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Abstract: Titanium alloys have been widely used in the structural parts of deep-sea equipment and
aviation industries. In this paper, the effects of loading frequency and specimen geometry on the high
cycle and very high cycle fatigue life of the high strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X
is investigated by conventional fatigue test and ultrasonic frequency fatigue test. The results
indicate that ultrasonic frequency could enhance the fatigue life of the highstrength titanium alloy
compared with that under conventional frequency, and the frequency effect is related to the stress
amplitude. This phenomenon is explained by the heat generation in specimens and heat dissipation, in
combination with the high strain rate leading to the higher yield strength in the ultrasonic fatigue test.
Moreover, it is indicated that the effect of specimen geometry on the fatigue life of the highstrength
titanium alloy could be evaluated from the view of control volume.

Keywords: high cycle fatigue; very high cycle fatigue; frequency effect; specimen geometry effect;
high strength titanium alloy

1. Introduction

Ultrasonic fatigue testing systems have been widely used in fatigue tests, especially for very high
cycle fatigue (VHCF) due to its high efficiency [1–7]. However, one important issue for the ultrasonic
fatigue test technique is that the variation of strain rate and the heat generation in specimens produced
by high cyclic loading may have great influence on the fatigue behavior of materials and lead to
incorrect results. Many studies have been carried out to investigate the frequency effect by ultrasonic
fatigue test. For example, Morrissey and Nicholas [8] showed that the effect of frequency including
the temperature rise during ultrasonic fatigue test was negligible for a Ti-6Al-4V alloy in a VHCF
regime. Takeuchi et al. [9] investigated the frequency effect on VHCF property of smooth and notched
specimens of a Ti-6Al-4V alloy at different heat treatments. It was shown that the frequency effect was
negligible for the specimens of Heat A and B presenting interior failure. However, as the specimens
of Heat C developed only surface failure, the ultrasonic fatigue test showed higher fatigue strength
than that under a conventional fatigue test. The notched specimens showed almost no frequency
effect. Guennec et al. [10] showed that the ultrasonic frequency test had great influence on the fatigue
strength of a low carbon steel compared to that under conventional frequency test. In their results,
the frequency effect was discussed by the micro-plasticity behavior such as the stress-strain hysteresis
loop and the local misorientation. The results by Morrissey et al. [11] indicated that the effect of
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frequency on high cycle fatigue of a Ti-6Al-4V alloy was related to the stress ratio R. At low stress ratio
R, the fatigue strength increased with the increase of frequency.

On the other hand, the fatigue strength or fatigue life of materials usually decreases with the
increase of specimen size due to the fact that the larger specimens contain a higher possibility of defects
and microstructure inhomogeneities [12,13]. Shirani and Härkegård [14] used Weibull’s weakest-link
method to study the specimen size effect in ductile cast iron for wind turbine components. Furuya [15]
investigated the effect of specimen size on VHCF behavior of high strength steels by ultrasonic fatigue
test. It was indicated that the fatigue strength was lower for the specimen with larger control volume
due to the appearance of larger inclusions. Sun et al. [16] assumed that a large specimen was seen
as a number of small specimens via control volume and developed a method to evaluate the effect
of specimen size on the fatigue life from the point of statistical analysis. It was shown that, if the
fatigue life of small specimens followed Weibull distribution, the fatigue life of large specimens also
followed Weibull distribution. Wang et al. [17] combined the critical distance and the highly stressed
volume method to investigate the specimen size effect on the low cycle fatigue life of a TA19 titanium
alloy plate. It was shown that the combining method was better than the theory of critical distance
method alone.

Titanium alloys have excellent performance such as high fatigue resistance, high corrosion
resistance, and high temperature resistance, and have been widely used in deep-sea equipment and
aviation industries. Many studies have been performed for the microstructural, mechanical, and fatigue
properties of titanium alloys [18–20]. Ti-6Al-2Sn-2Zr-3Mo-X is a new type of titanium alloy with high
yield strength and high fracture toughness, which could be used in structural components in deep-sea
equipment such as submersibles. In this work, the conventional fatigue test and ultrasonic fatigue test
were first performed for this high strength titanium alloy. Then, the effects of ultrasonic frequency and
specimen geometry on the high cycle fatigue and VHCF life of the titanium alloy were investigated.
The effects of frequency and specimen geometry were also analyzed from the view of statistical analysis
and the control volume.

2. Materials and Methods

The material used was a highstrength titanium alloy, Ti-6Al-2Sn-2Zr-3Mo-X, directly cut from a
forged flat plate parallel to the rolling direction. The tensile test was conducted on three cylindrical
specimens with diameter of 5 mm and straight length of 30 mm in test section by the Landmark
servohydraulic test system (MTS Systems Corporation, Eden Prairie, MN, USA). The relation between
the stress and strain is shown in Figure 1. The tensile strength and yield strength are 1072 MPa and
978 MPa, respectively. The microstructure of the material was basket-weave consisting of α phase
lamella and βtrans, as shown in Figure 2.
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Figure 2. Microstructure of the Ti-6Al-2Sn-2Zr-3Mo-X alloy.

Three kinds of specimens with different geometry shapes were used for fatigue test, which were
named as HC specimen, HU specimen and DU specimen and shown in Figure 3. The HC specimen
was conducted by the MTS Landmark servohydraulic test system at room temperature. The frequency
was 35 Hz and the stress ratio R was −1. The HU specimen and DU specimen were performed by
an ultrasonic fatigue test systemUSF-2000 (Shimadzu, Kyoto, Japan) without intermittence at room
temperature in air. The frequency was 20 kHz and the stress ratio R was −1. For the ultrasonic fatigue
test, compressive cold air was used to reduce the temperature raise of the specimens during the fatigue
test. A thermocouple (Yuyao Metal Electric Meter Co., Ltd., Yuyao, China) was applied for measuring
the surface temperature of the small section of a few specimens, and the high-temperature adhesive
YK-607 (Yikun Electronic Technology Co., Ltd., Macheng, China) was used to adhere the thermocouple
and the surface of the small section of specimens, as shown in Figure 4. Before fatigue test, the surface
of the test section was ground and polished in order to eliminate machine scratches. The fracture
surfaces of all failed specimens were observed by the JSM-IT300 scanning electron microscope (SEM)
(JEOL, Tokyo, Japan).
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conventional fatigue test (HC specimen); (b) Hourglass specimen for ultrasonic fatigue test (HU
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Figure 4. Picture of the thermocouple adhered to the surface of the small section of a HU specimen.

3. Results and Discussion

3.1. Experimental Results and Analysis

Figure 5 shows the stress-life (S-N) data of the specimens with different geometries, in which the
stress concentration factor 1.05 was incorporated in the stress amplitude for the HC specimen; the solid
line denotes the median S-N curve obtained from the data from the HC specimen and the dashed line
denotes the median S-N curve obtained from the data of both the HU specimen and DU specimen.
The original experimental data are listed in Table 1. It is seen from Figure 5 that the effect of ultrasonic
frequency on the fatigue life was related to the stress amplitude. For relative lower stress amplitude,
the fatigue life under ultrasonic fatigue test was longer than that under the conventional fatigue test.
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Figure 5. S-N data of specimens with different geometry shapes, in which the arrow denotes the
specimen unbroken.

Figures 6 and 7 show the morphology of the fracture surface of several failed specimens under
conventional fatigue test and ultrasonic fatigue test, respectively. It is seen that, for both conventional
and ultrasonic fatigue tests, the fatigue failure initiates not only from the specimen surface but also
from the interior of the specimen. This indicates that the crack initiation does not always occur in the
maximum stress region for the present high strength titanium, which could occur at the location where
the stress is lower than the maximum stress. The SEM observations of the fracture surface also indicate
that the ultrasonic frequency fatigue test did not change the crack initiation mechanism compared with
the conventional frequency fatigue test. It is noted that some of the fracture surfaces of the specimens
under ultrasonic fatigue test burned out due to the final abrupt raise of temperature before fracture.
For these specimens, the crack initiation sites were not observed.
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Table 1. Original experimental data from the specimens shown in Figure 5.

HC Specimen HU Specimen DU Specimen

σa (MPa) Nf σa (MPa) Nf σa (MPa) Nf

882 8.98 × 103 740 4.99 × 104 660 2.75 × 106

882 9.40 × 103 700 2.72 × 105 660 9.34 × 105

882 9.82 × 103 660 2.84 × 106 660 4.64 × 105

819 1.79 × 104 660 1.78 × 106 660 4.13 × 105

819 2.48 × 104 660 1.48 × 106 660 2.61 × 105

819 1.82 × 104 660 1.46 × 106 660 6.99 × 105

819 1.70 × 104 660 6.64 × 105 660 2.55 × 105

756 4.34 × 104 645 7.10 × 106 660 5.10 × 105

756 4.36 × 104 635 3.88 × 107 - -
756 2.58 × 104 635 2.91 × 107 - -
756 4.83 × 104 635 4.09 × 107 - -
693 2.39 × 105 635 1.46 × 107 - -
693 6.45 × 104 635 1.42 × 107 - -
693 3.27 × 105 635 3.46 × 106 - -
693 7.97 × 104 610 5.85 × 107 - -
693 4.04 × 105 600 4.65 × 108 - -
693 4.16 × 104 610 * 5.0 × 108 - -
693 4.90 × 104 590 * 1.0 × 109 - -
693 8.29 × 104 560 * 1.0 × 109 - -
630 2.74 × 105 - - - -
630 2.77 × 106 - - - -
630 2.52 × 106 - - - -
630 3.82 × 104 - - - -

* It denotes the specimen remained unbroken.
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Figure 7. SEM observations of fracture surfaces for HU specimens. (a) Crack initiates from specimen
surface, σa = 635 MPa, Nf = 2.91 × 107; (b) Crack initiates from the interior of specimen, σa = 600 MPa,
Nf = 4.65 × 108.

3.2. Effect of Specimen Geometry

For clarifying the effect of specimen geometry on fatigue life, the cumulative probability of fatigue
life in logarithmic scale under the stress amplitude σa = 660 MPa is plotted in Figure 8. The values
of log10 N f are ranked as log10 N f ,1 ≤ log10 N f ,2 ≤ . . . ≤ log10 N f ,n, and the cumulative probability of
log10 N f no larger than log10 N f ,i is calculated by Reference [21].

F(log10 N f ) =
i − 0.3
n + 0.4

(1)

where n is the number of specimens, and i = 1, 2, . . . , n is the sequence number.
As shown in Figure 8, the logarithmic fatigue life scatters in the range of 5.82~6.45 for HU

specimens and in the range of 5.41~6.44 for DU specimens. This indicates that the fatigue life of HU
specimens and DU specimens is approximately in the same scatter band, i.e. the difference of the
fatigue life is negligible when the scatter of the fatigue life is taken into account.

Further, the effect of specimen geometry on the fatigue life was analyzed in view of the control
volume, which has been effectively used to correlate the specimen size effect on the fatigue strength
or fatigue life [16,22,23]. Considering that the fatigue failure for the present high strength titanium
initiates not only from the specimen surface but also from the interior of the specimen, the control
volume was taken as the region subjected to larger than 90% of the maximum stress as used in the
literature [16,22,23], which is 67.1 mm3 for HC specimen, 28.3 mm3 for HU specimen, and 34.2 mm3 for
DU specimen calculated by finite element analysis. It is seen that the difference of the control volume
for the HU and DU specimen is very small. Hence, the effect of specimen geometry on the fatigue
life is negligible from the view of control volume, which is consistent with the results in Figure 8.
This indicates that the effect of specimen geometry could be correlated through the control volume of
the specimens for the present titanium alloy.
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3.3. Ultrasonic Frequency Effect on Fatigue Life

According to the results in Section 3.2, the effect of specimen geometry on the fatigue life of
the present titanium alloy could be correlated through the control volume of specimens. For the
present three types of specimens with small differences of control volume (the control volume of HC
specimen is 2.37 times that of the HU specimen, and is 1.96 times that of the DU specimen), the effect of
specimen geometry is not taken into account when dealing with the effect of frequency on the fatigue
life. Considering the scatter of fatigue life, the median S-N curves under both the conventional fatigue
test and the ultrasonic fatigue test were obtained using the method by Sun et al. [16] and were used for
analyzing the effect of frequency, as shown in Figure 5. It is seen that the effect of ultrasonic frequency
on the fatigue life is related to the stress amplitude. For some stress levels, the frequency effect might
be negligible. While for the relative lower stress level, the ultrasonic frequency improves the fatigue
life, and this effect tends to increase with the decrease of the stress amplitude.

As is well known, one important factor influencing the validity of ultrasonic fatigue tests is that
the internal heat generation in specimens during the fatigue test might lead to inaccurate results
in high cycle and VHCF regimes. Figure 9 shows the variation of the surface temperature of the
smallest section versus the loading cycles for HU specimens during ultrasonic fatigue test. It is seen
from Figure 9 that the surface temperature of the small section of specimens strongly depends on
the stress amplitude, which increases with increasing the stress amplitude. For relative lower stress
amplitude (400 MPa and 550 MPa), the temperature stabilizes very rapidly (at the loading cycles lower
than 5 × 105), and the stable temperature is just a little higher than the room temperature (25 ◦C). So,
the effect of self-heating in specimens might be negligible at the lower stress amplitude (e.g., less than
550 MPa). While for relative higher stress amplitude, the temperature increases sharply at the first
hundreds of thousands of loading cycles, then increases slowly with the loading cycles, and does not
stabilize even up to 107 cycles. This indicates that the heat dissipation is effective for the lower stress
amplitude by the compressive cold air cooling system and the temperature of specimens are cooled
down. However, for the higher stress amplitude, the generated heat due to the local plastic deformation
and internal friction cannot be dissipated effectively under the identical cooling system, which induces
the decrease of fatigue life [24]. On the other hand, the high strain rate in the ultrasonic fatigue test
leads to the higher lower yield strength and enhances the fatigue life [25,26]. These factors together
result in the difference of the S-N curves under conventional frequency and ultrasonic frequency
fatigue test, as shown in Figure 5.
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4. Conclusions

This paper studies the effects of loading frequency and specimen geometry on the high cycle
fatigue and VHCF life of the high strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X by conventional
fatigue test and ultrasonic frequency fatigue test. It was shown that the ultrasonic frequency effect
on the fatigue life is related to the stress amplitude, although it does not change the crack initiation
mechanism compared with the conventional frequency fatigue test. The difference of the S-N curves
under the conventional frequency fatigue test and ultrasonic frequency fatigue test is explained by
the heat generation in specimens and heat dissipation, in combination with the high strain rate in
ultrasonic fatigue test which leads to the higher yield strength.

Moreover, the paper indicates that the control volume method could be used for correlating the
effect of specimen geometry on the fatigue life of the high strength titanium alloy.
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