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Abstract
Background and Objectives
Amyotrophic lateral sclerosis (ALS) is a multisystem disorder, as supported by clinical, mo-
lecular, and neuroimaging evidence. As a consequence, predicting clinical features requires a
description of large-scale neuronal dynamics. Normally, brain activity dynamically reconfigures
over time, recruiting different brain areas. Brain pathologies induce stereotyped dynamics
which, in turn, are linked to clinical impairment. Hence, based on recent evidence showing that
brain functional networks become hyperconnected as ALS progresses, we hypothesized that the
loss of flexible dynamics in ALS would predict the symptoms severity.

Methods
To test this hypothesis, we quantified flexibility using the “functional repertoire” (i.e., the
number of configurations of active brain areas) as measured from source-reconstructed mag-
netoencephalography (MEG) in patients with ALS and healthy controls. The activity of brain
areas was reconstructed in the classic frequency bands, and the functional repertoire was
estimated to quantify spatiotemporal fluctuations of brain activity. Finally, we built a k-fold
cross-validated multilinear model to predict the individual clinical impairment from the size of
the functional repertoire.

Results
Comparing 42 patients with ALS and 42 healthy controls, we found a more stereotyped brain
dynamics in patients with ALS (p < 0.05), as conveyed by the smaller functional repertoire. The
relationship between the size of the functional repertoire and the clinical scores in the ALS
group showed significant correlations in both the delta and the theta frequency bands. Fur-
thermore, through a k-fold cross-validated multilinear regression model, we found that the
functional repertoire predicted both clinical staging (p < 0.001 and p < 0.01, in the delta and
theta bands, respectively) and symptoms severity (p < 0.001, in both the delta and theta bands).

Discussion
Our work shows that (1) ALS pathology reduces the flexibility of large-scale brain dynamics,
(2) subcortical regions play a key role in determining brain dynamics, and (3) reduced brain
flexibility predicts disease stage and symptoms severity. Our approach provides a noninvasive
tool to quantify alterations in brain dynamics in ALS (and, possibly, other neurodegenerative
diseases), thus opening new opportunities in disease management and a framework to test, in
the near future, the effects of disease-modifying interventions at the whole-brain level.
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Amyotrophic lateral sclerosis (ALS) is caused by a combina-
tion of pathogenic processes encompassing the whole brain.1

Up to 50% of patients with ALS develop cognitive and/or
behavioral impairment, with about 13% developing the be-
havioral variant of frontotemporal dementia.2

Accounting for symptoms induced by widespread neuro-
degeneration requires a precise description of the fine-tuned,
large-scale interactions among brain regions.3 The pro-
gression of ALS shifts the functional brain networks toward
hyperconnectedness (that is, a regime where the activity of
each brain region over time is (too) strongly constrained by
the rest of the brain).4 However, the interactions among re-
gions occur in bursts,5 which account for most of the (time-
averaged) functional connectivity6 and have been linked to
behavioral outcomes, underlying their physiologic signifi-
cance.7 Hence, average (i.e., static) functional connectivity
might not be enough to account for complex symptoms, and
time-resolved analyses might be needed.

The healthy brain quickly recruits the appropriate brain re-
gions, in the correct order, at any moment, to respond to the
environment. To this end, the brain does not passively “wait”
for stimuli, but, rather, it constantly recruits different groups
of regions, each of whichmight be optimal for a given stimulus
and the appropriate response.8 The more the brain recon-
figures itself (i.e., the more it is flexible), the better it can
respond to tasks.9 These “reconfigurations” reflect themselves
in large-scale bursts of activations in brain signals called
“neuronal avalanches.”10 In fact, although avalanches prefer-
entially spread along the structural connectome,11 they con-
stantly reconfigure, as captured by a large number of patterns
over time. Hence, the number of such patterns (i.e., the size of
the functional repertoire) provides a measure of brain flexi-
bility, and its reduction relates to clinical impairment.12

Hence, we hypothesized that brain dynamics would be more
stereotyped (less flexible) in patients with ALS as compared
with healthy controls. Furthermore, given that complex brain
functions require flexibility, a restriction of the functional
repertoire might underpin clinical impairment.

To estimate flexibility, we used source-reconstructed mag-
netoencephalographic (MEG) data, which have a millisecond
time resolution. MEG measures extremely weak oscillations
of the magnetic fields produced by postsynaptic neuronal
activity,13 using a helmet equipped with ultrasensitive (fT,
10−15 Tesla) sensors of the magnetic field (superconducting
quantum interference devices). Compared with EEG, MEG

(1) allows for a temporally and spatially accurate re-
construction of the neural signals14 because magnetic fields
are undistorted by the layers surrounding the brain (bones
and meningeal sheets) and (2) is reference-free, which helps
providing unbiased estimates of functional connectivity.4,10

We filtered the signal in the classic frequency bands and
defined a neuronal avalanche as an event that begins when at
least 1 brain region deviates from its baseline activity and
ends when all regions restore their typical level of activity.
Given a neuronal avalanche, we defined its corresponding
pattern as the set of all the brain areas that were recruited.
Finally, we defined the functional repertoire as the set of the
unique patterns that happened over time (i.e., the part of
the state-space that has been visited) and used its size as a
proxy for the flexibility of the brain dynamics. We further
hypothesized that the restriction of the functional reper-
toire would relate to a worsening of the patients’ symp-
toms. To test this hypothesis, we built a model to predict
disease severity and clinical staging based on the size of the
functional repertoire.

Methods
Study Participants
Patients with ALS were recruited from the ALS Center of
the First Division of Neurology of the University of Cam-
pania “Luigi Vanvitelli” (Naples, Italy) from September to
December 2016 and from May 2018 to March 2019. Pa-
tients were right-handed and native Italian speakers di-
agnosed with ALS according to the revised El-Escorial
criteria.15 All patients underwent Edinburgh Cognitive and
Behavioural ALS Screen (ECAS)16 to assess global cogni-
tive functioning. None of the patients showed any variation
in the screened genes SOD1, TARDBP, FUS/TLS, and
C9ORF72. Healthy controls were also included.

Inclusion criteria were (1) no use of drugs that could interfere
withMEG signals; (2) no other major systemic, psychiatric, or
neurologic diseases; and (3) no focal or diffuse brain damage
at routine MRI.

Standard Protocol Approvals, Registrations,
and Patient Consents
The study protocol was approved by the Local Ethics Com-
mittee (University of Campania “Luigi Vanvitelli”) with Protocol
No. 591/2018, and all participants provided written informed
consent in accordance with the Declaration of Helsinki.

Glossary
ALS = amyotrophic lateral sclerosis; ALSFRS-R = Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; ECAS =
Edinburgh Cognitive and Behavioural ALS Screen; LOOCV = leave-one-out cross-validation; MEG = magnetoencephalog-
raphy; MiToS = Milano-Torino Staging; ROIs = Regions of Interest.
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Brain Network Analysis

MRI Acquisition
As previously described,17MRI images of patients with ALS and
healthy controls were acquired on a 3T scanner equipped with
an 8-channel parallel head coil (General Electric Healthcare,
Milwaukee, WI). MR scans were acquired either after the MEG
recording or a minimum of 21 days earlier (within 1 month).
This was performed to minimize the risk of noise due to the
MRI affecting theMEG acquisition. In particular, 3 dimensional
T1-weighted images (gradient-echo sequence inversion re-
covery prepared fast spoiled gradient recalled-echo, time repe-
tition = 6,988 ms, inversion time = 1,100 ms, echo time = 3.9
ms, flip angle = 10, voxel size = 1 × 1 × 1.2 mm3) were acquired.
Some participants (7 patients and 11 controls) did not com-
plete theMRI because of the difficulty in lying down or because
they refused to perform the MRI scan. A standard MRI tem-
plate was used in these cases.

MEG Acquisition
MEG data were acquired with a 163-magnetometer system
placed in a magnetically shielded room (AtB Biomag UG, Ulm,
Germany).18 Data acquisition, preprocessing, and source re-
construction were performed as previously described.4

Briefly, before each acquisition, 4 reference positions (nasion,
right, and left preauricular and apex) were digitalized. Elec-
trocardiographic and electrooculographic signals were cor-
ecorded.19 The brain activity of each participant was recorded
in 2 segments, each 3.5 minutes long, during the resting state
with eyes closed. Data were acquired with a sampling fre-
quency of 1,024 Hz, and a 4th-order Butterworth IIR band-
pass filter was then applied to remove components below 0.5
and above 48.0 Hz.20 The filter was implemented offline using
Matlab 2019a and the Fieldtrip toolbox 2014.21

Data Preprocessing
Principal component analysis was used to orthogonalize the
sensors over the base of the references. Then, after visual
selection of the data from an experienced operator, supervised
independent component analysis (ICA) was used to remove
physiologic artefacts such as electrocardiogram and eye blinks
(if present).

Source Reconstruction
Source reconstruction was performed using the Fieldtrip tool-
box.21 MEG data were coregistered to the MRI, and a beam-
former approach22 was used to reconstruct time series related
to the centroids of 116 regions of interest (ROIs), derived from
the automated anatomical labeling atlas.23,24 Singular value
decomposition was used to obtain a scalar. We then considered
the first 90 ROIs for further analysis, excluding the cerebellum
given the low reliability.25 The source-reconstructed signals
were filtered in the classic frequency bands: delta (0.5–4.0 Hz),
theta (4.0–8.0 Hz), alpha (8.0–13.0 Hz), beta (13.0–30.0 Hz),
and gamma (30.0–48.0 Hz).

Analysis of Brain Dynamics

Neuronal Avalanches and Branching Parameter
To quantify spatiotemporal fluctuations of brain activity, we
first estimated neuronal avalanches. As previously de-
scribed,26 an avalanche is defined as an event starting when
an unexpected (given a linear process) fluctuation of re-
gional activity is present and ending when all regions are
back to normal activity. The number of activations in all
ROIs in an avalanche corresponds to its size. Each of the
90 source-reconstructed signals was z-transformed and
thresholded according to a cutoff of 3 standard deviations
(i.e., z > |3|).12 To confirm that the results are not de-
pendent on the choice of a given threshold, we repeated the
analyses setting the threshold to z > |2.5| and z > |3.5|.

To select a suitable bin length, we computed the branching
ratio σ27 as follows: for each participant, for each time bin size,
and for each avalanche, the geometrically averaged ratio of the
number of events (activations) between the subsequent time
bin and the current time bin was calculated as

σi = Π
Nbin−1

j = 1

�
neventsðj + 1Þ
neventsðjÞ

� 1
Nbin−1

(1)

σ = Π
Naval

i = 1
ðσiÞ

1
Naval (2)

where σ i is the branching parameter of the ith avalanche in the
data set, Nbin is the total amount of bins in the ith avalanche,
nevents (j) is the total number of events active in the jth bin, and
Naval is the total number of avalanches in each participant’s
recording.

The bin length equal to 3 samples yielded a critical process
with σ = 1, hinting at the avalanches as occurring in the
context of a dynamical regime near a phase transition. How-
ever, we varied time bins from 1 to 5. To compare the dy-
namics of brain activity among the participants, we took into
consideration the same duration for each participant time
series (122.79 seconds). Segments of equal duration were
randomly selected from the whole recording. For each ava-
lanche, an avalanche pattern was defined as the set of all areas
that were above the threshold at any point during the
avalanche.

Functional Repertoire
For each participant, we estimated the functional repertoire
defined as the number of unique avalanche patterns which
occurred during the recording.12 Unique indicates that each
avalanche pattern only counts once toward the size of the
functional repertoire (i.e., it does not matter if a given ava-
lanche pattern appears only once or multiple times because
the functional repertoire refers to the kinds of patterns that
occurred, not their number per se). A representation of av-
alanche patterns and the functional repertoire is shown in
Figure 1.
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Switching Between States
A switch is defined as crossing the threshold level, in either
direction, and, therefore, occurs when an active region
becomes inactive, and vice versa, between 2 consecutive time
bins. The switch rate (number of switches over duration),
averaged over areas, was computed for each participant.

Regional Influence on the Functional Repertoire
At this stage, we split the total functional repertoire into 2
groups: patterns that occurred in both the clinical and control
participants (“shared repertoire”) and patterns that were
unique to either group (“group-specific repertoire”). Then,
using the Kolmogorov-Smirnov test, we compared the dis-
tributions of brain region occurrences between shared and
group-specific repertoires and performed permutation testing

to identify which brain regions were recruited significantly
more in the group-specific repertoire than in the shared rep-
ertoire. We then tested if these occurrences were higher in the
healthy or the patient group.

Multilinear Model Analysis
We then moved on to test the hypothesis that efficient brain
dynamics is linked to the correct functioning of the brain, and
hence, the restriction of the functional repertoire is related to
disease severity and to clinical staging. To test this hypothesis,
we built a multilinear model to predict clinical measures and
disease staging, adding brain flexibility (as measured by the
size of the functional repertoire)28 to demographic, amnestic,
and clinical information. Specifically, we considered the
Amyotrophic Lateral Sclerosis (ALS) Functional Rating

Figure 1 Schematic Representation of Neuronal Avalanches and Functional Repertoire

(A) Source-reconstructed time series.
Light blue rectangles represent the
time frames in which neuronal ava-
lanches occur; red dots in the rect-
angles denote activated brain
regions (signal above the threshold)
in a time interval (msec). (B) In the
boxes, avalanche patterns of 3 dif-
ferent neuronal avalanches are illus-
trated (for clarity, the avalanches
reported last up to 4 time frames). An
avalanche is defined as an event that
begins when at least 1 brain region
deviates from its baseline activity
(above the threshold) and ends when
all regions display a typical level of
activity (below the threshold). Given a
neuronal avalanche, its correspond-
ing pattern is the set of all the brain
areas that were recruited at any time.
The brain plots for each time frameof
an avalanche show the areas above
(yellow) and below (blue) the thresh-
old. Each matrix represents an ava-
lanche pattern: dark blue squares
indicate the brain regions (ROIs) ac-
tivated at a certain time frame, while
the light blue ones are all the regions
that have been activated up to that
moment. (C) In the green boxes, for
each of the above avalanches, the
brain plot and the set of unique ava-
lanche patterns are illustrated.
Unique means that each avalanche
pattern only counts once toward the
size of the functional repertoire. The
number of unique avalanche pat-
terns defines the size of the func-
tional repertoire and is used as a
proxy for the flexibility of the brain
dynamics.
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Scale–Revised (ALSFRS-R) and the stage of the disease
(King’s and MiToS clinical staging systems) as dependent
variables, while age, education level, sex, disease duration,
phenotype, ECAS scores, and size of the functional repertoire
were considered as predictors. Multicollinearity was assessed
through the variance inflation factor.29 We validated our
model using the k-fold cross-validation, with k = 5.30 Specif-
ically, k iterations were performed to train our model, and at
each iteration, the kth subgroup was used as a test set. The
validation was also performed using leave-one-out cross-
validation (LOOCV); see the Supplement (links.lww.com/
WNL/C297).

Statistical Analysis
To compare age and educational level between patients with ALS
and healthy controls, we performed a t-test, while Chi-square was
used for sex comparison. Permutation testing or Kolmogorov-
Smirnov test was performed to compare patients and controls, as
appropriate. For permutation testing, the data were permuted
10,000 times, and at each iteration, the absolute value of the
difference between the 2 groups was observed, building a null
distribution of absolute differences. Finally, the empirical observed
difference was rank-ordered against this distribution, yielding a
significance value. The relationship between the size of the func-
tional repertoire and the clinical scores was investigated in theALS
group using the Spearman correlation coefficient.

The results were corrected by the false discovery rate, across
both parameters and frequency bands, and the significance
level was set at p-value < 0.05. We reported the corrected
significances throughout the article. All statistical analyses
were performed in Matlab 2019a.

Data Availability
Data not provided in the article because of space limitations
may be shared (anonymized) at the request of any qualified
investigator, conditional to acceptance by the Ethical Com-
mittee. The code used is available in reference 31.

Results
Clinical and Demographic Characteristics of
Patients With ALS
Forty-two individuals (32 males, 10 females) diagnosed with
ALS according to the revised El-Escorial criteria of ALS15 and 42
healthy controls (28 males, 14 females) were enrolled in the
study. We used the total ALSFRS-R32 and the ALS clinical
staging systems to quantify both symptoms’ severity and disease
staging. Hence, patients were classified according to both the
King’s33 and the Milano-Torino Staging (MiToS)34 disease
staging systems, which are based on the appearance of sequential
clinical milestones during ALS.

According to the strong criteria for cognitive and behavioral as-
sessment inALS,35 4 patients had cognitive impairment, 8 patients
had behavioral impairment, and 9 patients had both conditions.

Furthermore, 15 patients had a classic phenotype, 16 had
lower motor neuron–dominant phenotypes (i.e., 8 patients
had a “flail arm” phenotype, 6 had a “flail leg” phenotype,
and 2 patients had a “pure lower motor neuron” phenotype),
and 11 had a predominant upper motor neuron (UMN)
phenotype.

All clinical information about the cohort, such as ALSFRS-R
score, stage of the disease, ALS phenotype, site of onset,

Table 1 Demographic and Clinical Features and
Neurocognitive Assessment of the Cohort

Parameters

Patients
with ALS
(n = 42),
mean (±SD)

HC (n = 42),
mean (±SD) p Values

Demographic and
clinical measures

Age 64.81 (±12.83) 63.10 (±10.46) 0.50

Male/female 32/10 28/14 0.35

Education (y) 10.21 (±4.61) 11.98 (±4.01) 0.07

Disease duration
(mo)

49.21 (±58.07)

ALSFRS-R 36.08 (±8.24)

Disease stage 2.56 (±1.04), King’s
2.40 (±0.91), MiToS

Site of onset 8 bulbar
31 spinal
1 respiratory
2 mixed

Phenotype 15 classic
16 predominant LMN
11 predominant UMN

Disease progression
rate

0.42 (±0.42)

Neurocognitive
assessment

ECAS total score 87.49 (±25.60)

Language 20.93 (±5.49)

Verbal fluency 15.12 (±7.62)

Executive
functions

28.27 (±10.84)

Memory 12.05 (±4.96)

Visuospatial
abilities

11.10 (±1.95)

Cognitive/
behavioral
impairment

4 ALSci
8 ALSbi
9 ALSbci

Abbreviations: ALS = amyotrophic lateral sclerosis; ALSbi = amyotrophic
lateral sclerosis behavioral impairment; ALSbci = amyotrophic lateral scle-
rosis behavioral and cognitive impairment; ALSci = amyotrophic lateral
sclerosis cognitive impairment; ALSFRS-R = Amyotrophic Lateral Sclerosis
Functional Rating Scale–Revised; ECAS = Edinburgh cognitive and behavioral
ALS screen; HC = healthy controls; LMN = lower motor neuron; MiToS =
Milano-Torino staging; UMN = upper motor neuron.
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disease progression rate, and neurocognitive assessment, are
reported in Table 1.

Functional Repertoire, Avalanche Patterns,
and Local Dynamics
We used source-reconstructed resting-state MEG data ac-
quired from a cohort of patients with ALS and healthy con-
trols to quantify the functional repertoire, which is the total
number of unique avalanche patterns occurred in each in-
dividual. A comparison between the 2 groups revealed that
patients with ALS expressed a restricted functional repertoire,
with a lower number of visited patterns. More specifically, we
observed these results in both the delta (p = 0.046; Figure 2A)
and the theta (p = 0.046; Figure 2B) frequency bands.

To prove the robustness of our results to specific choices of
the avalanche threshold and bin length, we tested these var-
iables across a moderate range of values and repeated the
analyses. Specifically, we first used different binnings, ranging
from 1 to 5. The results remained unchanged, with patients
with ALS displaying a restricted functional repertoire for all
the binnings explored (for binning = 2, p = 0.009 (delta band)

and p = 0.010 (theta band); for binning = 3, p = 0.010 (delta)
and p = 0.012 (theta); for binning = 4, p = 0.010 (delta) and
p = 0.015 (theta); for binning = 5, p = 0.011 (delta) and
p = 0.019 (theta); see eTable 1, links.lww.com/WNL/C297).
Furthermore, the avalanche threshold was modified, ranging
from 2.5 to 3.5. For both cases, the differences between the
groups were confirmed (for z = |2.5|, p = 0.028 in the delta
frequency band and p = 0.030 in the theta frequency band,
while for z = |3.5|, p = 0.005 and p = 0.007 in the delta and
theta bands, respectively; see eTable 1).

We also evaluated how many times each active region became
inactive, and vice versa (number of switches), finding no
significant differences between the 2 groups (data not
shown). These results confirmed that brain dynamics is
qualitatively altered in patients with ALS, as compared with
controls. In fact, the same number of switches means that the
rate at which each region changes its status is similar in the 2
groups. Nonetheless, patients only visit a restricted number of
patterns as compared with controls. Hence, the restriction of
the functional repertoire is not due to different activation rates
but genuinely reflects impaired flexibility.

Figure 2 Comparison of the Number of Unique Avalanche Patterns

Box plots illustrating the differences
in the size of the functional repertoire
in healthy controls (HC) and patients
with ALS (ALS), in delta (A) and theta
(B) frequency bands. The central
mark in the box indicates themedian,
the edges of the box the 25th and
75th percentiles, and the whiskers
extend to the 10th and 90th percen-
tiles. The outliers are plotted in-
dividually using dots. Significance
p-value: *p < 0.05, corrected. The
figure wasmade using Matlab 2019a.
ALS = amyotrophic lateral sclerosis.

Figure 3 Mapping of Brain Regions Occurring Significantly More in the ALS-Specific Unique Avalanche Patterns

In particular, in the delta frequency band (A), the right insula
(p = 0.011), the right putamen (p = 0.023), and the pallidum
bilaterally (p = 0.034 and p = 0.049, right and left, re-
spectively) are more often involved in avalanches in the ALS
group than in the controls. Similarly, in the theta band (B),
the right Heschl’s gyrus (p = 0.025), the right putamen (p =
0.031), the right pallidum (p = 0.011), and the right thalamus
(p = 0.044) occur mainly in the ALS-specific repertoire. Sig-
nificance was set as p < 0.05. The image was made using
Matlab 2019a, including BraiNetViewer v. 1.62. ALS =
amyotrophic lateral sclerosis.
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Subsequently, we investigated the influence of specific regions
on avalanche patterns. First, we compared the distributions of
brain region occurrences between shared and group-specific
patterns. The Kolmogorov-Smirnov test confirmed that the 2
distributions were significantly different (p < 0.001), meaning
that there was an uneven involvement of brain regions in the
avalanches of the 2 groups. Hence, we conducted a post hoc
analysis through a permutation test to identify which brain
areas occurred more often in the group-specific patterns. The
analysis highlighted several brain regions occurring signifi-
cantly more in the group-specific repertoire than in the shared
repertoire (Figure 3). In particular, in the delta frequency
band, the right insula (p = 0.011), the right putamen (p =
0.023), and the pallidum bilaterally (p = 0.034 and p = 0.049,
right and left, respectively) were more often involved in

avalanches in the ALS group than in the controls (Figure 3A).
Similarly, in the theta band, the right Heschl’s gyrus (p =
0.025), the right putamen (p = 0.031), the right pallidum (p =
0.011), and the right thalamus (p = 0.045) occurred mainly in
the ALS-specific repertoire (Figure 3B).

Multilinear Model Analysis
Subsequently, to understand the clinical significance of the
restricted functional repertoire observed in patients with ALS,
we correlated the size of the functional repertoire with the
ECAS total score, the ALSFRS-R, and both the King’s and the
MiToS clinical staging systems.

We observed significant correlations between the size of the
functional repertoire and the clinical features in both the delta

Figure 4 Relationship Between Brain Dynamics and Clinical Features in the ALS Group in the Delta (A and B) and the Theta
(C and D) Frequency Bands

(A) Positive correlation between the number of unique avalanche patterns and the ALSFRS-R (R = 0.37, p = 0.019) and (B) negative correlation between the
number of patterns and the King’s clinical staging system (R = −0.51, p = 0.002) in the delta band; (C) Positive correlation between the number of unique
avalanche patterns and the ALSFRS-R (R = 0.40, p = 0.015) and (D) negative correlation between the number of patterns and the King’s clinical staging system
(R = −0.53, p = 0.002) in the theta band. The Spearman correlation coefficient was used, and the results were corrected by false discovery rate (FDR) correction.
Significance p-values: *p < 0.05, **p < 0.01. The figure was made using Matlab 2019a. ALS = amyotrophic lateral sclerosis.
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and the theta frequency bands. Particularly, in the delta band, the
larger the functional repertoire, the lower the clinical impairment,
as measured by the ALSFRS-R (R = 0.37, p = 0.019; Figure 4A),
and the better the clinical staging, as measured by both the King’s
(R = −0.51, p = 0.002; Figure 4B) and theMiToS (R = −0.41, p =
0.015; eFigure 1A, links.lww.com/WNL/C297) disease staging
systems. Similar results were observed in the theta frequency band,
where the number of avalanche patterns was larger in the least-
compromised patients (correlation with ALSFRS-R: R = 0.40, p =
0.015; Figure 4C), and smaller in more advanced patients, again as
measured by the King’s (R = −0.53, p = 0.002; Figure 4D) and the
MiToS (R = −0.47, p = 0.005; see eFigure 1B) staging systems.
These results could also be observed in the theta frequency band,
where the number of avalanche patterns correlated positively with
the ALSFRS-R (R = 0.40, p = 0.015; Figure 4C) and negatively
with the King’s (R = −0.53, p = 0.002; Figure 4D) and theMiToS
(R = −0.47, p = 0.005; see eFigure 1B) staging systems. Con-
versely, there were no significant correlations between the number
of avalanche patterns and the ECAS total score, neither in the delta

band (R= 0.16, p= 0.30) nor in the theta band (R= 0.14, p= 0.39)
(data not shown).

Then, we used a multilinear model analysis with k-fold cross-
validation to evaluate if demographics, clinical, and brain dy-
namics features could predict the ALSFRS-R and the disease
stage. We found that the size of the functional repertoire sig-
nificantly improves the predictive capacity of the model in both
the delta and the theta frequency bands (Figures 5 and 6).

In the delta band, the model provided significant predictions of
the ALSFRS-R (Figure 5, A and B, R2 = 0.46), and both the
King’s (Figure 5, C and D, R2 = 0.56) and theMiToS (eFigure 2
A, B, links.lww.com/WNL/C297, R2 = 0.52) clinical staging
systems. Similarly, in the theta band, the ALSFRS-R (Figure 6 A,
B,R2 = 0.45), and both the King’s (Figure 6, C andD,R2 = 0.53)
and theMiToS (eFigure 2 C, D,R2 = 0.50) staging systems were
predicted. The comparison between actual and predicted values
obtained through the k-fold validation method30 is shown in the

Figure 5 Multilinear Model With k-Fold Cross-validation in the Delta Frequency Band

Using as predictors age, education,
sex, disease duration, ALS pheno-
type, ECAS, and the size of the func-
tional repertoire, the model predicts
(A andB) the ALSFRS-R (age: p = 0.038,
β = −0.23; disease duration: p = 0.020,
β = −0.05; functional repertoire: p <
0.001, β = 0.11); (C and D) the King’s
clinical staging system (disease du-
ration: p < 0.01, β = 0.01; functional
repertoire: p < 0.001, β = −0.02). In
(A and C), the explained variance of
the variable to be predicted as a
function of the predictors is illus-
trated. Significant predictors are in-
dicated by asterisks; positive and
negative coefficients are illustrated
with β+ and β−, respectively; signifi-
cance p-values: *p < 0.05, **p < 0.01,
***p < 0.001. In (B and D), scatter
plots of the comparison between ac-
tual and predicted values are repor-
ted. The figure was made using
Matlab 2019a. ALS = myotrophic lat-
eral sclerosis; ECAS = Edinburgh
Cognitive and Behavioural ALS Screen
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panels B and D of both Figures 5 and 6, while the residual
distribution is shown in eFigure 3 (delta band) and eFigure 4
(theta band), in the Supplement. No significant contribution of
education level, sex, ALS phenotype, and ECAS was observed.

We also validated our model using the LOOCV approach.
The results were confirmed in both the delta (eFigures 5, 6, 7
in the Supplement, links.lww.com/WNL/C297) and the
theta (eFigures 6, 8, 9 in the Supplement) frequency bands.

Discussion
In this work, we set out to predict clinical impairment in ALS
from the flexibility of brain dynamics (i.e., reduced functional
repertoire). Our results showed that patients with ALS have a
restricted functional repertoire as compared with healthy con-
trols. This was demonstrated by the lower number of distinct
(i.e., unique) avalanche patterns. The size of the functional
repertoire correlated directly with the ALSFRS-R and negatively
with both the King’s and the MiToS clinical staging systems.

It has been proposed that the healthy brain operates in a regime
that maximizes flexibility, thereby facilitating adaptive behavior.
The brain in ALSmight be operating in a suboptimal dynamical
regime, resulting in more stereotyped activity. We borrow from
statistical mechanics the concept of neuronal avalanches: fast,
aperiodic bursts of activations that spread across the whole
brain.11 If the brain is operating in a regime that allows flexible
activity, neuronal avalanches efficiently reconfigure themselves
over time.26 The restriction of the functional repertoire ob-
served in patients with ALS might reflect the effect of patho-
physiologic processes on the large-scale brain dynamics, as
previously observed in other neurodegenerative diseases.12,36

Our results were specific to the delta and the theta frequency
bands.However, alterations in regional power or static functional
connectivity have been described in all frequency bands.37,38

Ours is the first M/EEG study directly addressing the dynamic,
aperiodic, scale-free activity in ALS. Hence, on the one hand,
comparing our results with previous results, that were based on
power spectra or static connectivity, is not trivial. On the other

Figure 6 Multilinear Model With k-Fold Cross-validation in the Theta Frequency Band

Using as predictors’ age, education,
sex, disease duration, ALS phenotype,
ECAS, and the size of the functional
repertoire, the model predicts (A and
B) the ALSFRS-R (age: p = 0.024, β =
−0.25; disease duration: p = 0.041, β =
−0.04; functional repertoire: p < 0.001,
β = 0.05); (C and D) the King’s clinical
staging system (disease duration:
p = 0.024, β = 0.01; functional reper-
toire: p < 0.001, β = −0.01). In (A and C),
the explained variance of the variable
to be predicted as a function of the
predictors is illustrated. Significant
predictors are indicated by asterisks;
positive and negative coefficients are
illustratedwith β+ andβ−, respectively;
significance p-values: *p < 0.05, ***p <
0.001. In (B and D), scatter plots of the
comparison between actual and pre-
dicted values are reported. The figure
was made using Matlab 2019a. ALS =
myotrophic lateral sclerosis; ECAS =
Edinburgh Cognitive and Behavioural
ALS Screen.
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hand, preliminary evidence from fMRI shows altered low-
frequency brain dynamics in ALS,39 which corroborates our
results (given the comparable time scales). However, comparing
the results should be performed cautiously.

To test whether some brain regions were specifically impor-
tant in determining pathologic patterns of activity, we ana-
lyzed shared and group-specific avalanche patterns. We
classified avalanche patterns either as shared, if they occurred
in both groups, or as group-specific, if they occurred in either
group. Our results highlighted several brain regions being
recruited significantly more often in ALS-specific neuronal
patterns. In particular, basal ganglia were more often involved
in group-specific patterns, in both the delta and the theta
frequency bands. This finding may suggest the key role of
subcortical regions in the coherent recruitment of cortical
areas40 and the association between the altered functioning
of these regions and the cognitive and behavioral deficits in
ALS,41,42 Finally, it corroborates the wide-spread involvement
on the brain in ALS.43

Subsequently, we reasoned that if the functional repertoire is
capturing a pathophysiologic process, then it should be related
to the stage of the disease and, in turn, allow its prediction. We
found, as said, a positive correlation with the ALSFRS-R and a
negative correlation with both the King’s and the MiToS
clinical staging systems. Our findings might be framed within
the hypothesis that the neuropathologic mechanisms in ALS
shift the operational regime of the brain to a (presumably)
suboptimal state that no longer allows sufficient flexibility to
support correct behavior, thereby relating to disability and
staging (as measured by the ALSFRS-R). Consistent with our
work, time-resolved approaches showed that reduced temporal
variability in ALS relates to disease severity.44

Using amultilinearmodel analysis, we showed that the size of the
functional repertoire is a significant predictor of both clinical
staging and impairment, even after accounting for age, education,
gender, disease duration, phenotype, and ECAS. This supports
the hypothesis that pathophysiologic mechanisms impair brain
flexibility, which could then be used as a noninvasive readout.

Our work straightforwardly characterizes qualitative alterations
of the whole-brain dynamics. This framework is mathematically
grounded linking microscopic mechanisms to changes observed
in the data. Hence, in the framework of personalized medicine, it
might be possible to use our approach to tailor large-scale mecha-
nistic models to the individual patients. However, to this end, lon-
gitudinal studies arewarranted. Furthermore, despite the lower spatial
resolution, neuronal avalanches can be observed using EEG, which
might allow the application of our methodology on a wider scale.

In conclusion, our work shows that (1) pathophysiologic
changes in ALS are reflected in reduced flexibility and, pos-
sibly, less effective large-scale communication; (2) subcortical
regions contribute to brain dynamics and are affected by the
pathophysiologic processes of ALS (however, we found these

regions from a post hoc analysis that was not corrected for
multiple comparison, and this finding should be regarded as
merely explorative); and (3) the reduction of flexibility in ALS
predicts disease stage and clinical impairment.
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