
research papers

96 doi:10.1107/S0021889807059870 J. Appl. Cryst. (2008). 41, 96–103

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 9 August 2007

Accepted 16 November 2007

# 2008 International Union of Crystallography

Printed in Singapore – all rights reserved

Determination of absolute structure using Bayesian
statistics on Bijvoet differences

Rob W. W. Hooft,a* Leo H. Stravera and Anthony L. Spekb

aBruker AXS, PO Box 811, 2600 AV Delft, The Netherlands, and bBijvoet Center for Biomolecular

Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. Correspondence

e-mail: rob.hooft@bruker-axs.nl

A new probabilistic approach is introduced for the determination of the

absolute structure of a compound which is known to be enantiopure based on

Bijvoet-pair intensity differences. The new method provides relative probabil-

ities for different models of the chiral composition of the structure. The outcome

of this type of analysis can also be cast in the form of a new value, along with

associated standard uncertainty, that resembles the value of the well known

Flack x parameter. The standard uncertainty we obtain is often about half of the

standard uncertainty in the value of the Flack x parameter. The proposed

formalism is suited in particular to absolute configuration determination from

diffraction data of biologically active (pharmaceutical) compounds where the

strongest resonant scattering signal often comes from oxygen. It is shown

that a reliable absolute configuration assignment in such cases can be made

on the basis of Cu K� data, and in some cases even with carefully measured

Mo K� data.

1. Introduction

Bijvoet, Peerdeman and van Bommel were the first to

demonstrate that the absolute configuration of a chiral

molecule could be determined by X-ray crystallography

(Bijvoet et al., 1951). Their method was based on the complex

resonant scattering contributions to the atomic scattering

factors that make the intensities of Friedel-related reflections

(or their symmetry equivalents) different. This difference in

intensity (the ‘Bijvoet difference’) depends both on the atom

types present in the molecule and the wavelength of the

radiation used (Flack & Shmueli, 2007). The concept of

‘absolute configuration’ has since been generalized to ‘abso-

lute structure’ to include cases where the polarity of the

structure rather than the absolute configuration is determined

(Jones, 1984; Glazer & Stadnicka, 1989).

Traditionally absolute structure determination was based on

analysis of Cu K� data collected on a diffractometer with a

point detector for compounds containing atom types heavier

than phosphorus. Currently, most small-molecule structure

determinations are based on data collected on diffractometers

equipped with CCD detectors using Mo K� radiation. The

impact of this change is that often a more accurate, highly

redundant and complete data set is obtained, which, however,

often contains a weaker resonant scattering signal.

There exists a significant interest in the determination of the

absolute configuration of biologically active molecules (van

der Helm & Hossain, 1987). Unfortunately, many molecules of

interest do not contain atoms heavier than sulfur. In the past,

this problem was solved with the introduction of a heavier

atom in the structure, e.g. with the addition of HBr (Spek,

1976). The current trend is to attempt absolute structure

determination on the native compound, even when no atoms

heavier than oxygen are present.

Over time a number of methods for the determination of

the absolute structure have been proposed.

The most straightforward way of establishing the absolute

structure of a small enantiopure molecule is to refine both

enantiomers separately, subsequently select the absolute

structure with the lowest crystallographic R factor and test for

the statistical significance of the R-factor difference. The latter

is commonly done with the Hamilton test (Hamilton, 1965).

A much more sensitive method (Zachariasen, 1965; Engel,

1972) is to select a subset of reflections from the measured

data that are most sensitive to the absolute structure (rela-

tively weak reflections with a large Bijvoet difference), and

compare the calculated Bijvoet differences with the observed

differences. Just by comparing the signs of these differences,

the absolute structure can often be established even if the

difference in R factor is inconclusive. Although the absolute

structure can be determined using this method, it is not easy to

quantify the degree of certainty of the assignment. Le Page et

al. (1990) present a method to accompany an absolute struc-

ture determined in this way by a calculation of the probability

that the absolute structure should be inverted. For this

calculation use a binomial distribution. This method has not

found widespread use, and therefore its performance is diffi-

cult to assess.

Another variation on this method is used by the Bijvoet

program in the DIRDIF program suite (Beurskens et al., 1980;



Beurskens et al., 1999). This program uses a weighted average

of the signs of the Bijvoet difference (B). This method can be

very successful, but it needs a carefully selected subset of

Bijvoet pairs to be effective. The absolute structure assign-

ment using this calculation is accompanied by a standard

uncertainty, but it is very hard to establish the statistical

correctness of this value as it relies on distributions being

Gaussian, and disregards the careful selection of the reflection

subset. Also, no difference can be seen in this calculation

between a racemic twin and a weak resonant scattering signal:

both will result in smaller absolute values of B and larger

standard uncertainties.

Rogers (1981) was the first to introduce a parameter that

can be refined as part of the least-squares refinement. This

parameter encodes the ‘strength’ and sign of the measured

resonant scattering signal measured in units of f 00, the

imaginary component of the complex atomic scattering factor.

The Rogers � parameter was soon superseded by the Flack

x parameter (Flack, 1983). The Flack x parameter encodes the

relative abundance of the two components in an inversion

twin. The value of the Flack x parameter can be determined

using a full-matrix least-squares procedure [e.g. with the

TWIN/BASF instructions in SHELXL97 (Sheldrick, 1997)]. A

reasonable estimate of the Flack x parameter can be obtained

by determining the parameter separately; this is automatically

performed for all non-centrosymmetric structures in the

SHELX97 package. Since the Flack x parameter can correlate

with the atomic coordinates, especially for structures in space

groups that do not have a fixed origin, the estimate can be

inaccurate if its value deviates significantly from zero (Flack &

Bernardinelli, 2006; Flack et al., 2006).

Since the value of the Flack x parameter is the result of a

least-squares refinement, its standard uncertainty can be

derived from the covariance matrix. This standard uncertainty

can be used to quantify the degree of confidence in the

proposed absolute structure. Flack & Bernardinelli (2000)

discuss criteria for the reliability of the absolute structure

assignment based on the standard uncertainty in the Flack x

parameter value. Their analysis, starting from only the stan-

dard uncertainty, has to assume that the distribution is normal

also in its tails. The paper does not distinguish between the

probability of obtaining the absolute structure given the

observations and the probability of the observations given the

absolute structure. The Bayesian prior relating the two prob-

abilities is ignored. The Flack & Bernardinelli (2000) method

does not result in a quantitative statement about the absolute

structure assignment.

Parsons & Flack (2004) recently introduced a variation of

the refinement of the Flack x parameter. Their method relies

on the careful determination of a few selected Bijvoet differ-

ences [as the ratio ðIþ � I�Þ=ðIþ þ I�Þ] which can either be

obtained directly from a good redundant data set or by

carefully adding some extra observations. Parsons & Flack

(2004) show that this method increases the sensitivity of the

absolute structure determination.

Dittrich et al. (2006) recently reported advances in absolute

structure determinations made using ‘invarioms’. Invarioms

are aspherical scattering factors that take into account elec-

tron density deformations. Using invarioms instead of the

normal spherical scattering factors can improve figures of

merit as well as the standard uncertainties of all refined

parameters. Experience has shown that by using invarioms, the

standard uncertainty in the value of the Flack x parameter can

be significantly reduced, and that the calculated value of the

Flack x parameter is frequently closer to 0.0.

In the next section, we introduce a new way to determine

the absolute structure. The method applies Bayesian statistics

to the Bijvoet differences. The result of this approach is a

series of probabilities for different hypotheses of the absolute

structure. The solution with the highest probability can be

determined, and this can be used to map the results to a value

with standard uncertainty that can be directly compared with

the value of the Flack x parameter.

2. Theory and methods

For each Bijvoet pair of reflections, we can define

�F 2
c ðhÞ ¼ F 2

c ðhÞ � F 2
c ð�hÞ ð1Þ

and

�F 2
o ðhÞ ¼ F 2

o ðhÞ � F 2
o ð�hÞ: ð2Þ

Here, F 2
c are calculated intensities and F 2

o are observed

intensities. If we assume completely independent observations

of the two reflection intensities,

�2
�F 2

o ðhÞ
¼ �2

F 2
o ðhÞ
þ �2

F 2
o ð�hÞ: ð3Þ

Now, we can define a variable z as follows:

zh ¼
�F 2

c ðhÞ ��F 2
o ðhÞ

��F 2
o ðhÞ

: ð4Þ

If the absolute structure of the model for calculation of the

structure factors is correct, and we assume the calculated

intensities to be correct (i.e. they do not carry a standard

uncertainty) the probability distribution of z is a standard

normal Gaussian1

pðzhÞ ¼
1

ð2�Þ1=2
expð�z2

h=2Þ: ð5Þ

Based on all pairs of observations, we can now calculate the

probability of the measured data, given the fact that the

absolute structure is correctly specified in the model (the

correct absolute structure is noted as the condition y = 0, it will

become clear later in the paper why this notation is chosen):

pðobservations j y ¼ 0Þ ¼
Y

h

pðzhÞ: ð6Þ
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1 One referee remarked that this may not be completely true in practice,
especially far from the mean. However, large deviations from the mean occur
when the differences are much larger than the standard uncertainty, in which
case the absolute structure assignment should be obvious in any case. The
practical Gaussian nature of the distribution and the usability of the calculated
standard uncertainty can also be verified by the normal probability plot
analysis as mentioned later in the paper.



In statistics, Bayes’ theorem for conditional probabilities

specifies that

pðx j yÞ ¼
pðy j xÞ pðxÞ

pðyÞ
: ð7Þ

In our case, we can use this theorem to invert our probability

given above:

pðy ¼ 0 j observationsÞ ¼
pðobservations j y ¼ 0Þ pðy ¼ 0Þ

pðobservationsÞ
:

ð8Þ

This value cannot be computed, as pðobservationsÞ (the

probability of obtaining the current observations) is unknown.

But to be able to make the absolute structure assignment, we

would like to calculate the ratio of pðy ¼ 0 j observationsÞ and

the similar term for the opposite absolute structure, desig-

nated as pðy ¼ 1 j observationsÞ. The term of pðobservationsÞ

disappears in the calculation of this ratio:

pðy ¼ 0 j observationsÞ

pðy ¼ 1 j observationsÞ
¼

pðobservations j y ¼ 0Þ pðy ¼ 0Þ

pðobservations j y ¼ 1Þ pðy ¼ 1Þ
:

ð9Þ

And if no prior knowledge about the absolute structure exists

[i.e. pðy ¼ 0Þ ¼ pðy ¼ 1Þ],

pðy ¼ 0 j observationsÞ

pðy ¼ 1 j observationsÞ
¼

pðobservations j y ¼ 0Þ

pðobservations j y ¼ 1Þ
: ð10Þ

To be able to do this, we define a value q analogous to z:

qh ¼
��F 2

c ðhÞ ��F 2
o ðhÞ

��F 2
o ðhÞ

: ð11Þ

This value represents zh for the inverted structure. Now

pðqhÞ ¼
1

ð2�Þ1=2
expð�q2

h=2Þ ð12Þ

and

pðobservations j y ¼ 1Þ ¼
Y

h

pðqhÞ: ð13Þ

Hence

pðy ¼ 0 j observationsÞ

pðy ¼ 1 j observationsÞ
¼
Y

h

pðzhÞ

pðqhÞ

¼ exp 1=2 �
X

h

z2
h þ

X
h

q2
h

 !" #
:

ð14Þ

If the correct absolute structure and wrong absolute structure

hypotheses are the only two possibilities for a certain struc-

ture, this would be sufficient. However, in practice a structure

may be a twin consisting of two inverses (so-called inversion

twins), and a more general probability model is desired to

express this. The twinning can be described as a linear

combination of the two structure factors of the pure enan-

tiomeric structures. For each Bijvoet pair,

�F 2
c ðtwinÞ ¼ x�F 2

c ðy ¼ 1Þ þ ð1� xÞ�F 2
c ðy ¼ 0Þ: ð15Þ

This linear combination is analogous to the definition of the

Flack x parameter (Flack, 1983). Since �F 2
c ðy ¼ 1Þ ¼

��F 2
c ðy ¼ 0Þ, this equation can be simplified to

�F 2
c ðtwinÞ ¼ ð1� 2xÞ�F 2

c ðy ¼ 0Þ � ��F 2
c ðy ¼ 0Þ: ð16Þ

We refer to the variable � as the ‘generalized absolute struc-

ture’. For the correct absolute structure � = 1.0 (and x = 0),

and for the wrong absolute structure � = �1.0 (and x = 1).

With the help of this parameter, we can now introduce for

each reflection h the function xð�Þ:

xð�Þ ¼
��F 2

c ��F 2
o

��F 2
o

ð17Þ

It can be seen easily that zh is equal to xhð� ¼ 1Þ and qh is

equal to xhð� ¼ �1Þ. Note that this computation is also

allowed with physically impossible values of j�j> 1:0. With

this generalization, the probability distribution becomes

log pðobservations j �Þ ’
X

h

�x2
hð�Þ

2
¼ �1

2

X
h

x2
hð�Þ; ð18Þ

and from Bayes’ theorem,

pð� j observationsÞ ¼
pðobservations j �Þ pð�Þ

pðobservationsÞ
: ð19Þ

We can now avoid the need to calculate pðobservationsÞ in two

ways: we can either have a discrete set of possible hypotheses

for the value of �, or we can study the continuum of all

possible � values.

In the case of the discrete set �1, �2, . . . , �n, we can

normalize easily:

pð�i j observationsÞ ¼
pðobservations j �iÞ pð�iÞP

j

pðobservations j �jÞ pð�jÞ
: ð20Þ

In most cases, all priors pð�iÞ will be set to 1=n. Two useful

discrete sets of hypotheses that can be treated this way are the

two-membered set the absolute structure is either correct or

wrong and the three-membered set the absolute structure can

be correct or wrong, but the sample may also be a 50/50

inversion twin.

If we want to consider the whole continuum of possible

values of �, the normalization of the probability function is

less meaningful. In the case of a � continuum, only ratios of

different probabilities should be used, and these ratios do not

depend on the normalization. However, all of the probability

numbers are exceedingly small. For numerical stability

reasons, it is advisable to bring all relative probabilities that we

want to use in calculations to a reasonable size. To achieve this

we can simply divide by a high value of the probability func-

tion. For this goal, we chose to use pð�Þ with � = �0. We call the

‘incompletely normalized’ result pu:

puð�Þ ¼
pðobservations j �Þ pð�Þ

pðobservations j �0Þ pð�0Þ
: ð21Þ
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Since this approach is most useful if no prior knowledge is

assumed at all (note that we always have prior information,

namely �1 � � � 1, but here we explicitly choose to ignore

this), we simplify it to

puð�Þ ¼
pðobservations j �Þ

pðobservations j �0Þ
: ð22Þ

It is observed in practice that puð�Þ (in the second definition) is

a reasonably well behaved Gaussian-like function. We can

therefore calculate2 a quantity G:

G ¼

R
�puð�Þ d�R
puð�Þ d�

: ð23Þ

Using this definition, G is the best approximation of � for the

structure based purely on the observations and not using any

prior knowledge (not even the physical restriction that � must

be in the interval [�1, 1]). Since in our practical experience

puð�Þ looks very much like a symmetric Gaussian distribution,

G will also be very close to the most probable value of �. Like

the value of the Rogers � parameter, the value of G will be

close to 1.0 for structures for which the absolute structure of

the model is correct, and close to�1.0 for structures for which

the absolute structure of the model is incorrect. Continuing

along this path, we can calculate the variance of the distri-

bution using

�2
ðGÞ ¼

R
ð� �GÞ2puð�Þ d�R

puð�Þ d�
: ð24Þ

This can be used to estimate an uncertainty in the obtained

value of G.

The concept of the unrestricted absolute structure para-

meter G follows naturally from the comparison of the defini-

tions of z and q. This is, however, a new concept. With a simple

change of parameter expression we can cast our result in a

form comparable with the Flack x parameter:

y ¼ ð1�GÞ=2 ð25Þ

and

�y ¼ �G=2: ð26Þ

With this definition, y behaves like the Flack x parameter in

that it will have a value of 0.0 for the correct absolute structure

model, and 1.0 for the inverted model.

3. Test calculations

Table 1 lists several data sets that were collected on different

instruments. Some of these data sets happened to be of
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Table 1
Samples studied.

Conditions are as follows. (1) Measured on a Bruker AXS SMART APEX system with an Mo K� sealed-tube X-ray generator at room temperature. (2) Measured
on a Nonius KappaCCD system with a Nonius Mo K� rotating-anode X-ray generator at 100 K. (3) Measured on a Bruker AXS SMART 6000 system with a Cu
K� sealed-tube X-ray generator with graphite monochromator at 100 K. (4) Measured on a Bruker AXS SMART 6000 system with a Siemens Cu K� rotating-
anode tube and focusing multilayer optics at 100 K. (a) Data integrated using EvalCCD (Duisenberg et al., 2003) and scaled using SADABS (Sheldrick, 1996). (b)
Data integrated with DENZO (Otwinowski, 1993) and scaled using SCALEPACK (Otwinowski, 1993). (c) Data integrated using SAINT (Bruker, 2004) and
scaled using SADABS. R1 =

P
ðjFoj � jFcjÞ=

P
jFoj. AMBI is ammonium bitartrate, M048A is threonine, M049A is glutamic acid, M050A is ammonium bitartrate,

M051A is alanine. The rest of the data were supplied to us by a pharmaceutical company.

Sample Conditions Redundancy Space group R1 (%) Asymmetric unit Resonant scattering signal (�104)

AMBI 1a 3.5 P212121 2.40 C4H9NO6 9.0
M006C 2b 2.2 P1 3.61 C5H5LiN2O5 8.4
S3130A 2b 8.1 P212121 3.09 C9H10N2O3 7.0
S3350A 2b 6.0 P21 3.47 C13H14O5 7.3
S3351A 2b 5.8 P21 3.89 C13H14O5 7.3
S3456A 2b 11.2 P212121 3.05 2C21H22N4O8 + CH3OH 7.3
S3385A 2b 6.8 P212121 2.67 3C6H8O4 8.1
M048A 2a 11.5 P212121 2.58 C4H9NO3 8.1
M049A 2a 12.8 P212121 2.66 C5H9NO4 8.2
M050A 2a 13.2 P212121 2.25 C4H9NO6 9.0
M051A 2a 8.7 P212121 2.53 C3H7NO2 7.9
T0001 3c 2.23 C3H7NO2 43
N0951 4c 2.32 C35H48O10 37
N1045 3c 6.64 C25H31NO5 34
N1021 3c 2.51 C25H31NO5 34
T0002 3c 2.31 C5H10N2O3 42
T0003 3c 2.72 2C13H21NO2 32
N1099 3c 2.71 C23H30N2O2 29
N0965 3c 2.32 C15H14N2O2 32
N1040 3c 2.31 4C15H14N2O3 34
N0942 3c 2.44 C19H23NO3 33
N1069 3c 2.62 C26H28N4O2 29
T0004 3c 2.44 0.5C3H12N6O3 42
N1000 3c 4.13 4C15H14N2O3 34
N0990 3c 6.87 C35H30N4O4 31
N0973 3c 6.15 2C16H26N2O5 37

2 The integrals can be computed using a summation with a suitably small step
size, where the bounds of � are chosen such that puð�Þ at the bounds is
insignificantly small.



interest at that time; others were

specially collected to test the statistical

methods introduced in this paper.

All of the structures have weak

resonant scattering signals. Roughly

half of the data sets were collected using

Mo K� radiation. The theoretical reso-

nant scattering signal at 2� = 0� was

estimated for each of the data sets from

�F=F ¼
2
P

i Nif
002

iP
i Nif

2
i

� �1=2

: ð27Þ

Both summations run over atom types i,

Ni is the number of atoms of type i in the

structure, f is the scattering factor of the

atom type, and f 00 the imaginary part of

the resonant scattering factor (Weiss et

al., 2001). For Mo K� radiation, f 00ðOÞ =

0.0060, f 00ðNÞ = 0.0033 and f 00ðCÞ =

0.0016. For Cu K� radiation, f 00ðOÞ =

0.0322, f 00ðNÞ = 0.018 and f 00ðCÞ = 0.0091.

�F=F is called the ‘signal’. This does

assume a random distribution of atoms

in the cell; locations of resonant scat-

terers close to symmetry elements can

cause weakening of the signal. On the

other hand, this formula can be a

pessimistic guess since f will decrease

for increasing diffraction angles 2�,
whereas the resonant scattering factor

f 00 is nearly independent of the diffraction angle.

All structures were refined using SHELXL97. After

refinement, the observed Bijvoet pairs listed in the FCF output

file of SHELXL were used for an analysis of the value of y.

Care was taken not to use FCF files produced by SHELXL

run using the TWIN/BASF instructions, as in such a case the

calculated structure factors already have the Flack x calcula-

tion embedded and this would invalidate the analysis. Where

available, the absolute configuration assignment was cross-

checked with prior information; in other cases the structure

for which the value of y was closest to 0.0 was chosen. Results

of the analyses are given in Table 2.

4. Results and discussion

The power of the introduced method comes from the fact that

it weights each observed Bijvoet difference based on its

expected accuracy directly, rather than relying on the weight

of the reflection intensities. Calculating these proper weights

for a least-squares procedure is very difficult, but proper

weighting can be rather easily accomplished with the derived

maximum-likelihood procedure instead of using least-squares.

Bijvoet differences can be much smaller than the residual

differences between the observed and calculated intensities,

and the calculated differences are accurate as long as the

resonant scatterers have been accurately positioned.

It is essential to measure Bijvoet pairs for the calculation of

y, where the Flack x parameter can be determined even if the

data set covers at least the asymmetric unit corresponding to

the space group with an added inversion centre.

We only tested our methods on data sets with close to 100%

coverage of Bijvoet pairs.

When prior information is given, e.g. that the sample must

be either the structure or its inverse, the method presented

can be used to calculate probabilities of the two possible

hypotheses [p2ðokÞ and p2ðwrongÞ]. These probabilities can be

surprisingly decisive, even when the resonant scattering signal

is very weak. For the test data sets measured using Cu K�
radiation, the chirality of all structures can be proven beyond

reasonable doubt if it is assumed (prior knowledge) that the

original compound was enantiopure. For the three-hypotheses

model where the additional possibility of a 50% inversion twin

cannot be ruled out, the distinction given by the probabilities

[we call these p3ðokÞ, p3ðtwinÞ and p3ðwrongÞ] is less

pronounced, but even in that case many of the determined

values for the Cu K� data sets would satisfy the most stringent

pharmaceutical requirements. The least surprising results are

obtained when the whole continuum of inversion twin struc-

ture compositions must be considered. In this case, the esti-

mate that is obtained as the value of y has a smaller standard

uncertainty than the value of the Flack x parameter. In most

cases, the value of y is also closer to zero than the value of the
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Table 2
Absolute structure analyses.

The absolute structure for all samples is determined using four different techniques. (1) The Flack x
parameter is refined together with all other structural parameters. (2) The value of y is determined. (3) For
a two-hypotheses model (the structure is either right or it is wrong), the probability p2(wrong) that the
absolute structure assignment was wrong is given. (4) For a three-hypotheses model (the structure is either
right or wrong, or it is a 50% inversion twin), the probabilities p3(ok), p3(twin) and p3(wrong) that each of
the hypotheses is correct are given.

Data set Flack x y p2(wrong) p3(ok) p3(twin) p3(wrong)

AMBI �0.10 (90) �0.05 (16) 2 � 10�10 0.997 0.002 2 � 10�10

M006C �0.15 (81) �0.28 (50) 0.04 0.721 0.248 0.031
S3130A 0.24 (91) 0.31 (41) 0.2 0.398 0.473 0.129
S3350A �1.01 (81) �0.50 (44) 0.006 0.868 0.126 0.005
S3351A 0.39 (92) �0.13 (47) 0.06 0.671 0.289 0.041
S3456A �0.28 (51) 0.06 (17) 2 � 10�7 0.969 0.031 2 � 10�7

S3385A 0.16 (48) 0.17 (20) 3 � 10�4 0.726 0.274 2 � 10�4

M048A 0.70 (107) 0.24 (32) 0.07 0.491 0.470 0.039
M049A �0.20 (97) 0.24 (35) 0.1 0.480 0.461 0.059
M050A �0.34 (81) 0.14 (18) 1 � 10�5 0.846 0.154 1 � 10�5

M051A �0.00 (60) �0.06 (20) 2 � 10�6 0.976 0.024 1 � 10�6

T0001 �0.02 (20) 0.01 (3) <10�100 1.000 1 � 10�39 6 � 10�164

N0951 0.00 (9) 0.00 (1) <10�100 1.000 7 � 10�80 <10�300

N1045 �0.15 (26) 0.02 (8) 3 � 10�33 1.000 1 � 10�8 3 � 10�33

N1021 0.01 (11) 0.00 (1) <10�100 1.000 4 � 10�63 3 � 10�259

T0002 0.07 (18) 0.05 (5) <10�100 1.000 2 � 10�65 2 � 10�292

T0003 �0.05 (12) �0.01 (4) <10�100 1.000 3 � 10�34 2 � 10�130

N1099 0.04 (15) 0.07 (5) 7 � 10�84 1.000 4 � 10�18 7 � 10�84

N0965 �0.10 (16) �0.04 (5) <10�100 1.000 1 � 10�47 2 � 10�173

N1040 0.06 (9) 0.10 (2)† <10�100 1.000 1 � 10�43 2 � 10�213

N0942 0.01 (12) 0.01 (3) <10�100 1.000 2 � 10�45 5 � 10�188

N1069 �0.07 (14) �0.02 (5) 4 � 10�90 1.000 7 � 10�24 4 � 10�90

T0004 0.05 (28) 0.07 (6) 2 � 10�60 1.000 2 � 10�13 2 � 10�60

N1000 0.00 (19) �0.05 (6) 3 � 10�77 1.000 1 � 10�21 3 � 10�77

N0990 �0.01 (17) �0.03 (8) 3 � 10�41 1.000 2 � 10�11 3 � 10�41

N0973 �0.04 (28) �0.06 (13) 8 � 10�15 1.000 1 � 10�4 8 � 10�15

† For N1040, y deviates significantly from an enantiopure value.



Flack x parameter. Structures for which the continuum

approach is required have not been studied in this paper.

Using the continuum approach to solve the binary absolute

structure question (as is commonly done with the Flack x

parameter in existing studies of bioactive compounds) is

suboptimal. In contrast, the use of p2ðokÞ and p2ðwrongÞ

directly gives quantitative reliability information.

For some data sets, calculations were performed both on the

correct and on the inverted model, refined in SHELXL. For

the AMBI data set, the p3ðwrongÞ value of 1.64 � 10�10

increases to p3ðokÞ = 2.3 � 10�10 when the inverted structure

is refined. The small difference between these values shows

that the inverted refinement cannot absorb more than a small

fraction of the resonant scattering signal into the other refined

structural parameters. Comparing the equivalent numbers for

the M006C data set, which has a weaker resonant scattering

signal and which does not have a fixed origin, shows a similarly

sized relative increase from p3ðwrongÞ = 0.031 to p3ðokÞ =

0.043 for the inverted structure. The magnitude of this struc-

tural bias is largely insignificant for the absolute structure

determination of pharmaceutically active compounds. It may,

however, be significant for accurate determination of the twin

ratio of inversion twins; this has not been the subject of our

study.

There are two assumptions in the derivation of the prob-

abilistic model: firstly, that the standard uncertainty of the two

reflections that form each Bijvoet pairs are independent;

secondly, that the standard uncertainties of the individual

reflections are accurate.

Both of these conditions are necessary conditions for xð�Þ
to follow a standard normal distribution. These assumptions

can be verified by making a normal probability plot (Abra-

hams & Keve, 1971) from all values xð� ¼ 1:0Þ. Such normal

probability plots, made for the data sets above, show that the

observed distribution of xð� ¼ 1:0Þ for most data sets indeed

follows a Gaussian distribution (the correlation coefficient of

the normal probability plot is 0.999) but with � < 1:0. Two

possible reasons can be suggested. (i) The used scaling

programs overestimate the errors in the reflection intensities.

This is highly unlikely. (ii) The measurement error in the

Bijvoet difference is smaller than could be expected if the two

errors in the reflection intensities were independent. The

errors are in fact positively correlated, and the error in the

Bijvoet difference is really smaller.3

The second hypothesis is most likely. Even without knowing

the source of the smaller standard uncertainty, it is possible to

use the information obtained from the normal probability plot

to scale the standard uncertainties in the Bijvoet differences,

thereby obtaining a corrected xð�Þ. This correction scales

down the standard uncertainties in � in all but two of the cases

that were examined for this paper.

The validity of such a downscaling of the errors can be

confirmed by studying the result for a group of independent

structure determinations and determining the value Z = y=�y

for each of them. If all standard uncertainties have been

determined correctly, the values of Z from a random popu-

lation of structure determinations should form a standard

normal distribution. For the structure determinations using

Mo K� radiation given in this paper, the average absolute

value of Z is 0.61 (the expected value is 0.85) and the root

mean square (r.m.s.) value of Z is 0.67 (expected 1.0) (Table 3).

These results suggest that the error is indeed systematically

overestimated. After applying the slope from the normal

probability plot to correct the estimated standard uncertain-

ties in the observed Bijvoet differences, the average absolute

value of Z is 0.66 and the r.m.s. value of Z is 0.72. These values

are still smaller than the expected values. The current

benchmark set is too small for this to be considered proof of

the merits of the downscaling procedure.

4.1. Centrosymmetric structures

Flack & Bernardinelli (2006) and Flack et al. (2006) inves-

tigated the value of the Flack x parameter for a set of

centrosymmetric structures that were refined in a non-

centrosymmetric space group. Looking at the definition of the

Flack x parameter,

F ref
h ¼ ð1� xÞF calc

h þ xF calc
�h ; ð28Þ

it can be clearly seen that for the correct model, x is inde-

terminate since the two terms F calc
h and F calc

�h are equal. The

determination of x in these cases is therefore based purely on

the random incorrect differences between the two ‘half-

structures’ in the refinement. In this light, it is at first sight

surprising and discomforting that the values observed have

such small standard uncertainties. It is clear that for the Flack

x parameter the assumption that the off-diagonal elements of

the covariance matrix may be ignored is wrong. The assump-

tion that all other parameters have been determined correctly

by the least-squares refinement has been violated.

We have attempted a non-centrosymmetric solution and

refinement of a centrosymmetric ruthenium-containing

compound (Hotze et al., 2005) ourselves to investigate this

research papers
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Table 3
Correction of the calculated value of y for the error in the standard
uncertainties as derived from a normal probability plot.

Z is the deviation of y from the enantiopure value expressed in units of �y .

Structure y (before) Z (before) NPP slope y (after) Z (after)

AMBI �0.05 (15) �0.301 0.840 �0.05 (13) �0.358
M006C �0.28 (50) �0.577 0.990 �0.28 (49) �0.582
M048A 0.24 (32) 0.753 0.881 0.24 (28) 0.855
M049A 0.24 (35) 0.680 0.912 0.24 (32) 0.745
M050A 0.14 (18) 0.798 0.931 0.14 (17) 0.855
M051A �0.06 (20) �0.279 0.940 �0.06 (19) �0.292
S3130A 0.31 (41) 0.748 0.822 0.31 (34) 0.909
S3350A �0.50 (44) �1.136 1.050 �0.50 (46) �1.087
S3351A �0.13 (47) �0.277 1.035 �0.13 (49) �0.265
S3456A 0.06 (17) 0.327 0.947 0.06 (16) 0.344
S3385A 0.17 (20) 0.832 0.840 0.17 (17) 0.988

3 The positive correlation could be caused by the fact that there are many
Friedel pairs in our data sets. For a Friedel pair the diffraction geometry could
be more similar than for general Bijvoet pairs. This could cause systematic
errors to cancel. A four-circle goniostat could be employed to extend these
advantages. This is an interesting subject for a future study.



effect further. For this structure the Flack x parameter is

0.56 (4) and the value of y is 0.45 (3). Both values are close to

0.5 with a relatively small standard uncertainty. A detailed

analysis of the data set indicated that the small standard

uncertainty is due to a few reflections for which the differences

between the two half-structures create a significant Bijvoet

difference �Fc while, as expected for a centrosymmetric

structure, the �Fo value is statistically insignificant. Such pairs

are normally indicative of twinning by inversion.

The only statistical difference in reciprocal space between a

real inversion twin and a wrongly refined centrosymmetrical

structure is that the calculated Bijvoet differences are much

smaller than for a normal non-centrosymmetric structure with

the same elemental composition. This is due to the fact that

the configuration of the atoms is almost centrosymmetric (with

respect to a suitably chosen origin, the phases of many

reflections are close to 0 and � and the phases of the resonant

scattering contributions are close to �=2 and 3�=2) and hence

the resonant scattering contribution to the scattering factors

only results in relatively small scattering amplitude differ-

ences. It is difficult to determine a reliable criterion for this

effect.

It appears then that the distinction between a true inversion

twin and a non-centrosymmetrically refined centrosymmetric

structure is best made in real space by a symmetry-detection

procedure like ADDSYM (Spek, 2003), followed by a detailed

inspection of the weak reflections after refinement in the

suggested centrosymmetric space group.

5. Recommended procedure

Current versions of refinement programs cannot use the value

of y to take absolute structure into account. We therefore

recommend to refine the structure including the Flack x

parameter (e.g. use the TWIN/BASF instructions in

SHELXL). The value of y can then be determined separately

using a utility that explicitly calculates structure factors for the

Bijvoet pairs (e.g. the Bijvoet Pairs option in PLATON).4

This procedure will account for any correlation between the

structural parameters and the absolute structure.

6. Conclusions

A new probabilistic procedure was introduced that can be

used to establish the absolute structure. The procedure is

especially suitable for biologically active compounds, which

often do not contain atoms with a larger resonant scattering

signal than that of oxygen.

The only special requirement for the data collection

procedure imposed by the new probabilistic calculation is that

Bijvoet pairs should be present in the data set. In contrast, the

determination of the Flack x parameter also works for data

sets that have a Bijvoet pair coverage of 0%, although this is

not recommended practice.

One of the results of the procedure is a value y, which can

be directly compared with the value of the Flack x parameter.

We observe for our test data sets that the standard uncertainty

in the value of y is roughly half of the standard uncertainty in

the value of x. The observed deviation from 0.0 is consistent

with the standard uncertainty. These observations are

comparable with the results obtained using invarioms but

without the significant efforts associated with the calculation

of invarioms.

The calculations also give explicit probabilities for the

absolute structure assignment, without referring to the value

of y and without the assumption that the distribution of y is

Gaussian. The explicit probability of an absolute structure

assignment error makes our procedure suitable to regulate the

probability of erroneous assignments in pharmaceuticals. The

probability calculations can be based either on a model with

two hypotheses for the two absolute structures or optionally

take the chance of a racemate into account as a third

hypothesis.

The procedure was tested on a number of light-atom

structures (no atoms with a stronger resonant scattering signal

than that of oxygen). For those data sets collected using Mo

K� radiation, a mixed result was obtained: some structures

could receive quite a good absolute structure assignment; most

structures show at least a clear direction. For all data sets

measured using Cu K� radiation (resulting in a roughly five

times larger resonant scattering signal) an excellent absolute

structure discrimination was obtained with the chance of error

for most structures below 10�100. Of course, for most of the Cu

K� structures the standard uncertainty in the Flack x para-

meter is small enough for an unambiguous assignment.

The current method offers an alternative method to look at

the same experimental data as addressed by the Flack x

approach.

7. Availability

An implementation of the described algorithm by one of the

authors is available in his PLATON (Spek, 2003) program

(http://www.cryst.chem.uu.nl/platon/pl000000.html).
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