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ABSTRACT Clostridioides (Clostridium) difficile is a spore-forming anaerobic bacte-
rium that causes severe intestinal diseases in humans. Here, we report the complete
genome sequence of the first C. difficile foodborne type strain (PCR ribotype 078)
isolated from food animals in Canada in 2004, which has 100% similarity to the ge-
nome sequence of the historic human clinical strain M120.

The isolation of multidrug-resistant hypervirulent Clostridioides difficile PCR ribotype
027 and 078 strains from food animals and retail foods in Canada in 2004 (1–3)

coincided with a major outbreak of severe C. difficile infections in humans in Canada
and the United Kingdom in the same year (4, 5). Further epidemiological evidence
has indicated that C. difficile could be a foodborne pathogen, thereby explaining a
major fraction of infections acquired in hospitals and the community (6–8). Here, we
applied a genome-based strategy to further test such a hypothesis and to deter-
mine the genetic features that allow highly virulent strains to move between
humans and animals. We report the complete genome sequences of three historical
Canadian C. difficile PCR ribotype 078 food strains (3) using Pacific Biosciences RS II
sequencing.

In brief, pure bacterial isolates (cultured in tryptone soy agar–5% sheep blood under
anaerobic conditions at 37°C; Thermo Fisher Scientific) were used for DNA extraction
(QIAamp DNA blood minikit, Gram-positive bacterial protocol; Qiagen). Determinations
of DNA concentration and size were performed using a Qubit fluorometer (Thermo
Fisher Scientific). Genomic DNA was sheared in Covaris g-Tubes with the help of a
fix-angled rotor centrifuge (Eppendorf) using the following parameters: shear for 1 min
at 3,500 rpm, flip the tube, and shear for 1 min at 3,500 rpm. Sheared DNA was collected
and purified using AMPure PB beads according to the PacBio protocol. Target 20-kb
SMRTbell templates were prepared following an exonuclease VII reaction, DNA damage
repair reaction, end repair reaction, overnight ligation, heat kill, and exonuclease III/VII
digestion of misligated products. SMRTbell template size selection was performed
using BluePippin (Sage Science) protocols. Sequencing primer annealing to the SMRT-
bell templates was followed by DNA polymerase P6 binding. SMRTbell templates
bound to MagBeads were sequenced using single-molecule real-time (SMRT) version 3
cells (6Pac cells; 2 cells/isolate). The genomes were assembled and polished using the
HGAP3 and Quiver software packages, respectively, within the SMRTPortal (version
2.3.0) with default settings. The genomes were additionally polished with Arrow (the
resequencing pipeline run with default parameters), which is within the latest SMRT
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Analysis software bundle (SMRTLink, version 5.1.0) and checked for misassemblies, but
none were identified. Annotations of the genomes were completed using Prokka within
EDGE bioinformatics (9, 10).

Interestingly, whole-genome alignment and single-nucleotide polymorphism (SNP)
analyses, with the help of the PhaME software (M. Shakya/P. S. G. Chain et al.,
unpublished data), revealed nearly 100% nucleotide sequence identity with the ge-
nome sequence of C. difficile strain M120 (BioProject number PRJNA42467), a PCR
ribotype 078 isolate obtained from a UK patient in 2007 (11). Our whole-genome
sequence analysis (Table 1) indicates that, regardless of geographic distances, these
historic C. difficile strains concurrently had similar genomic elements to explain disease
in both animals and humans.

Data availability. The complete sequences and annotations of these C. difficile

genomes are deposited in the GenBank database with accession numbers CP026613
(C. difficile R1), CP026614 (C. difficile R2), and CP026615 (C. difficile R3).
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TABLE 1 Genome insights and GenBank accession numbers for three Clostridioides difficile strains isolated from the Canadian food
production system

C. difficile
strain

GenBank
accession no.

Genome size
(bp)

No. of
genes

No. of
virulence genes

No. of antibiotic
resistance genes

Fold
coverage (�)

R1 CP026613 4,093,143 3,579 11 16 362
R2 CP026614 4,093,145 3,577 11 16 371
R3 CP026615 4,093,148 3,580 11 16 339
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