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Abstract: Automatic fall detection is a very active research area, which has grown explosively since
the 2010s, especially focused on elderly care. Rapid detection of falls favors early awareness from
the injured person, reducing a series of negative consequences in the health of the elderly. Currently,
there are several fall detection systems (FDSs), mostly based on predictive and machine-learning
approaches. These algorithms are based on different data sources, such as wearable devices,
ambient-based sensors, or vision/camera-based approaches. While wearable devices like inertial
measurement units (IMUs) and smartphones entail a dependence on their use, most image-based
devices like Kinect sensors generate video recordings, which may affect the privacy of the user.
Regardless of the device used, most of these FDSs have been tested only in controlled laboratory
environments, and there are still no mass commercial FDS. The latter is partly due to the impossibility
of counting, for ethical reasons, with datasets generated by falls of real older adults. All public
datasets generated in laboratory are performed by young people, without considering the differences
in acceleration and falling features of older adults. Given the above, this article presents the
eHomeSeniors dataset, a new public dataset which is innovative in at least three aspects: first,
it collects data from two different privacy-friendly infrared thermal sensors; second, it is constructed
by two types of volunteers: normal young people (as usual) and performing artists, with the latter
group assisted by a physiotherapist to emulate the real fall conditions of older adults; and third,
the types of falls selected are the result of a thorough literature review.
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1. Introduction

The continually aging population worldwide [1] represents a huge challenge for the care and
prevention systems of accidents within the home, especially for the elderly living alone. A permanent
risk in older people are falls [2] (In specialized literature, it is indicated that, on average, about one
third of adults over 65 suffer a fall a year. Actually, although we know that falls are very frequent in
older adults, after looking for the origin of this sentence, we have not been able to arrive at a concrete
and updated reference where this is proven). The risk of falls and their negative effects on health
increase with age. A study of 110 adults older than 90 years showed that only one half who fall are
capable of getting up on their own [3]. Falls can lead to various health problems in the short and long
terms, such as fractures [4], carpet burns, dehydration, hypothermia, pneumonia [3], volume depletion,
internal infections and bleeding, cellulitis, ulcers, chest pain, syncope, heart attacks, and even death [5].
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From a psychological point of view, many elderly people after falling develop a fear of falling again,
which limits their daily activities [6].

Due to the above, during the last ten years, various fall-detection systems (FDSs) have been
developed, both for the detection and early assistance of falls for the elderly and for the prevention
and prediction of falls in their activities of daily living (ADL) [7]. FDSs are computational algorithms
usually based on either a predictive or a machine-learning approach. Therefore, they require a training
dataset, which allows them to differentiate a real fall from normal activities out of risk, such as walking,
standing, sitting, etc.

The main ways to collect fall datasets are wearable devices and ambient-based sensors. Table 1
illustrates the main positive and negative aspects of each type of device [8,9]. Among the different
ambient-based sensors, infrared thermal sensors allow to capture data even during no-light conditions.
Moreover, some studies have concluded that it is easier to analyze thermal rather than normal
images [8]. For data analysis, the collection of quality data is often a costly problem. In the context
of elderly falls, there are additional ethical issues, the most critical of which is that one cannot ask an
old person to fall voluntarily due to the high risk of injury. As we shall see in Section 2, since 2008,
some public datasets on falls have being published to use as benchmarking and training of new FDS.
This has undoubtedly been a great help for research in the area. However, fall datasets still present
some general deficiencies:

1. Fall datasets are still few, as we will see in Section 2.
2. Due to the ethical problems mentioned above, the datasets do not include elderly falls but

falls of healthy young volunteers, who fall differently compared to older adults. The most
noticeable difference is that young people fall with a greater acceleration than the elderly [9].
Other kinesthetic differences will be described in more detail in Section 3.2. Because of this,
the performance of many algorithms could drastically decrease by changing their laboratory
environment to that of a real environment (i.e., the elderly home).

3. Many fall datasets are based on acceleration data, which has been shown to be insufficient on its
own as predictors of falls. In fact, it has been proven that FDSs based on acceleration amplitude
produce a large number of false alerts unless post-fall posture identification is also considered [10].

4. Although datasets based on video recordings often use low-resolution images (e.g., depth images
with 320 × 240 resolution from Kinect sensors), these resolutions still allow for the identification of
certain characteristics of people (e.g., height, texture, and gender) and, therefore, present privacy
problems.

5. Finally, there is no standardized format for presenting fall data. This makes it difficult to use
different datasets for application development.

This article presents a new public dataset, which is innovative in at least three aspects. First,
it collects data from two different privacy-friendly infrared thermal sensors, with a very low resolution.
The low-cost sensors used for this purpose are an Omron D6T-8L-06 and a Melexis MLX90640.
Both sensors can be purchased commercially at an approximate value of $52 and $49 dollars,
respectively. As far as we know, these sensors have only been used for the detection of falls in
older adults [11], but other investigations based on similar sensors have also been carried out [12,13].
Second, it is constructed by two types of volunteers: normal young people (as usual) and performing
artists, with the latter group assisted by a physiotherapist to emulate the real fall conditions of older
adults. Finally, the types of falls are selected as a result of a thorough literature review. Note that the
dataset is limited to the case of one person.
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Table 1. The main types of devices that collect fall datasets and their positive and negative aspects.

Devices Examples Type of Data Positive Negative

Wereable devices
smartwatch, smartphone (compass, acceleration, orientation data, privacy-friendly, rich data, invasive and depends on both
accelerometer, magnetometer, and gyroscope), rotation data, angular velocity, and highly accurate performance the user’s memory and abilities to
inertial measurement unit (IMU), and EEG magnetic signal, and brain electrical activity to use them all the time.

Ambient-based sensors

camera, Kinect sensor, low-resolution video, noninvasive, user independence, intrusive (it depends on
infrared thermal sensor, low-resolution image (RGB, depth, and long battery life resolution and data quality);
and pressure sensor (on the floor), or skeleton data), and ambient light only suitable for closed spaces;

noise from other objects, people, or pets.
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The paper continues as follows. In Section 2, we review 18 public datasets on falls obtained since
2008 from ambient-based sensors. As far as we know, so far, this is the largest survey of datasets based
on a vision/camera approach. This gives us an idea of the usual size of the datasets and their main
characteristics. In Section 3, we describe the materials (i.e., the two different infrared thermal sensors)
and methods used to build the dataset. Here, we also present the details of the new eHomeSeniors
dataset. In Section 4, we describe a brief experiment that compares the data obtained by the two
thermal sensors and the two types of volunteers. In Section 5, we discuss the main results, and in
Section 6, we present the conclusions as well as some ideas of future work.

2. Related Work

Although public datasets on falls are still scarce, from 2008 onwards, more and more public
datasets have appeared, as well as numerous surveys related to automatic fall detection. Only between
1998 and 2012, a systematic review on automatic FDS using body-worn sensors gathered 96 research
papers [14]. In 2015, a survey collected five vision-based public datasets on falls [15], while in 2017,
twelve wearable-based public datasets on falls were surveyed [16]. Additionally, only in 2019 have
surveys about techniques for abnormal human activity recognition [17], healthcare monitoring systems
for elderly people [18], and fall prediction with sensors in smart homes appeared [7].

Using Google Scholar, we collected all the citations of the 2015 survey [15] found until June 2019,
as well as all citations to the corresponding datasets included in that survey. The search results were
filtered with the keywords “public dataset” + “fall”. From the results obtained, we selected only
those publications that published new public datasets on falls obtained from ambient-based sensors.
This search process was repeated for each new article found in this way, using a snowballing literature
review approach. Thus, we found a total of 18 public datasets on falls based on ambient sensors,
published between 2008 and 2019. In addition, it was found the YouTube Fall Dataset (YTFD), created
in 2016, but until June 2019, it has not been already published online [19]. As far as we know, this is
the largest collection that exists to date on this type of datasets. The results of this search are described
in Table 2. Details of the falls collected, of the participants involved in the sample, and of the data
collection system used for each case are included.

It is observed that all available fall data have been made by young adults in good health,
falling according to their physiognomy and without emulating falls of an older adult. There are
other fall datasets that are simply not intended for the fall detection of older adults. For example,
in Reference [36], the authors use accelerometers to collect data of falls simulated by practitioners of the
athletic discipline parkour. In general, it is also observed that most investigations construct datasets to
be used as benchmarks in FDS based on traditional supervised techniques (e.g., threshold based and
machine learning). Therefore, together with fall actions, several of these datasets also include data
of activities of daily living, useful for training of their algorithms. These additional activities usually
involve actions such as walking, sitting, standing, etc., and they do not imply additional technical or
ethical difficulties. In fact, they are very simple data to generate and emulate automatically. That is
why, in this article, we focus exclusively on the actions of falls.

Note that, on average, datasets include 121 falls of 4 types (they may be different from each
other) made by 12 volunteers. The median is 60 falls, 4 fall types, and 10 volunteers. Among the
ambient-based devices used, the most common are Kinect sensors (9 datasets), followed by cameras
(6 datasets), and infrared thermal sensors (4 datasets).
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Table 2. Public datasets on falls obtained from ambient-based sensors.

Year Dataset Name ref. Falls Participants Data Collection Systems
# #types # #F #M Age

2019 UP-Fall [20] 255 5 17 8 9 18–24
6 infrared sensors, 2 cameras (18 fps), 5 IMUs with
accelerometer, gyroscope, ambient light, 1 EEG

2018

CMDFALL [21] 400 8 50 20 30 21–40
7 overlapped Kinect sensors and 2 WAX3 wireless
accelerometers

FALL-UP [22] 255 5 17 ? ? ?

6 infrared sensors; 2 cameras; 1 EEG; 5 wearable
inertial sensors on left ankle, right wrist, neck,
waist, and right pocket with accelerometer,
angular velocity, and luminosity

UP-Fall [23] 60 5 4 2 2 22–58
4 ambient infrared presence/absence sensors,
1 RaspberryPI3, 4 IMUs with accelerometer,
ambient light, angular velocity, 1 EEG

2017

Dataset-D [24] 95 2 4 ? ? 30–40
4 Kinect sensors (RGB, depth, skeleton data; 20
fps, 640 × 480)

MICAFALL-1 [24] 40 2 20 ? ? 25–35 idem
Thermal
Simulated Fall [8] 35 ? ? ? ? ?

9 FLIR ONE thermal cameras (640 × 480)
mounted to Android phone

2016
KUL
Simulated Fall [25] 55 ? 10 ? ? ? 5 web-cameras (12 fps, 640 × 480)

2015
– [26] 21 4 ? ? ? ?

IP camera (Dlink DCS-920) through Wi-Fi
connection (MJPEG, 320 × 240)

EDF [15] 320 ? 10 ? ? ? 2 Kinect sensors (depth maps, 320 × 240, 30 fps)

2014

OCCU [27] 60 1 5 ? ? ? idem
SDU Fall [28] 30 1 10 2–8 2–8 young 1 Kinect sensor

TST [29] 132 4 11 ? ? 22–39
1 Kinect sensor (depth maps); 2 IMUs on waist
and right wrist with accelerometer

UR Fall [30] 30 2 5 0 5 >26
2 Kinect sensors (depth maps); 1 IMU on waist
(near the pelvis) with accelerometer

2013 Le2i fall [31] 143 3 11 ? ? ?
1 video camera in 4 different locations (25 fps, 320
× 240)

2012
Le2i fall [32] 192 3 11 ? ? ? idem
vlm1 [33] 26 ? 6 ? ? ? 2 Kinect sensors (RGB, depth; 10 fps, 320 × 240)

2008
Multi camera
fall [34,35] 22 8 1 0 1 adult 8 video cameras

average 121 4 12
median 60 4 10

In Table 3, we include the 30 types of falls used by these datasets for those cases in which more
than one type of fall is specified. The classification of the first column was created for this work in order
to better organize the different types of falls. In the same table, we also include 14 additional fall types
chosen for the SisFall dataset [9]. This is a well-known dataset based on wearable devices. We include
it here because it uses 15 types of falls, chosen from 41 types of falls used by another study [37],
crossed with a survey of 15 seniors living alone and 17 administrative people from retirement homes.
This article is the only one from the table that considers more detailed falls caused by fainting (syncope
or falling asleep). On average, each dataset uses 6 types of falls, with a median of 5. The most
commonly used types of falls are backward (from standing), lateral (from standing), backward when
trying to sit down (empty chair), and forward (from standing).
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Table 3. Classification of different types of falls considered in the literature.

Fall Reference
by ID Description [34] [32] [29] [30] [26] [9] [24] [23] [22] [21] [20] #

ge
ne

ra
l

F1 Fall (from standing) 7 7 7 3 7 7 3 7 7 7 7 2
F2 Backward (from standing) 7 7 7 3 3 7 7 3 3 7 3 5
F3 Forward (from standing) 7 3 7 3 3 7 7 7 3 7 7 4
F4 Lateral (from standing) 7 7 7 3 3 7 7 3 3 7 3 5
F5 Backward (from walking) 7 7 7 7 7 7 7 7 7 3 7 1
F6 Forward (from walking) 7 7 7 7 7 7 7 7 7 3 7 1
F7 Leftward (from walking) 7 7 7 7 7 7 7 7 7 3 7 1
F8 Rightward (from walking) 7 7 7 7 7 7 7 7 7 3 7 1

ca
us

e

F9 Forward while walking caused by a slip 7 7 7 7 7 3 7 7 7 7 7 1
F10 Backward while walking caused by a slip 7 7 7 7 7 3 7 7 7 7 7 1
F11 Lateral while walking caused by a slip 7 7 7 7 7 3 7 7 7 7 7 1
F12 Forward while walking caused by a trip 7 7 7 7 7 3 7 7 7 7 7 1
F13 Forward while jogging caused by a trip 7 7 7 7 7 3 7 7 7 7 7 1
F14 Cause by fainting/syncope/loss of balance 7 3 7 7 3 7 7 7 7 7 7 2
F15 Vertical fall while walking, by fainting 7 7 7 7 7 3 7 7 7 7 7 1
F16 Forward while sitting, caused by fainting 7 7 7 7 7 3 7 7 7 7 7 1
F17 Backward while sitting, caused by fainting 7 7 7 7 7 3 7 7 7 7 7 1
F18 Lateral while sitting, caused by fainting 7 7 7 7 7 3 7 7 7 7 7 1
F19 Fall while walking caused by fainting 7 7 7 7 7 3 7 7 7 7 7 1

(use of hands in a table to dampen fall)
F20 Forward when trying to get up 7 7 7 7 7 3 7 7 7 7 7 1
F21 Lateral when trying to get up 7 7 7 7 7 3 7 7 7 7 7 1
F22 Forward when trying to sit down 7 7 7 7 7 3 7 7 7 7 7 1
F23 Backward when trying to sit down 3 3 7 7 7 3 7 3 7 7 3 5
F24 Lateral when trying to sit down 7 7 7 7 7 3 7 7 7 7 7 1
F25 Leftward when trying to sit down 7 7 7 7 7 7 7 7 7 3 7 1
F26 Rightward when trying to sit down 7 7 7 7 7 7 7 7 7 3 7 1

lo
ca

ti
on F27 On bed (then leftward) 7 7 7 7 7 7 7 7 7 3 7 1

F28 On bed (then rightward) 7 7 7 7 7 7 7 7 7 3 7 1
F29 From chair 7 7 7 3 7 7 3 7 7 7 7 2

im
pa

ct F30 Fall (impact on hands and elbows) 7 7 7 7 7 7 7 3 7 7 7 1
F31 Forward (impact on hands and elbows) 7 7 7 7 7 7 7 7 7 7 3 1
F32 Forward (impact on knee) 7 7 7 7 7 7 7 3 7 7 3 2

te
rm

in
at

io
n F33 Backward (end up sitting) 7 7 3 7 7 7 7 7 7 7 7 1

F34 Backward (end up lying) 7 7 3 7 7 7 7 7 7 7 7 1
F35 Forward (end up lying) 7 7 3 7 7 7 7 7 7 7 7 1
F36 Lateral (end up lying) 7 7 3 7 7 7 7 7 7 7 7 1
F37 Forward on knees (stay down) 7 7 7 7 7 7 7 7 3 7 7 1

ar
ti

cu
la

ti
on

F38 Fall (legs straight) 3 7 7 7 7 7 7 7 7 7 7 1
F39 Fall Backward (legs straight) 3 7 7 7 7 7 7 7 7 7 7 1
F40 Fall Forward (legs straight) 3 7 7 7 7 7 7 7 7 7 7 1
F41 Fall Leftward (legs straight) 3 7 7 7 7 7 7 7 7 7 7 1
F42 Fall Rightward (legs straight) 3 7 7 7 7 7 7 7 7 7 7 1
F43 Fall Fall (knee flexion) 3 7 7 7 7 7 7 7 3 7 7 2
F44 Fall Rightward (knee flexion) 3 7 7 7 7 7 7 7 7 7 7 1

# fall types 8 3 4 5 4 15 2 5 5 8 5

3. Materials and Methods

In this section, the process carried out to build the eHomeSeniors dataset is described in detail.
Section 3.1 describes the two different infrared thermal sensors used to collect data. Section 3.2
describes the methodological process for data collection, including the selection of sample size, number
of fall types, and volunteers. Finally, Section 3.3 describes the dataset in detail, including its information
for download and operation.

3.1. Data Collection Systems

The first sensor used in the dataset is a Melexis MLX90640 Far Infrared Thermal Sensor.
It is a low-cost sensor that contains 768 FIR (Far Infrared) pixels and provides a privacy-friendly,
low-resolution image of 32 × 24 pixels, with a frame rate of approx. 16 fps. It has an operational
temperature range between −40 ◦C and 85 ◦C and can measure object temperatures between −40 ◦C
and 300 ◦C. Figure 1 shows two example frames collected by this sensor, painted according to the
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temperature range of each pixel. Note that the image quality clearly distinguishes a fall, and at the
same time, it fully conserves the privacy of the person. This sensor was fixed to a wall at a height of
1.2 m, so that the viewing angle is distributed equally from the center of the sensor, forming a vertical
angle of 55◦ and a horizontal angle of 37.5◦ as shown in Figure 2.

Figure 1. Heat maps of two 32 × 24 frames generated by the Melexis MLX90640 sensor for a standing
body (left) and a fallen body (right).

The second sensor is simpler than the previous one, since the returned heat maps are distributed
in linear arrays instead of two-dimensional arrays. It is an Omron D6T-8L-06 infrared thermal sensor.
It provides a very low-resolution image of just 1 × 8 pixels. It has an operational temperature range
between 0 ◦C and 50 ◦C and can measure object temperatures between −10 ◦C and 60 ◦C. In order to
identify falls and to expand the opening range, we use a system of four of these sensors: two sensors
at half height (1 m from the floor) and two sensors at ground level (10 cm from the floor). The four
sensors are connected to an ATMEGA328P microcontroller, which reads sensor data and sends it to
an ODROID-C1+ via UART interface with a baud rate of 115, 200 and a sample rate of 5 Hz. In this
way, a fall is recognized as a decrease in the temperature identified by the upper sensors and an
increase in the temperature of the lower sensors. The dataset collects data from this four-sensor
system, with a frame rate of approx. 5 fps. This sensor system was previously used in preliminary
laboratory experiments, obtaining 93% accuracy in fall detection for a neural network based on a
bi-LSTM model (bidirectional long-term memory) [11]. Figure 3 illustrates the temperatures detected
by this sensor system for a standing body (left) and a fallen body (right). Note that, when the body
reaches the ground, the temperature is concentrated in the lower sensors. In this case, the image
quality also conserves the privacy of the person. However, to interpret a fall here is necessary to
analyze timestamps.

A schema of the data-collection environment with the two types of sensors is illustrated in Figure 2.
Figure 4 shows the real environment where the experiments were performed.

3.2. Methodology Description

A fall is often seen as an abnormal movement of the activities of daily living (ADL) [38]. Therefore,
to train FDS algorithms, datasets usually include both falls and ADLs. In this article, we have focused
on the collection of falls, since the ADLs do not require a greater effort and are easily replicable. As a
matter of fact, the data collected at the time before each fall can be considered a common ADL, such as
standing, walking, sitting, or lying down. In addition, for any dataset based on video images, it is
possible to increase the data using a combination of translation, repetition, and rotation effects. Since a
fall can occur anywhere in the room, volunteers simulated falls at different distances between 1 and 5 m
from the sensors. The room where the experiment was developed has 6 m × 5 m of space and had no
furniture inside, except for a chair and a settee bed in the center used in some tests for simulating falls.
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Figure 2. A schema of the data-collection environment with the two types of sensors used for the
eHomeSeniors dataset.

Figure 3. Temperatures detected by the Omron D6T-8L-06 sensor system for a standing body (left) and
a fallen body (right): The continuous line corresponds to the 16 pixels placed at 1 meter from the floor
and the dashed one corresponds to that at 0.1 m from the floor.

In order to choose the types of falls to be included in the dataset, Table 3 and expert knowledge of
a physiotherapist with experience in elderly care were taken as the starting point. After a first review
of the list, 25 types of falls were discarded (57% of the list): F1–F8, F20, F21, F33–F36, F38, and F43 for
being too general; F13 for being very unlikely in the context of an older adult in a closed space; F24–F26
for being more unnatural at the kinesthetic level; F27 and F28 because they are much less risky than falls
on the ground; and F30–F32 because the severity of the impact is irrelevant for the purpose of detecting
falls (we must recognize them all, regardless of their severity). However, from these discarded fall
types, three new types emerge, not considered in the table: “Backward (from walking backward)”
(from F5), “Falling from bed” (from F27 and F28), and “Backward (from standing; knee flexion; slow)”
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(from F43). From the three, the first two have been considered in other studies, related to wearable
devices [37,39], and the third one is a combination of “Backward (from standing; slow)” [40] and
“Backward (knee flexion)” [37].

Figure 4. Laboratory where the experiments were performed.

To choose among the remaining 19 types of falls, a small pilot experiment was performed under
laboratory conditions with the two infrared thermal sensors to observe the images generated by each
type of fall. In this way, considering the image similarity between some types of falls, some of them
were merged: F9 and F12; F22 and F23; F10 and F39; F11, F41, and F42; and F14, F15, F18, and F19.
Finally, of the six remaining types of falls, F40 remained unchanged; F16, F17, F29, and F44 were
adjusted; and F37 was divided into two (at normal speed and at slow speed, the latter being more
typical in older adults [40]). Note that, although falls with stretched legs may seem forced for young
and healthy people, they are very common in older adults with mobility problems. In conclusion,
for the new dataset, the following 15 types of falls are considered:

1. Backward (from walking backward)
2. Forward while walking caused by a trip
3. Cause by fainting (slow lateral)
4. Backward when trying to sit down (empty chair)
5. From bed
6. Backward (legs straight)
7. Forward (legs straight)
8. Forward (knee flexion)
9. Backward (from standing; knee flexion, slow)

10. Forward (from standing; knee flexion; slow)
11. Lateral (from standing; legs straight)
12. Lateral (from standing; knee flexion, slow)
13. Cause by fainting or falling asleep (slow backward)
14. Cause by fainting or falling asleep (slow forward)
15. From chair, caused by fainting or falling asleep

Note that the number of fall types considered for this dataset equals the maximum number of
those considered in Table 3 and exceeds diversity of all datasets based on ambient-based sensors
summarized in Table 2.

Regarding the volunteers for the falls, we used two groups of three people each (see Table 4).
Group 2 is made up of young and healthy people, as usual. Group 1, instead, is made up of three
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performing artists who work on a contemporary dance piece related to the concept of “falling”. Group 2
did not receive any type of instruction. Only each type of fall they had to make were mentioned.
Group 1 was assisted by the physiotherapist to instruct them about the differences in the way of falling
for an older adult with respect to a young and healthy person.

Table 4. General volunteer features for the falls collection: Group 1 is formed by performing artists
and group 2 is formed by normal, healthy, young people.

# Gender Age Weight Height

group 1
1 F 37 59 1.64
2 F 34 51 1.62
3 M 35 62 1.80

group 2
4 F 27 49 1.52
5 M 28 89 1.73
6 M 29 66 1.65

Since falls occur due to a mismatch between an individual’s physiological function, environmental
requirements, and the individual’s behaviour [41], we considered the differences of an older person in
two of these three aspects to perform a likely elder’s fall. In the physiological function, all senses are
involved in maintaining an active attention required to prevent a fall, so sensory decline may result in
impaired perception of environmental challenges [41,42]. The proprioception or awareness of where
body parts are in space and the reaction time to respond to unexpected perturbations may be altered,
changing the capacity to react. Also, muscle strength may be diminished or altered due to inactivity,
which may lower the ability to extend the legs against gravity, making regaining an upright position in
the case of a trip more difficult. Function of the various components of successful postural control can
be adversely affected by physiological aging and low levels of appropriate physical activity due to
disuse. Patients with osteopenia may have bone fractures or injuries as a result of low-energy trauma,
typically a fall from standing height or less [43]. Furthermore, there is a disproportionately higher
number of deaths in elderly compared to young people as a consequence of a same-level fall [44].

Even with standard bone density, the most common serious injury associated with the fall of an
elderly person is a hip fracture, which is associated with up to 20% chance of death and 25% chance
of long-term institutionalization [45]. Acute medical problems like infections, chronic conditions
such as diabetes, and progressive conditions such as Parkinson’s disease can also affect postural
control/balance. There is an impact of medications on successful postural control, with psychoactive
medications being particularly associated with falls. Another important aspect is cardiovascular
and respiratory correct function, which ensures oxygen transport to the muscles and the brain to
enable these functions to occur, and these can be also altered in elders due to disease or as an effect of
aging. About environmental requirements, an older person with impaired physiology may fall in an
unchallenging environment, which is considered in the way the fall was performed. Since individual’s
behaviours are specially subjective, we considered it indirect to the performance of falls in a laboratory
environment and not measurable for this particular case.

Each volunteer made 5 falls of each type. From all of them, only the last two falls (volunteer 6,
group 2) taken with the Omron sensors presented problems and had to be discarded. This is enough
to obtain a total of 15 × 5 × 6 − 2 = 448 falls in total, which makes it a larger fall dataset than all of
those summarized in Table 2. Recall that the average between all the datasets summarized in Table 2 is
121 falls, with a median of 60.

3.3. eHomeSeniors Dataset Description

The dataset is publicly available (see the files in Supplementary Materials). It is made up
of 180 files in .csv format, one for each fall type. The name of each file follows the form
“sensor_name-GX-Y-fZZ”, where sensor_name is either omron or melexis; X is either 1 or 2, so that
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GX represents the number of the group; Y is a number between 1 and 6, the number of the volunteer;
and ZZ is a number between 1 and 15, so that fZZ represents the number of the fall type. Each file
contains five falls, except omron-G2-3-f15, that only contains three.

The Omron sensor files are simpler. Each row contains 33 values separated by semicolons. The first
value contains the date and time of collection of the data. Each of the following 16 values includes
a decimal value, which represents the temperature collected by the pixels of the two upper Omron
sensors, and the last 16 values contain the temperature collected by the lower sensors. Thus, each row
represents a frame, which when visualized as a heat map constitutes a different moment of a fall.

The Melexis sensor files are a bit more complex. For each row, the first value contains the data
collection time and the second value is information about the sensor model. The following 768 values
contain the temperature of each of the pixels that make up a 32 × 24 pixel heat image. Finally, each row
contains several additional data with the raw data from which the temperatures are obtained through
formulas documented for the sensor.

Since the Melexis sensor files contain raw data in addition to temperatures, have more pixels,
and also have more fps than the Omron sensor, the files are much heavier. The files of the Omron
sensors total 8.18 MB, while that of the Melexis totals 802 MB. In addition to these files, the dataset
also contains the same data in Matlab numeric matrix .mat format.

4. Experimental Results: Estimation of the Fall Duration

In order to investigate the differences between group 1 (artists mimicking elderly falls) and group
2 (young and healthy people), a preliminary heuristic approach has been tested. This approach focuses
on the Melexis sensor and is divided in different steps. First of all, pixel positions associated with the
volunteer were obtained by considering only those with temperatures above a threshold higher than
the background average. The aim of this section is to propose a rather simple approach to verify if
there is a statistically significant difference in the fall duration between the two groups.

Figure 5 illustrates the retained pixels of a volunteer in three frames during the realization of a
fall. In this case, the values of the threshold and the background were equal to 21 ◦C and 18.9 ± 0.5
respectively. Then, the barycenter coordinates [x(t), y(t)] of the retained pixels, corresponding to
the median position in both direction, was calculated for each time frame. Note that the median
was preferred to the average in order to reduce the influence of possible isolated caloric pixels not
eliminated in the previous step. It can be observed how the barycenter, indicated with a circle on
Figure 5, moved to the right and decreased along the vertical axis. The next step consisted in the
smoothing of the barycenter temporal trajectory using a 10-time-step averaging moving window.
The final step corresponded to the actual fall detection associated to negative time derivation of the
filtered vertical position, i.e., dy/dt < 0. Note that falls smaller than 2 pixels were removed. Finally,
the fall duration corresponds to the number of successive temporal frames, associated with negative
derivation, multiplied by the sampling times, i.e., 1/16 s.

Figure 5. Three different moments during a fall. The blue circle is the barycenter.
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Figure 6 shows the temporal variations of the barycenter positions of five successive type 8
(forward, knee flexion) falls made by volunteers 2 (from group 1) and 5 (from group 2). The upper
frame represents the variation of the horizontal barycenter position x(t) through time, while the middle
frame represents the variation of the vertical barycenter position y(t). The lower frame represents the
spatial trajectories of each falls, the vertical position in function of the horizontal one.

Figure 6. Trajectories of two different volunteers during the falls of type 8 (forward, knee flexion).

Finally, the histograms of Figure 7 were obtained with the fall durations for all falls of each group.
It can be observed that the falls of group 1 (mean 2.62 s) are longer than those of group 2 (mean 2.20 s),
in agreement with the fact that volunteers of group 1 were mimicking elderly falls. The two normal
distributions were found statistically different (p < 10−8) using a two-sample t-test.

Figure 7. Seconds per fall for each group.
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5. Discussion

Now we shall discuss the results obtained in Section 4. As we mentioned, the first group of
volunteers was formed by three performing artists imitating the movements of older adults, while the
second group of volunteers were healthy, young people, as is usual in all fall datasets. Through an
analysis of the data, it was possible to show that the volunteers of group 1 fell on average more slowly
than the volunteers of group 2, which corresponds to the acceleration differences between a healthy,
young person and an older adult. It is important to clarify that the presented dataset involves only one
person in the sensor’s range of vision, since it is intended to be used by algorithms that interact with
people living alone like many elderly people today.

It is worth mentioning that this type of sensor generate a lot of noise if there are other sources of
heat in the radius of vision, such as stoves or pets. In the same way, the temperature of an individual
cannot be recognized if his/her body is hindered by another object. Furthermore, it is necessary to
mention that infrared sensors are very sensitive to several factors, such as the person’s temperature,
his/her clothing, his/her position with respect to the sensors, etc.

6. Conclusions

In this article, we have built a public dataset on falls obtained by two different types of thermal
sensors. This dataset is novel in several ways. First, unlike many other datasets, the low resolution
of these sensors prevents distinguishing physiological characteristics of individuals, which favors
their privacy. Secondly, the selected falls were obtained from an exhaustive state of the art added to
expert knowledge by a physiotherapist with experience in working with older adults. Third, half of
the volunteers chosen for the data collection of falls are performing artists with experience in body
work and who were told how to represent the falls of an older adult. As far as we know, this is the first
public dataset on falls built by performing artists emulating falls of older people.

As future work, additional comparative analyses between both groups could be performed.
It would also be interesting to include obstacles and other heat sources in the images to see how
this affects the calculation of the barycenters and the trajectories of the falls. In addition, with the
advancement of technology, sensors with improved sensitivities and very small sizes can be used in
the detection of falls or ADL, such as barometers of which sensitivity has reached the magnitude of
millimeters [46]. Having a dataset with this new generation of sensors can help improve systems and
algorithms to help older adults.

Supplementary Materials: The dataset is available online at http://www.mdpi.com/1424-8220/19/20/4565/s1.
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