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Abstract

Background: Numerous organisms have evolved a wide range of toxic peptides for self-defense and predation. Their
effective interstitial and macro-environmental use requires energetic and structural stability. One successful group of
these peptides includes a tri-disulfide domain arrangement that offers toxicity and high stability. Sequential tri-disulfide
connectivity variants create highly compact disulfide folds capable of withstanding a variety of environmental stresses.
Their combination of toxicity and stability make these peptides remarkably valuable for their potential as bio-insecticides,
antimicrobial peptides and peptide drug candidates. However, the wide sequence variation, sources and modalities of
group members impose serious limitations on our ability to rapidly identify potential members. As a result, there is a need
for automated high-throughput member classification approaches that leverage their demonstrated tertiary and
functional homology.

Results: We developed an SVM-based model to predict sequential tri-disulfide peptide (STP) toxins from peptide
sequences. One optimized model, called PredSTP, predicted STPs from training set with sensitivity, specificity, precision,
accuracy and a Matthews correlation coefficient of 94.86 %, 94.11 %, 84.31 %, 94.30 % and 0.86, respectively, using 200
fold cross validation. The same model outperforms existing prediction approaches in three independent out of sample
testsets derived from PDB.

Conclusion: PredSTP can accurately identify a wide range of cystine stabilized peptide toxins directly from
sequences in a species-agnostic fashion. The ability to rapidly filter sequences for potential bioactive peptides
can greatly compress the time between peptide identification and testing structural and functional properties
for possible antimicrobial and insecticidal candidates. A web interface is freely available to predict STP toxins
from http://crick.ecs.baylor.edu/.

Keywords: Machine learning, SVM, Tri-disulfide peptide toxins, Sequential tri-disulfide peptides (STPs), Inhibitory cytine
knot (ICKs), Cylotides, Nonknotted STPs, Insecticidal peptides, Antimicrobial peptides
Background
Certain proteins are known to be toxic to living organisms
[1–3] and this toxicity can serve to provide defense for the
host organism against opportunistic insects and microor-
ganisms. In medicine and agriculture, naturally occurring
toxic proteins provide an alternative to the rapidly
dwindling supply of effective synthetic chemical insecti-
cides, antimicrobials and antifungals [4–7].
Structural stability is critical to the success of these toxic

peptides [8]. For example, the physiological environment
* Correspondence: Erich_Baker@Baylor.edu
1Institute of Biomedical Studies, Baylor University, Waco, TX, USA
4Department of Computer Science, Baylor University, One Bear Place #97356,
Waco, TX, USA
Full list of author information is available at the end of the article

© 2015 Islam et al. This is an Open Access art
(http://creativecommons.org/licenses/by/4.0),
provided the original work is properly credited
creativecommons.org/publicdomain/zero/1.0/
of an organism contains proteases and highly variable pH
which can greatly impact peptide integrity. While a
number of approaches can increase the stability of
peptides under adverse environments [9, 10], the
inclusion of disulfide bonds is one natural way to
increase stability [11, 12]. Conversely, in several cases,
disulfide bonds may hinder the potent activity of a
peptide [13, 14], much work is being undertaken to
elucidate disulfide rich stable toxic peptides as insecticides
[15, 16], antimicrobial peptides [17] and therapeutic
potentials [18, 19].
Despite a wide range of diversity based on their

sources and modes of actions, all cystine stabilized
toxins contain a fold with multiple disulfide connectivity
[19]. A sequential array of tri-disulfide connectivity is
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regarded as the most stable [20]. It has a compact cyst-
ine trio, where the first cysteine participating in the fold
makes a disulfide bond with the fourth cysteine, the sec-
ond one with the fifth cysteine and the third one with
the sixth cysteine (C1–C4, C2–C5, C3–C6). There may
be other cysteines in the primary sequence of these pep-
tides, but they do not participate in that sequential tri-
disulfide connectivity. This class of proteins includes
several large protein families such as knottins [21], scor-
pion toxin-like superfamily [22], cyclotides [23], and a
substantial proportion of diverse peptides comprising
antimicrobial peptides and defensins [24]. For clarity,
toxic peptides containing this particular stable disulfide
connectivity can be referred to as sequential tri-disulfide
peptide toxins (STP toxins). Cystine stabilized toxins
which do not contain the exact STP bonding array may
also offer stability and toxicity [25–28] and can be de-
noted as nonsequential tri-disulfide peptides (NTPs)
(Fig. 1). While STP toxins imply a compact tri-disulfide
tertiary confirmation, NTPs toxins may contain both
compact or non-compact tri-disulfide folds (Fig. 2).
STP toxins can be further divided into three major

groups based on their canonical 3D definitions: Cyclo-
tides [29, 30], inhibitor cystine knots (ICKs) [11] and
nonknotted STPs [31–33]. Cyclotides form cyclization
through N-C terminus adherence and are renowned as
stable peptides containing the sequential tri-disulfide
array [34]. In this type of peptide, the third disulfide
bond penetrates through the other two disulfide bonds
participating in the array and forms a knotted macro-
cycle of disulfide bonds. ICKs, also known as knottins,
are a second type of STPs [35]. They contain the same
knotted macrocycle as cyclotides but do not necessarily
take the cyclic form. The third type has three sequen-
tially paired disulfide bonds but the third bond does not
penetrate the macrocycle, preventing the formation of a
‘knot’. This group may actually contain as many toxins
as the first two subgroups combined and includes scor-
pion toxin-like peptides [22, 33], insect peptides [36],
plant peptides [37], and a variety of other peptides. All
three STP subgroups are characterized by high stability
and toxicity [32, 38–41].
Although STP toxins show similarity in their function

and highly constrained folds, they share little sequence
identity [11, 31]. As a consequence, discovery of new
STPs has traditionally been slow and almost exclusively
based on functional properties. In the case of ICKs, an
automated discovery process based on sequence similarity
using BLAST has previously been paired with sequence
and structural algorithms (Knoter 1D and 3D, respect-
ively) to precisely verify knottin candidates [11, 42]. The
discovery of knottins via sequence similarity has produced
an extensive and well-organized database, despite a scope
limited to sequence similarity [25]. Cypred [43] is another
relevant software that can predict cyclic proteins and a
significant subset of these cyclic peptides have STP like
connectivity. While there is no known software to predict
non-knotted STPs, there are databases focusing on limited
specific families, such as CyBase for cyclotides [44, 45],
Conoserver for conotoxins [46] and Arachnoserver for
spider toxins [47], but these have little broad application.
Machine learning approaches offer one possible solu-

tion for the broad discovery of STP toxins through the
use of soft or fuzzy classification schemas, based on
salient STP features that extend beyond a reliance on
primary sequence similarity. Logic-based machine learn-
ing has been used previously to classify the 2D structure
of α/α domain type proteins [48], protein-protein interac-
tions [49] or functional classifications of proteins from
primary sequence. In particular, Support Vector Machines
(SVM), a robust class of machine learning approaches
[50], have been successfully used to predict cyclic proteins
[43], 2D and 3D protein structures [51, 52] and subcellular
localization [53] from primary sequence.
Here, we illustrate a species-agnostic machine learning

methodology, called PredSTP (http://crick.ecs.baylor.edu),
which is designed to nominate undefined STPs having low
sequence identity with currently described STPs. Efficient
discovery of new functional members of this class of
proteins will enhance our repertoire of potentially stable
insecticidal and antimicrobial proteins.

Methods
Known STP sequence collection
Sequence of ICKs and cyclotides (knotted STPs)
were collected from the Knottin database (http://
knottin.cbs.cnrs.fr/) and 167 sequences with solved
3D structures were obtained from this source. An
additional 36 sequences of nonknotted STPs with
known 3D structures were collected from PDB with
90 % sequence identity (http://www.rcsb.org/, June,
2013). Our total set of 204 candidate sequences (167
from the knottin database and 37 from PDB) were
further reduced to remove redundant sequences, de-
fined as sequences sharing ≥ 90 % sequence identity
using CD-HIT [54, 55]. A total of 108 sequences were
retained from the knottin database set and 36 sequences
were from the PDB set, leaving 144 canonical STPs
(Additional file 1: Supplement 1). The mean, standard
deviation and range of the number of residues in the
positive training set are 42.20, 15.70 and 23–143, respect-
ively, with an average number of 6 cysteines per chain.

Control negative sequence collection
Sequences classified as negative control were collected
from PDB using a criterion that was species agnostic and
stipulated the exclusion of STPs through positive matches
to PDB small proteins (Additional file 1: Supplement 2).

http://crick.ecs.baylor.edu
http://knottin.cbs.cnrs.fr/
http://knottin.cbs.cnrs.fr/
http://www.rcsb.org/


Fig. 1 Diagrams of the disulfide connectivity of different cystine stabilized toxic peptides. a This figure illustrates the pattern of disulfide connectivity
of different types of STP toxins (knotted and non-knotted). Each type is annotated with its name, PDB id, function and jmol estimated average 3D
structural distance between disulfide bonds. b Illustrates the pattern of disulfide connectivity of NTP toxins with the same type of information
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393 sequences were classified as non-STP sequences for
the purposes of this study. The mean, standard deviation
and range of the number of residues in the chains of the
negative training set are 63.16, 25.92 and 9–160, respect-
ively, with an average number of 6 cysteines per chain.
Independent test sequence collection
Seven independent sets of sequences were collected to
verify the robustness of the model (Table 1). Among
these were sets classified according to Protein Data Bank
(PDB, July 2013) criteria as Eukaryote, Bacteria, Archaea,



Fig. 2 Comparison of the compactness of disulfide bonds in different types of tri-disulfide array containing peptides. Illustration of distances
among the non-pairing sulfur molecules participating in the tri-disulfide array. Distances between different sulfur molecule pairs (yellow balls)
were measured using jmol software. The mean of these distances indicates the average distance among the disulfide bonds demonstrating the
compactness of the tri-disulfide fold in the peptide. a, b, c and d show distances of a sample representative of knotted STPs, nonknotted STPs,
compact NTPs and non-compact NTPs, respectively, together with their PDB ids. The average of distance in STP toxins (a and b) is typically less
than 0.85 nm, while it is more than 1.2 nm in other tri-disulfide peptides (Non-compact NTPs, data not shown) (d). Some NTPs demonstrate a
similar compactness (average distance) to STPs and can be designated as compact NTPs (c)
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Virus and Unassigned. In addition, a set of proteins
whose sequences were recently solved by NMR and de-
posited in PDB (July 04, 2012 to March 25, 2014)
(NewNMR751) and also the Structural Classification of
Protein (SCOP) PDB subset were used (Smallprotein163).
Small protein sequences were retrieved with the following
parameters: (a) resolution < 1.5 Å, (b) protein chain
but not DNA/RNA/Hybrid, and (c) limited to small
disulfide rich proteins and have similarity in size, num-
ber of disulfide bonds, cystine number and cystine
arrangements in their primary structure. The result in-
cluded STPs, rubredoxins, BPTI-like, snake toxin-like,
crambin-like, insulin-like, and high potential iron pro-
teins among others.
Defining the putative STP cystine motif
STP motifs consist of six cysteine residues (C1–C6)
flanked by varying number of non-cysteine residues
(Fig. 1). This set of consecutive cysteines is identified
here by elucidating the distance between each consecu-
tive pair of cysteines, i and i + 1 as ΔCi,i+1 (cysteine
loops). Based on our global analysis of STP motifs, if the
min(ΔCi,i+1) is greater than three, then the motif is not



Table 1 Description of independent test sets analyzed by the
new model (PredSTP)

Independent test
sample

Query parameters
(PDBa)

Number
of proteins

Number
of chains

Small protein 92 ○ SCOP: Small
Proteins

92 163

○ Experimental
Method: X-RAY

○ Resolution: 1.499
or less

Only Eukaryote ○ TAXONOMY:
Eukaryota

45751 102748

Only Bacteria ○ TAXONOMY:
Bacteria (eubacteria)

31664 80664

Only Archaea ○ TAXONOMY: Archaea 3127 8366

Only Virus ○ TAXONOMY: Viruses 4629 18642

Unassigned ○ TAXONOMY:
Unassigned

479 980

Recently deposited
proteins solved by
NMR in PDB (July 2012
to March 25 2014)

○ Experimental Method:
solution NMR

657 751

aPDB date August, 2013 unless otherwise noted. Protein chain types only
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considered to contain a STP and is discarded (Additional
file 1: Figure S1). Likewise, if the min(ΔCi,i+1) is less than
or equal to three and located between C1 and C2 or C2
and C3 the motifs are disregarded as these motifs are
often found within electron transport-like proteins such as
ferredoxin, rubredoxin, and iron-sulfur proteins [56, 57].
Otherwise, the min(ΔCi,i+1) was defined to exist between
cysteines C3 and C4. This default pair of cysteines is
shifted to a higher pair of cysteines if there exist less than
2 additional c-terminus cysteines. For example, if after the
default C3 and C4 cysteines are identified, there is only
one c-terminus cysteine, then the min(ΔCi,i+1) is defined
as cysteines C4 and C5.
Proximity Length (P) and Normalized Proximity
Length (NP)
After putative STP motifs are identified, a set of three
proximity lengths are calculated: P1 = ΔC1,4; P2 =
ΔC2,5; P3 = ΔC3,6. Motifs of less than six cysteines, or
motifs defined as invalid by our criteria, were assigned
P1 = P2 = P3 = 0. A Normalized Proximity Length (NP)
was then assigned for each proximity length, P, result-
ing in three new values: NP1, NP2, and NP3. The NP
identifies the distance from the observed mean prox-
imity lengths of known STPs to the corresponding
bonded cysteines involved in STP cysteine loops in the
training set. For example, the average P for all STP
sequences in the training set is subtracted from the
calculated P value associated with its corresponding
proximity length and normalized as described in Eq. 1,
where �xPj is the average of the proximity lengths of
known STPs derived from the training set.

NPj∈ 1;2;3f g ¼ 100

Pj − �xPj
�� ��þ 10
� � ð1Þ

Detecting least loop length ratio
The least loop length is defined as the min(ΔCi,i+1) di-
vided by the total length of the peptide. This feature is
used as part of feature sets 5 and 6, see Additional file 1:
Supplement 3.

Detecting presence of amino acid between C4–C5 and
C5–C6
Data published describing loop lengths of ICKs and
cyclotides, which comprise a large subset of STPs [21],
motivated a Boolean feature for the presence of inter-
loop amino acids. A result of ‘true’ is returned if there is
a presence of a minimum of one amino acid in both of
the last two loops (C4–C5 and C5–C6) in a putative
STP motif.

Algorithm
We used a Support Vector Machine (SVM) classifier/
predictor implementation to elucidate STP toxins. The
SVM was implemented using the e1071 library in R
(2.15.1). Feature sets were assigned as described in the
Additional file 1: Supplement 3, and sensitivity, specifi-
city, precision and accuracy were determined after ten-
fold cross validation. Initial gamma and cost were set to
0.1 and 0.1, respectively, with the best output at 0.0587.
Given 144 STP and 393 non-STP chains, 100 and 300
random samples were chosen, respectively, for a training
set over 200 iterations. Feature sets were prioritized
based on accuracy.
STP sequences were predicted from the test sets

described previously (Table 1) using feature set 6. Due
to the limited throughput of the Knoter1D interface,
only the “NewNMR751” and “Smallprotein163” (pre-
dicted STP chains from the SCOPs derived subset) pre-
dictions where compared against Knoter 1D predictions
(http://knottin.cbs.cnrs.fr/Tools_1D.php) and validated
with Jmol by analyzing the disulfide connectivity using
the corresponding PDB files. Results from only the
eukaryotic test sets were filtered to remove sequences
with ≥ 30 % chain identity and compared against Jmol
analysis. Chains exhibiting canonical STP connectivity
(C1–C4, C2–C5, C3–C6) were initially considered as true
positives. True positives were further cross matched with
their PDB annotations to make the final confirmation.

http://knottin.cbs.cnrs.fr/Tools_1D.php
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Confusion matrix creation
A confusion matrix was created to perform the cross val-
idation test. True Positives (TP), False Positives (FP), True
Negatives (TN) and False Negatives (FN) were determined
from the confusion matrix. Sensitivity [TP/(TP + FN)],
specificity [TN/(TN+ FP)], precision [TP/(TP + FP)], accur-
acy [(TP +TN)/(TP + FN+TN+ FP)] and Mathews Cor-
relation Coefficient (MCC) [(TPXTN-FPXFN)/sqrt{(TP +
FP)(TP + FN)(TN+ FP)(TN+ FN) were calculated to evalu-
ate the performance of the algorithm.

PSI BLAST
The BLAST suite (blast-2.2.29+) was installed on a local
machine along with the appropriate dataset. The dataset
was the chains of proteins deposited in PDB, solved by
the NMR method, from July 04, 2012 to March 25,
2014. The selected threshold e-values PSI BLAST [58]
were 0.01, 0.1 and 0.5. The number of iterations for PSI
BLAST was 5. All other parameters were set as default.

Results
Evaluation of feature sets for machine learning outcomes
The training data set of 144 STP and 393 non-STP
chains was evaluated using randomized sampling over
Fig. 3 Schematic of the process followed to develop and evaluate the SVM
200 iterations to determine the optimal feature sets. All
of the 6 feature sets were examined (Additional file 1:
Supplement 3), and the sensitivity, specificity, precision,
accuracy and MCC scores were calculated (Fig. 3).
Feature set 6 demonstrated the best accuracy and MCC
with values of 94.30 %, and 0.86, respectively, and was
used for the basis of the remainder of the study. The
Receptor Operating Curve (ROC) for feature set 6 is
provided in the Fig. 4. In the rest of the article, the
model is referred to as PredSTP.

Classifying STPs from the smallprotein163 subset
from PDB
The SmallProtein163 data subset from PDB was ana-
lyzed to determine potential automated STP classifica-
tion. The median residue number of the chains in the
Smallprotein163 subset is 54, which is similar to the
number of residues in STP chains. In addition, 94 out of
the 163 chains contain at least 6 cysteines in their
primary sequences. From this subset, PredSTP was able
to identify 21 of the 163 potential chains as STP-
containing. These putative STP structures were verified
by examining their disulfide bonding patterns in Jmol.
Of the 21 identified chains by PredSTP, 14 of them were
based STP toxin classifier



Fig. 4 Receiver operating characteristic (ROCR) curves for different models. Receiver operating characteristic curves for the models generated
using 6 different feature sets. The area under curve (AUC) generated by feature set 1, 2, 3, 4, 5 and 6 are 0.84, 0.87, 0.87. 0.93, 0.92 and 0.94, respectively

Table 3 Comparison of evaluation matrices generated by PredSTP
using the training set, Smallprotein163 and NewNMR751 subsets
from PDB. The confusion matrix generated by PredSTP using the
corresponding datasets are provided in Additional file 1:
Supplement 4
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confirmed as true positives (Table 2). An analysis of the
142 negative STP chains predicted by PredSTP demon-
strated only one false negative. The sensitivity, specifi-
city, precision and accuracy for this particular dataset
were 93.33 %, 99.29 %, 66.66 % and 95.09 %, respectively
(Table 3). PDB ids and functions for the positive
predicted chains are provided in Additional file 1:
Supplement 5.

Testing primary sequences of recently deposited proteins
solved by NMR (newNMR 751)
PredSTP was tested against protein sequences with less
than 90 % sequence identity and recently solved (July 04,
2012 to March 25, 2014) by NMR. This set of 751 amino
acid chains is denoted as newNMR751 and has a median
number of 82 residues with 118 chains containing more
than six cysteines. The model detected 23 chains from
23 different proteins. Analyzing the disulfide connect-
ivity of the positive hits by Jmol, 21 chains were
confirmed as true positive. Based on the number of
Table 2 Analysis of PredSTP positive hits from smallprotein92 subset

Total PredSTP
positive chains

TRUE positive Knoter1D positive

21 14/21 1/21
the predicted outcomes, the sensitivity, specificity,
precision and accuracy for this particular dataset were
91.30 %, 99.72 %, 91.30 % and 99.46 %, respectively
(Table 3). The true positive chains were further classi-
fied into 9 ICKs, 5 cyclotides and 7 nonknotted STPs.
PDB ids and functions for positive predictions are pro-
vided in Additional file 1: Supplement 6. This set was
also analyzed by PSI BLAST [58] and Knoter1D [11].
Knoter1D detected 5 cyclotides, 3 of the 9 ICKs and
none of the nonknotted STPs. PSI BLAST (e-value
0.01) detected 12 chains comprising 1 ICK, 5 cyclo-
tides, 5 nonknotted STPs and 1 false positive; PSI
BLAST (e-value 0.1) detected 21 chains comprising
five ICK, five cyclotides, seven nonknotted STPs and
four false positives; PSI BLAST (e-value 0.5) detected
Source of data Sensitivity Specificity Precision Accuracy

Training set over 200
iterations

94.86 94.11 84.31 94.30

Smallprotein163 93.33 99.29 66.66 95.09

NewNMR751 91.30 99.72 91.30 99.46
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52 chains comprising five ICK, five cyclotides, seven
nonknotted STPs and 35 false positives (Fig. 5, Table 4,
Additional file 1: Supplement 7).

Evaluation of the PredSTP through scanning and
analyzing the Taxonomy subsets from PDB
Finally, after testing the performance of PredSTP against
chains from the “SmallProtein163” and “NewNMR751”
subsets, which consist of sequences of similar size to the
training set, we tested against a set based on diverse tax-
onomy. We analyzed “Eukaryota”, “Bacteria”, “Viruses”,
“Archaea” and “Unassigned” subsets of proteins from
the PDB (Table 5). The percentage of positive chains in
“Eukaryote” (0.61) is more than the percentage of pre-
dicted positive chains for the other three major super
kingdoms. In “Eukaryotes”, 636 chains were predicted as
STP positive. This number was reduced to 139 chains
when chains sharing > 30 % sequence similarity were re-
moved and the first 100 chains (based on PDB id) were
manually cross-matched with Jmol analysis to determine
true positives. This resulted in a 82 % precision rate
(Additional file 1: Supplement 8). In “bacteria”, “virus”
and “unassigned” subsets, the precisions were 50 %,
33.33 % and 90 %, respectively (Table 6). In the “Ar-
chaea” subset, PredSTP did not predict any potential
STP toxins, resulting in no precision. In total, 115 posi-
tive hits were analyzed from the “Taxonomy” subset and
93 chains were found as true positive with an overall
80.86 % precision. Individual precision rates for bacteria
and viruses were low; this is potentially an artifact of
their small sizes. In addition, some bacteria may contain
iron-sulfur like transport proteins that mimic STPs by
primary structure but are functionally distinct. The
PredSTP PSI BLAST 
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Fig. 5 Comparison of the true positive hits detected in newNMR testset us
true positive hits detected by testing recently deposited proteins chains so
methods. Each stack color represents a different type of fold. PredSTP dete
E-value 0.01 detected 1 ICK, five Cyclotides and five nonknotted STPs; PSI B
seven nonknotted STPs; Knoter1D detected three ICKs and five Cyclotides
number of protein chains containing a minimum of six
cysteines and consisting of a maximum 75 residues
were also calculated for the same taxonomy subsets
from PDB, and the percentages of predicted STPs were
30.08, 6.66, 0, 14.81 and 47.61 for Eukaryotes, bacteria,
archaea, virus and unassigned, respectively (Table 7).

Discussion
A wide array of toxic peptides, with varying bonding
patterns, can be stabilized by disulfide bonds. A large
number of these peptides include a sequentially paired
disulfide bonding pattern (C1–C4, C2–C5, C3–C6), con-
firming a compact array of this cystine trio which we
refer to here as Sequential Tri-disulfide Peptides (STP).
This array includes the well-defined knottin and cyclo-
tide groups that have knotted tertiary structures. They
also include a large number of stable toxins that contain
the STP bonding pattern but lack the knotted motif
typically created by C3–C6 in knottins and cyclotides.
Going beyond these groupings, there are other stable
toxins that exhibit compact tri-disulfide bonding pat-
terns, but not in the sequentially paired model, including
the ladder-type toxins and what we have distinguished
as NTPs (Fig. 1).
It is imperative that successful machine learning algo-

rithms select proper training sets and features. We con-
structed our negative training set with a collection of
small proteins verified from the NMR subset deposited
in PDB between 2000 and 2010. They contain a similar
number of total residues as STPs, and a number have
tri-disulfide bonds (NTPs) in their 3D structure. After
evaluating several feature sets, a combination of motif-
based features and features based on individual amino
PSI BLAST 
E−value 0.5

Knoter1D

Fold type
ICK
Cyclotide
Nonknotted.STPs

ted by different methods

ing different methods. Bar diagram of a comparison the number of
lved by NMR in PDB (July, 4 2012 to March, 25 2014) using different
cted nine ICKs, five Cyclotides and six nonknotted STPs; PSI BLAST with
LAST with E-value 0.1 and 0.5 detected five ICKs, five Cyclotides and



Table 4 Comparison of number of hits detected by different
methods in recently deposited proteins solved by NMR in PDB
(July 2012 to March 25, 2014)

Method Positive
hits

True
positive
hits

False
positive
hits

Calculated
sensitivity (%)
for STPsa

Calculated
precision (%)
for STPs

PredSTP 23 21 2 91.30 91.30

PSI BLAST
with e-value 0.01

13 12 1 52.17 92.30

PSI BLAST
with e-value
0.1

21 17 4 73.90 80.95

PSI BLAST with
e-value 0.5

52 17 35 73.90 32.69

Knoter1D 8 8 0 57.14 100
aSensitivity for PredSTP and PSI BLAST was calculated based on total
experimentally positive STPs (22 chains) in the NewNMR subset from PDB,
while sensitivity for Knoter1D was calculated only for Knottins (knotted STPs)

Table 6 Comparison of positive hits detected by PredSTP in
different taxonomy based subsets from PDB

PDB subset PredSTP
positive hits

True (structurally)
positives

Percent of true
positives (Precision)

Eukaryotes 139 82 (100)a 82

Bacteria 2 1 50

Archaea 0 0 NA

Viruses 3 1 33

Unassigned 10 9 90

Total 115a 93 80.86
aFor eukaryotes, 100 of the 139 proteins were analyzed in Jmol to find true
positives
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acids (C, S, H, K, L) generated the best predictions, indi-
cating that differentiation between STPs and nonSTPs
lies in both inclusive motifs and primary sequences.
In order to evaluate the performance of PredSTP on

out of sample data we developed several independent
test sets. The Smallprotein163 and NewNMR751 sets
from PDB consist of a substantial number of cysteine
rich small proteins. PredSTP showed a better accuracy
(95.09 %) for Smallprotein163 than it did for the training
set (94.30 %), while the precision was comparatively low
(66.66 %). The only STP not detected (PDB id 2C4B)
was a heterogonous fusion protein of an STP and a cata-
lytically inactive variant of RNase barnase [59]. On the
other hand, a test of performance of PredSTP on the
NewNMP751 subset showed an excellent accuracy
(99.46 %) with a better precision (90.30 %) than it
showed on the training set (Table 3). These results in-
dicate that PredSTP retained its performance when
distinguishing STPs from out of sample cysteine rich
small proteins.
Knoter1D [21] and Cypred [43] are examples of re-

lated software to discover cystine stabilized peptide
toxins. Cypred is dedicated for detecting cyclic peptides.
Knoter 1D is optimized to identify only knotted STPs
Table 5 Discovery of STPs across major domains using PDB protein

PDB subset Total # of proteins
analyzed

Total # of chains Positive
predicte

Eukaryotes 45751 102748

Eubacteria 31664 80664

Archaea 3127 8366

Viruses 4629 18642

Unassigned 479 980
aFor eukaryotes, 139chains were obtained after screening 636 chains and removing
using an algorithm that implements BLAST and is
dependent on sequence identity with known knotted
STPs. This approach does not allow Knoter1D to expand
the inclusion of knotted STPs beyond a threshold of se-
quence identity. However, both knotted and non-knotted
STPs vary in their sequences depending on the source
organism. To compare our sequence independent algo-
rithm to these approaches, we used the recently depos-
ited protein structure in PDB (NewNMR751). Knoter1D
detected only 8 out of 14 knotted STPs (ICKs and cyclo-
tides) and did not detect six new ICKs as they differ sig-
nificantly from the sequences of the known ICKs
(knotted STPs) (Fig. 5). While we compared PredSTP
with PSI-BLAST, we used three different E-values to ob-
tain the optimum result from PSI BLAST. Among the
three versions, PSI BLAST with E-value 0.1 can detect
21 chains that exhibit the highest sensitivity with a mini-
mum number of 4 false positives. On the other hand,
PredSTP detected 21 STPs including the six new ICKs
missed by the detection method of Knoter 1D and PSI
BLAST. Therefore, in terms of detecting all type of STPs
(cyclotides, ICKs and nonknotted STPs), PredSTP dem-
onstrates better sensitivity and precision than PSI
BLAST (Table 4).
In order to illustrate the capability of predicting tri-

disulfide bonded peptides using PredSTP, we utilized the
known paucity of disulfide bonding in bacteria and
archaea as compared to eukaryotes [60]. We anticipated
a higher proportion of STPs in eukaryotes with respect
sequence data and PredSTP

chains
d by PredSTP

Number of proteins containing
positive chains

Percentage of
positive chains

636 139a 0.61

3 2 0.003

0 0 0

4 3 0.02

10 10 1.02

those with ≥ 30 % sequence identity



Table 7 Comparison of number of chains (restricted and unrestricted by size) with a minimum of six cysteines to the number of
predicted STPs from each domains in PDB

PDB subset Total # of chains PredSTP Type 1 chain Type 2 chain Percent of predicted STPs in type 1 chainsa Percent of predicted STPs
in type 2 chainsb

Eukayotes 102748 636 2114 32348 30.08 1.96

Bacteria 80664 3 45 9294 6.66 0.03

Archaea 8366 0 6 663 0.00 0

Virus 18642 4 27 3477 14.81 0.11

Unassigned 980 10 21 43 47.61 23.25
aType 1 chain: chains with a maximum of 75 residues and a minimum of six cysteines
bType 2 chain: chains with a minimum of six cysteines regardless chain size
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to the total number of cysteine chains with a maximum
of 75 residues and a minimum of six cysteines. The
threshold of 75 is chosen because it is well below the
length of the longest chain (86 residues long) detected
as STP by PredSTP among taxonomy subsets. After test-
ing protein chains from different organismal taxonomy
subsets in PDB, we confirmed this by observing that
only 6.66 % and 0 % of chains possessing a minimum of
six cysteines and maximum 75 residues were predicted
as STPs in bacteria and archaea, respectively (Table 7).
In contrast, 30 % of the small cysteine-containing chains
were predicted as STPs in eukaryotes.

Conclusion
PredSTP is capable of predicting STP toxins containing a
compact tri-disulfide domain and exhibiting identical
functional properties in a sequence identity independent
manner. Our algorithm implements an automated method
to find cystine stabilized toxins containing a compact ar-
rangement of tri-disulfide domain with minimal sequence
identity. Therefore, this approach provides useful direc-
tions for enhancement of theoretical and experimental
research to find new antimicrobial peptides, insecticides
and other stable peptide drug candidates by shortening
the discovery time of potential bioactive peptides. Further
research may benefit from a model that classifies all cyst-
ine stabilized peptide toxins (inhibitor or antimicrobial)
into the different subgroups based on source, mode of
action, and target organisms.
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