mmoL}$) and 3-(trifluoromethyl)-4((3,5 -dimethylmorpholin)methyl)aniline ($83 \mathrm{f}, 0.185 \mathrm{~g}, 0.58 \mathrm{mmoL}$) were reacted according to general procedure A to afford $77(0.241 \mathrm{~g}$, yield 79\%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 2 H), 3.69 (m, 2H), 3.69 (s, 2H), 2.68 (s, 1H), 2.66 (s, 1H), 2.33 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,155.0,139.2,136.3,134.1,133.8$, $131.6,129.5(\mathrm{q}, J=30.4 \mathrm{~Hz}), 126.7,124.6,124.1(\mathrm{q}, J=273.7 \mathrm{~Hz})$, $123.6,118.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 114.8,71.9,66.3,59.5,57.9,41.0,31.8$, 19.2. ESI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 530.1664$; found 530.1662.
4.1.56. N-(2-((4-methylpiperazin-1-yl)methyl)pyridin-3-yl)-3-nitro-4-(3-chloropropoxy)-benzamide (78)

Compound 59a ($0.260 \mathrm{~g}, 1.00 \mathrm{mmoL}$) and 5 -amine- 2-((4-methylpiperazin-1-yl)methylpyridine ($86,0.200 \mathrm{~g}, 1.00 \mathrm{mmoL}$) were reacted according to general procedure A to afford $78(0.205 \mathrm{~g}$, yield $46 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H})$, $2.52-2.45(\mathrm{~m}, 8 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) $\delta 163.6,154.9,141.3,139.1,133.9,133.2,128.6,126.5,124.8$, 123.6, 114.6, 66.3, 64.1, 55.1, 53.4, 46.1, 41.1, 31.7. ESI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{5} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$448.1746; found 448.1744.

4.1.57. N-(2-(4-methylpiperidin-1-yl)pyridin-5-yl)-3-nitro-4-(3-

 chloropropoxy)-benzamide (79)Compound 59a ($0.380 \mathrm{~g}, 1.48 \mathrm{mmoL}$) and 5-amine- 2-(4-methylpiperidin-1-yl)pyridine ($88,0.260 \mathrm{~g}, 1.35 \mathrm{mmoL}$) were reacted according to general procedure A to afford $79(0.250 \mathrm{~g}$, yield 43%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 3.66(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H})$, $2.81(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 0.5 \mathrm{H}), 2.31(\mathrm{~m}, 1.5 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H})$, $1.66(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,157.6,154.6,141.2,139.4,133.5$, 132.0, 127.2, 124.6, 124.2, 114.6, 107.1, 67.4, 66.4, 46.1, 41.1, 33.9, 31.9, 31.2, 29.5, 22.0. ESI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$ 433.1643; found 433.1625.
4.1.58. N-(3-(trifluoromethyl)-4-((3-dimethylaminoazetidin-1-yl) methyl)phenyl)-3-nitro-4-(2-chloroethoxy)-benzamide (80)

4-(2-chloroethoxyl)-3-nitrobenzoic acid (67a, $0.245 \mathrm{~g}, 1.00$ mmoL) and 3-(trifluoromethyl)-4-(3-dimethylamino)azetidin-1yl)methylaniline ($83 \mathrm{c}, 0.140 \mathrm{~g}, 1.00 \mathrm{mmoL}$) were reacted according to general procedure A to afford $80(0.335 \mathrm{~g}$, yield $67 \%) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 10.57(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (dd, $J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.99(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 163.1$, 153.1, 139.0, 137.8, 133.8, 132.1, 130.5, 126.7, 124.6, 123.6, 117.3, 115.3, $69.9,58.9,58.5,56.3,54.9,42.4,41.7$. ESI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{ClF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$501.1511; found 501.1521.

Hydrochloric acid salt of compound 80.
To the solution of compound $80(0.25 \mathrm{~g}, 0.5 \mathrm{mmol})$ in anhydrous methanol (2.0 mL) was added $\mathrm{HCl} /$ ethyl acetate ($2.0 \mathrm{M}, 0.52 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . The reaction solution was then evaporated in vacuo to provide white solid ($0.286 \mathrm{~g}, 100 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 12.30$ (br s, 1H), 11.76 (br s, 1 H), $10.85(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}$, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.25(\mathrm{~m}, 7 \mathrm{H}), 3.99(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~s}$, 6 H).

Synthesis of compound 83a-f.
Taking 83a as an example: To a solution of 1-(bromomethyl)-4-nitro-2-(trifluoromethyl)benzene ($81,0.65 \mathrm{~g}, 2.3 \mathrm{mmoL}$) in anhydrous acetronitrile (6.0 mL) was added 4 -(dimethylamino) piperidine ($0.27 \mathrm{~mL}, 2.3 \mathrm{mmoL}$) and potassium carbonate $(0.31 \mathrm{~g}, 2.3$ mmoL). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the solvent was removed, and the residue was extracted with ethyl acetate, washed with water and brine in turns, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the obtained residue was purified by flash column chromatography ((eluents $1-5 \% \mathrm{MeOH}$ in dichloromethane with 0.2% $\left.\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}\right)$) to yield $82 \mathrm{a}(0.53 \mathrm{~g}, 70 \%$). The intermediate was hydrogenated according to general procedure B to afford 83a (0.451 g , yield 95\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 ($\mathrm{s}, 1 \mathrm{H}$), $6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~d}$, $J=10 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 6 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H})$, 1.54 (m, 2H).

Synthesis of 83b was similar to that of compound 83a: compound $81(0.50 \mathrm{~g}, 1.77 \mathrm{mmoL})$ and 3-dimethylaminopyrrolidine ($0.26 \mathrm{~mL}, 2.12 \mathrm{mmoL}$) and potassium carbonate ($0.24 \mathrm{~g}, 1.77$ $\mathrm{mmoL})$ were reacted to yield $82 \mathrm{~b}(0.431 \mathrm{~g}, 77 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H})$, $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H})$. The product was hydrogenated according to general procedure B to afford $83 \mathrm{~b}(0.351 \mathrm{~g}$, yield $92 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H})$, $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of 83 c was similar to that of compound 83a: compound 81 ($1.55 \mathrm{~g}, 5.47 \mathrm{mmoL}$) and 3 -(dimethylamino)azetidine dihydrochloride ($0.95 \mathrm{~g}, 5.47 \mathrm{mmoL}$) were reacted to afford 3-(tri-fluoromethyl)-4-(3-dimethylamino)azetidin-1-yl)methyl-nitro-
benzene ($82 \mathrm{c}, 1.00 \mathrm{~g}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H})$, $8.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.4,145.5,130.8,129.3(\mathrm{q}, J=26.6 \mathrm{~Hz})$, $126.5,123.1(\mathrm{q}, J=227.3 \mathrm{~Hz}), 121.4(\mathrm{q}, J=5.0 \mathrm{~Hz}), 59.9,59.0,56.9$, 42.1. The product was hydrogenated according to general procedure B at hydrogen gas pressure of 14 psi for 24 h to afford 83c $(0.576 \mathrm{~g}$, yield $65 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H})$, $3.47(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 145.2,130.9,128.8(\mathrm{q}, J=24.7 \mathrm{~Hz}), 126.3,124.3(\mathrm{q}$, $J=227.1 \mathrm{~Hz}), 117.7,112.2(\mathrm{q}, J=4.9 \mathrm{~Hz}), 59.6,58.9,56.9,42.0$. ESIHRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$274.1526; found 274.1525.

Synthesis of compound 83 d was similar to that of 83 a : compound $81(0.50 \mathrm{~g}, 1.76 \mathrm{mmoL})$ and methyl azetidine-3-carboxylate hydrochloride ($0.27 \mathrm{~g}, 1.76 \mathrm{mmoL}$) were reacted to afford methyl 1-(4-nitro-2-(trifluoromethyl)benzyl)azetidine-3-carboxylate (82e, $0.274 \mathrm{~g}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 2.51(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7,145.4,131.7,130.2,129.4$ (q, $J=32.0 \mathrm{~Hz}), 126.6,123.1(\mathrm{q}, J=272.7 \mathrm{~Hz}), 121.4(\mathrm{q}, J=7.2 \mathrm{~Hz}), 58.6$, $57.3,52.2,34.1$. The product was hydrogenated according to general procedure B to afford $83 \mathrm{e}(0.158 \mathrm{~g}$, yield $64 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.58$ ($\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.45(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of compound 83 e was similar to that of 83 a : compound $81(0.30 \mathrm{~g}, 1.16 \mathrm{mmoL})$ and morpholine ($0.11 \mathrm{~mL}, 1.27 \mathrm{mmoL}$)
were reacted to afford 3-(trifluoromethyl)-4-(morpholinmethyl) -nitrobenzene (82e, $0.260 \mathrm{~g}, 77 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51$ $(\mathrm{s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$, $2.51(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.7, 145.4, 131.7, 130.1 (q , $J=31.8 \mathrm{~Hz}$), 126.5, $123.2(\mathrm{q}, J=272.7 \mathrm{~Hz}), 121.6(\mathrm{q}, J=6.0 \mathrm{~Hz}), 67.1$, 58.3, 53.8. The product was hydrogenated according to general procedure B to afford $83 \mathrm{e}\left(0.150 \mathrm{~g}\right.$, yield 64%). ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}$, 1 H), 3.77 ($\mathrm{s}, 2 \mathrm{H}$), $3.69(\mathrm{~s}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3,132.1,129.7(\mathrm{q}, J=29.7 \mathrm{~Hz}), 126.4,124.5$ (q, $J=272.4 \mathrm{~Hz}$), 121.6 ($\mathrm{q}, J=6.0 \mathrm{~Hz}$), 67.2, 58.4, 53.7. ESI-HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$261.1209; found 261.1209.

Synthesis of compound 83 f was similar to that of 83a: compound $81(0.30 \mathrm{~g}, 1.16 \mathrm{mmoL})$ and 2,6-dimethylmorpholine ($0.14 \mathrm{~mL}, 1.16 \mathrm{mmoL}$) were reacted to afford 3 -(trifluoromethyl)-4-(3,5-dimethylmorpholin)-nitrobenzene (82f, $0.270 \mathrm{~g}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{t}$, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.6,145.6,131.7,129.9(\mathrm{q}, J=31.9 \mathrm{~Hz}), 126.5,123.2$ (q , $J=272.7 \mathrm{~Hz}), 121.4(\mathrm{q}, J=6.0 \mathrm{~Hz}), 71.8,59.5,57.8,19.1$. The product was hydrogenated according to general procedure B to afford $83 f$. ESI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ON}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$289.1522; found 289.1522.

Synthesis of compound 86 was similar to that of 83a: 2-(bro-momethyl)-5- nitropyridine ($84,0.43 \mathrm{~g}, 2.0 \mathrm{mmoL}$) and 4methylpiperazine ($0.22 \mathrm{~mL}, 2.0 \mathrm{mmoL}$) were reacted to afford 5 -nitro-2-((4-methylpiperazin-1-yl)methylpyridine (85, 0.315 g , 67%). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.37$ (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 4 \mathrm{H})$, $2.45(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,146.9$, $130.9,128.1,127.2,115.6,114.2,60.0,55.0,53.2,46.0$. The product was hydrogenated according to general procedure B to afford 86 which was directly used without further purification.

Synthesis of compound 88 was similar to that of 83a: 2-chloro-5-nitropyridine ($0.50 \mathrm{~g}, 3.16 \mathrm{mmoL}$) and 4-methylpiperidine ($0.37 \mathrm{~mL}, 3.16 \mathrm{mmoL}$) were reacted to afford 5 -nitro-2-((4-methylpiperidin-1-yl)pyridine (87, $0.607 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.03$ (s, 1H), 8.17 (dd, $J=9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.55 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78$ $(\mathrm{m}, 2 \mathrm{H}), 1.20(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$. The product was hydrogenated according to general procedure B to afford 88 which was directly used without further purification. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}$, $1 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.

4.2. Biological assay

4.2.1. Cell culture and HCV infection

Human liver cell line Huh7.5 cells and the plasmid pFL-J6/JFH/ JC1 containing the full-length chimeric HCV complementary DNA (cDNA) were kindly provided by Vertex Pharmaceuticals Inc. (Boston, USA) Huh7.5 cells were cultured in Dulbecco's modified eagle medium (DMEM, Invitrogen, CA) supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen) and 1\% penicillin-streptomycin (Invitrogen). Cells were digested with 0.05% trypsin-ethylene diamine tetraacetic acid (EDTA) and split twice a week. HCV virus stock was prepared and used to infect native Huh7.5 cells at an infective dose of $45 \mathrm{IU} /$ cell as described previously [29].

4.2.2. Agents

Telaprevir (HY-10235, VX-950) was purchased from the MedChemExpress (Princeton, NJ). The pAbs to glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) (10494-1-AP) were from Protein Tech Inc. All test compounds were dissolved supplied in DMSO at 10 mM and then diluted in Dulbecco's modified Eagle's medium culture medium. For EC_{50} and CC_{50} determinations, test compounds were serially diluted in eight steps of $1: 5$ dilutions in 96well plates.

4.2.3. Anti-HCV activity assay in vitro [37]

Huh7.5 cells were seeded into 96 -well or 6 -well plates (Costar) at a density of 3×10^{4} cells $/ \mathrm{cm}^{2}$. After 24 h of incubation, the cells were infected with HCV viral stock (recombination virus strain J6/ $\mathrm{JFH} / \mathrm{JC}, 45 \mathrm{IU} / \mathrm{cell}$) and simultaneously treated with different concentration of compounds or solvent control. The culture medium was removed after 72 h of incubation, and the intracellular total RNA (in 96-well plates) was extracted with RNeasy Mini Kit (Qiagen) and quantified with qRT-PCR. It was performed on a 7500 Fast Real-Time PCR system (Applied Biosystems, Singapore) using an AgPath-ID One-Step RT-PCR Kit (Applied Biosystems, Foster, CA, USA) according to the manufacturer's instructions. All quantifications were normalized to the level of the internal control gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the levels of HCV RNA were analyzed with the $2^{-\triangle \triangle C T}$ method, and a value of half maximal effective concentration $\left(\mathrm{EC}_{50}\right)$ was calculated with the Reed-Muench Method.

4.2.4. Cytotoxicity assay

Huh7.5 cells were seeded into 96 -well plates (Costar) at a density of 3.0×10^{4} cells $/ \mathrm{cm}^{2}$. After 24 h of incubation, fresh culture medium containing test compounds at various concentrations were added. Cytotoxicity was evaluated with the tetrazolium-based MTT assay at 96 h .

4.2.5. Aqueous solubility determination of compound 80 and its hydrochloride salt

Hydrochloride salts of compound 80 were added to distilled water (1.0 mL). After shaking for 1.0 h at $25^{\circ} \mathrm{C}$ and then centrifuging at 3000 rpm for 10 min , the saturated supernatants were measured the volume and then lyophilized to determine the concentration dissolved in water. For compound 80, the saturated supernatants were transferred to other vials for analysis by HPLC-UV. Each sample was performed in triplicate. For quantification, a model 1200 HPLCUV (Agilent) system was used with an Agilent TC-C18 column $(250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m})$ and elution of $2 \mathrm{mM} \mathrm{HCO} 2 \mathrm{NH}_{4} /$ methanolwater (95:5). The flow rate was $1.0 \mathrm{~mL} / \mathrm{min}$ and injection volume was $10 \mu \mathrm{~L}$ with the detection wavelength at 254 nm . Aqueous concentration was determined by comparison of the peak area of the saturated solution with a standard curve plotted peak area versus known concentrations, which were prepared by solutions of test compound in methanol at $135.0,45.0,15.0,5.0$, and $2.5 \mu \mathrm{~g} / \mathrm{mL}$.

In vivo toxicity, In vitro and In vivo pharmacokinetic, and Compounds protecting hA3G from Vif-mediated degradation assessment methods. See supporting information. All in vivo studies were in accordance with the Animal Care and Use Committee of People's Republic of China.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the CAMS Innovation Fund for Medical Sciences (2017-I2M-3-012).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejmech.2021.114033.

Abbreviations Used

EDCI	N-ethyl- N^{\prime}-(3-dimethylaminopropyl)carbodiimide hydrochloride
DMAP	4-dimethylaminopyridine
TEA	triethylamine
THF	tetrahydrofuran
DEAD	diethylazodicarboxylate
PPh_{3}	triphenylphosphine
MeOH	methanol
DMF	dimethyl formamide
rt	room temperature
EtOAc	ethyl acetate
NBS	N -bromosuccinimide
AIBN	azobisisobutyronitrile
qRT-PCR	real-time quantitative reverse-transcription polymerase chain reaction
MTT	3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-Htetrazolium
ip	intraperitoneal
NMR	nuclear magnetic resonance
TMS	trimethylsilance
HRMS	high resolution mass spectrometry
min	minutes
h	hours

References

[1] M.P. Manns, M. Buti, E. Gane, J.-M. Pawlotsky, H. Razavi, N. Terrault, Z. Younossi, Hepatitis C virus infection, Nat. Rev. Dis. Primers 3 (2017) 17006.
[2] J. Hundt, Z. Li, Q. Liu, The inhibitory effects of anacardic acid on hepatitis C virus life cycle, PLoS One 10 (2015), e0117514.
[3] K. Mohd Hanafiah, J. Groeger, A.D. Flaxman, S.T. Wiersma, Hepatology 57 (2013) 1333-1342.
[4] J. McCombs, T. Matsuda, I. Tonnu-Mihara, S. Saab, P. Hines, G. L'italien, T. Juday, Y. Yuan, The risk of long-term morbidity and mortality in patients with chronic hepatitis C: results from an analysis of data from a department of veterans affairs clinical registry, JAMA Int. Med. 174 (2014) 204-212.
[5] J.G. McHutchison, E.J. Lawitz, M.L. Shiffman, A.J. Muir, G.W. Galler, J. McCone, Peginterfero alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection, N. Engl. J. Med. 361 (2009) 580-593.
[6] S.M. McConachie, S.M. Wilhelm, P.B. Kale-Pradhan, New direct-acting antivirals in hepatitis C therapy: a review of sofosbuvir, ledipasvir, daclatasvir, simeprevir, paritaprevir, ombitasvir and dasabuvir, Expet Rev. Clin. Pharmacol. 8 (2016) 1-16.
[7] Gliead Announces New Data from Viral Hepatitis Research Programs at the Liver Meeting $®, 2019$.
[8] G.M. Keating, Elbasvir/grazoprevir: first global approval, Drugs 76 (2016) 617-624.
[9] J.T. Lam, L. Salazar, New combination antiviral for the treatment of hepatitis C, Am. J. Health Syst. Pharm. 73 (2016) 1042-1050.
[10] E. Lontok, P. Harrington, A. Howe, T. Kieffer, J. Lennerstrand, O. Lenz, F. McPhee, H. Mo, N. Parkin, T. Pilot-Matias, V. Miller, Hepatitis C virus drug resistance-associated substitutions: state of the art summary, Hepatology 62 (2015) 1623-1632.
[11] S.M. Horner, S. Naggie, Successes and challenges on the road to cure hepatitis C, PLoS Pathog. 11 (2015), e1004854.
[12] A. Hill, G. Cooke, Hepatitis C can be cured globally, but at what cost? Science 345 (2014) 141-142.
[13] C.E. Schroeder, T. Yao, J. Sotsky, R.A. Smith, S. Roy, Y. Chu, H. Guo, N.A. Tower, J.W. Noah, S. McKellip, M. Sosa, L. Rasmussen, L.H. Smith, L. White, J. Aubé, C.B. Jonsson, D. Chung, J.E. Golden, Development of (E)-2-((1,4-dimethylpiperazin-2-ylidene)amino)-5-nitro- N-phenylbenzamide, ML336: novel 2-amidinophenylbenzamides as potent inhibitors of Venezuelan equine encephalitis virus, J. Med. Chem. 57 (2014) 8608-8621.
[14] C.M. Brackett, R.J. Melander, H. An, A. Krishnamurthy, R.J. Thompson, J. Cavanagh, C. Melander, Small-molecule suppression of β-lactam resistance in multidrug-resistant Gram-negative pathogens, J. Med. Chem. 57 (2014) 7450-7458.
[15] L. Zhao, Y. Li, Y. Wang, Z. Qiao, Z. Miao, J. Yang, L. Huang, C. Tian, L. Li, D. Chen, S. Yang, Discovery of 4 H -chromen-4-one derivatives as a new class of selective Rho kinase (ROCK) inhibitors, which showed potent activity in ex vivo diabetic retinopathy models, J. Med. Chem. 62 (2019) 10691-10710.
[16] A. Rietz, H. Li, K.M. Quist, J.J. Cherry, C.L. Lorson, B.G. Burnett, N.L. Kern, A.N. Calder, M. Fritsche, H. Lusic, P.J. Boaler, S. Choi, X. Xing, M.A. Glicksman, G.D. Cuny, E.J. Androphy, K.J. Hodgetts, Discovery of a small molecule probe that post-translationally stabilizes the survival motor neuron protein for the treatment of spinal muscular atrophy, J. Med. Chem. 60 (2017) 4594-4610.
[17] R.T. Jacobs, B. Nare, S.A. Wring, M.D. Orr, D. Chen, J.M. Sligar, M.X. Jenks, R.A. Noe, T.S. Bowling, L.T. Mercer, C. Rewerts, E. Gaukel, J. Owens, R. Parham, R. Randolph, B. Beaudet, C.J. Bacchi, N. Yarlett, J.J. Plattner, Y. Freund, C. Ding, T. kama, Y.K. Zhang, R. Brun, M. Kaiser, I. Scandale, R. Don, SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis, PLoS Neglected Trop. Dis. 5 (2011) e1151.
[18] S. Banerjee, D.D. Norman, S.C. Lee, A.L. Parrill, T.T. Pham, D.L. Baker, G.J. Tigyi, D.D. Miller, Highly potent non-carboxylic acid autotaxin inhibitors reduce melanoma metastasis and chemotherapeutic resistance of breast cancer stem cells, J. Med. Chem. 60 (2017) 1309-1324.
[19] K. Jung, H. Wang, P. Teriete, J.L. Yap, L. Chen, M.E. Lanning, A. Hu, L.J. Lambert, T. Holien, A. Sundan, N.D. Cosford, E.V. Prochownik, S. Fletcher, Perturbation of the c-Myc-Max protein-protein interaction via synthetic α-helix mimetics, J. Med. Chem. 58 (2015) 3002-3024.
[20] F. Meng, S. Cheng, H. Ding, S. Liu, Y. Liu, K. Zhu, S. Chen, J. Lu, Y. Xie, L. Li, R. Liu, Z. Shi, Y. Zhou, Y. Liu, M. Zheng, H. Jiang, W. Lu, H. Liu, C. Luo, Discovery and optimization of novel, selective histone methyltransferase SET7 inhibitors by pharmacophore- and docking-based virtual screening, J. Med. Chem. 58 (2015) 8166-8181.
[21] G.A. Nishiguchi, A. Rico, H. Tanner, R.J. Aversa, B.R. Taft, S. Subramanian, L. Setti, M.T. Burger, L. Wan, V. Tamez, A. Smith, Y. Lou, P.A. Barsanti, B.A. Appleton, M. Mamo, L. Tandeske, I. Dix, J.E. Tellew, S. Huang, L.M. Griner, V.G. Cooke, A.V. Abbema, H. Merritt, S. Ma, K. Gampa, F. Feng, J. Yuan, Y. Wang, J.R. Haling, S. Vaziri, M. Hekmat-Nejad, J.M. Jansen, V. Polyakov, R. Zang, V. Sethuraman, P. Amiri, M. Singh, E. Lees, W. Shao, D.D. Stuart, M.P. Dillon, S. Ramurthy, Design and discovery of N -(2-methyl-5'-morpholino-6'-((tetra-hydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (RAF709): a potent, selective, and efficacious RAF inhibitor targeting RAS mutant cancers, J. Med. Chem. 60 (2017) 4869-4881.
[22] T. Zhou, L. Commodore, W.S. Huang, Y. Wang, M. Thomas, J. Keats, Q. Xu, V.M. Rivera, W.C. Shakespeare, T. Clackson, D.C. Dalgarno, X. Zhu, Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance, Chem. Biol. Drug Des. 77 (2011) 1-11.
[23] S. Cen, Z.G. Peng, X.Y. Li, Z.R. Li, J. Ma, Y.M. Wang, Small molecular compounds inhibit HIV-1 replication through specifically stabilizing APOBEC3G, J. Biol. Chem. 285 (2010) 16546-16552.
[24] H. Zhang, B. Yang, R.J. Pomerantz, C. Zhang, S.C. Arunachalam, L. Gao, The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV1 DNA, Nature 424 (2003) 94-98.
[25] V. Zennou, D. Perez-Caballero, H. Gottlinger, P.D. Bieniasz, APOBEC3G incorporation into human immunodeficiency virus type 1 particles, J. Virol. 78 (2004) 12058-12061.
[26] E.S. Svarovskaia, H. Xu, J.L. Mbisa, R. Barr, R.J. Gorelick, A. Ono, E.O. Freed, W.S. Hu, V.K. Pathak, Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs, J. Biol. Chem. 279 (2004) 35822-35828.
[27] P. Turelli, B. Mangeat, S. Jost, S. Vianin, D. Trono, Inhibition of hepatitis B virus replication by APOBEC3G, Science 303 (2004) 1829.
[28] Z.G. Peng, Z.Y. Zhao, Y.P. Li, Y.P. Wang, L.H. Hao, B. Fa, Y.H. Li, Y.M. Wang, Y.Q. Shan, Y.X. Han, Y.P. Zhu, J.R. Li, X.F. You, Z.R. Li, J.D. Jiang, Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus, Hepatology 53 (2011) 1080-1089.
[29] Y.P. Li, Z.G. Peng, L.H. Hao, Z.Y. Wu, Y.P. Zhu, L.X. Hu, J.D. Jiang, Z.R. Li, Synthesis of novel substituted N-aryl benzamides as hA3G stabilizers and their inhibitory activity against hepatitis C virus replication, Acta Pharm. Sin. B 3 (2013) 312-321.
[30] M. Fehrholz, S. Kendl, C. Prifert, The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses, J. Gen. Viral 93 (2012) 565-576.
[31] Z. Jiang, H.Q. Wang, Y.P. Li, Z.G. Peng, Y.H. Li, Z.R. Li, Synthesis and antiviral activity of a series of novel N -phenylbenzamide and N -phenyllacetophenone compounds as anti-HCV and anti-EV71 agents, Acta Pharm. Sin. B 5 (2015) 201-209.
[32] H.Q. Wang, M. Zhong, Y.P. Li, K. Li, S. Wu, T.T. Guo, S. Cen, J.D. Jiang, Z.R. Li, Y.H. Li, APOBEC3G is a restriction factor of EV71 and mediator of IMB-Z
antiviral activity, Antivir. Res. 165 (2019) 23-33.
[33] A. Sasada, A. Takaori-Kondo, K. Shirakama, APOBEC3G targets human T-cell leukemia virus type 1, Retrovirology 2 (2005) 32.
[34] D.D. Young, C.M. Corhelly, C. Gorhmann, A. Deiters, Small molecules modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma, J. Am. Chem. Soc. 132 (2010) 7976-7981.
[35] Z.R. Guo, Pharmaceutical chemistry summary, in: Chemical Structure and

Pharmacokinetics of Drugs, China, the third ed., 2010, p. 35.
[36] Z.R. Guo, Pharmaceutical chemistry summary, in: Strategy of Drug Design, China, the third ed., 2010, pp. 563-564.
[37] Z.G. Peng, B. Fan, N.N. Du, Y.P. Wang, L.M. Gao, Y.H. Li, Small molecular compounds that inhibit hepatitis C virus replication through destabilizing heat shock cognate 70 messenger RNA, Hepatology 52 (2010) 845-853.

[^0]: * Corresponding author. Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China.
 ** Corresponding author. Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China.
 *** Corresponding author. Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China.

 E-mail addresses: lyh75112@163.com (Y. Liu), shancen@hotmail.com (S. Cen), pumcpzg@126.com (Z. Peng), hulaixing@hotmail.com (L. Hu).

