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The dual-process account and the propositional account of learning hold opposite views regard-
ing the recruitment of higher-level processes in rule learning and associative learning. Taking an 
individual differences perspective, the current study focused on the relationship between rule 
learning and associative learning and investigated to what extent executive control accounts 
for rule learning and associative learning. Two studies were conducted. In Study 1, a sample of 
184 university students completed paired associative learning and rule learning tasks, as well as 
measures of working memory capacity, short-term storage, and executive control. Theory-based 
bifactor models were used to achieve a purified representation of executive control. The results 
showed that the latent correlation between associative learning and rule learning was rather small. 
Executive control showed a substantial relationship with rule learning, whereas no significant link 
was found with associative learning. In Study 2, a sample of 211 university students completed 
a three-term contingency learning task and an executive control task. The results replicated the 
finding that executive control was not significantly related to associative learning. Taken together, 
these results suggest a dissociation between rule learning and associative learning in terms of their 
underlying processes, which supports the dual-process account of learning.
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INTRODUCTION

The dual-process account of learning suggests that people learn in two 

distinct ways: by rule learning or by associative learning (McLaren et 

al., 2014). Rule learning comprises hypothesis testing and the induc-

tion of the rules underlying a problem. In contrast, associative learning 

requires the establishment of links between mental representations by 

detecting the co-occurrence of different events, and also by distinguish-

ing these co-occurrences from irrelevant contingencies (Mackintosh, 

1997; McLaren, Green, & Mackintosh, 1994). Both types of learning 

play an important role for humans in acquiring knowledge and skills. 

For example, children usually learn new words by associating them 

with possible objects, properties, or actions (McMurray, Horst, & 

Samuelson, 2012). On the other hand, individuals mainly rely on the 

detection and application of underlying rules in solving mathematical 

problems (Morsanyi, McCormack, & O'Mahony, 2018). 

According to the dual-process account, one major difference be-

tween rule and associative learning concerns the involvement of ex-
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ecutive control. Rule learning relies heavily on executive control that 

is likely to be recruited in rule induction (Sweller, 1994). In contrast, 

associative learning, that is, the automatic formation of links between 

stimuli, may occur without the recruitment of such cognitive processes, 

or to a minor degree only (McLaren et al., 2014). The dual-process ac-

count of learning, however, has been strongly opposed by researchers 

endorsing the propositional account of learning (Mitchell, De Houwer, 

& Lovibond, 2009). According to the propositional account, both rule 

and associative learning depend on higher-level cognitive processes. 

Contrary to the dual-process account, suggesting that very little ex-

ecutive control is involved in associative learning, the propositional 

account claims that even the establishment of associations between 

stimuli or events is achieved by arriving at propositional knowledge, 

and that this process stimulates executive control. These differences 

lead to disagreement as to whether rule and associative learning are 

related to executive control to a similar extent or not (McLaren et al., 

2014). 

Executive control refers to the cognitive system that regulates 

the flow of thought and is responsible for implementing task goals 

(Norman & Shallice, 1986). Executive control serves as an umbrella 

term that consists of multiple processes, such as inhibition, shifting, 

and updating. According to Miyake et al. (2000), inhibition refers to 

the process of deliberately suppressing external and internal stimuli or 

prepotent responses that may divert attention away from the task goal. 

Shifting is the process of flexibly switching between different mental 

operations, mental sets, or task rules. Updating is responsible for the 

replacement of old, non-relevant information with new, relevant, in-

coming information. Executive control has been vastly investigated in 

the theoretical framework of working memory (Baddeley, 1992). For 

example, Engle and Kane (2004) propose that executive control serves 

as a major component of working memory and plays a critical role in 

maintaining task-relevant information in the face of potential distrac-

tions (Engle, Tuholski, Laughlin, & Conway, 1999; Kane, Conway, 

Hambrick, & Engle, 2007). The executive control of working memory 

provides the outset for testing the dual-process and the propositional 

account of learning, since there are various theories relating work-

ing memory or executive control to learning. Furthermore, working 

memory is a well-known source of individual differences that enables 

using both the experimental and differential approaches to gain further 

insight into the cognitive mechanisms of learning. 

Rule learning, according to both the dual-process and the propo-

sitional account, includes hypotheses testing and rule induction. 

Executive control may be activated in dealing with knowledge per-

ceived as sets of abstract rules (Anderson, Fincham, & Douglass, 1997; 

McLaren et al., 2014; De Houwer, Hughes, & Barnes-Holmes, 2016). 

For example, according to the theory of skill acquisition elaborated by 

Anderson et al. (1997), executive control is recruited in producing ab-

stract rules based on the properties of examples. The focus of attention 

has to be allocated to relevant properties, and it needs to be assured 

that the best possible rules or hypotheses are created and tested. 

Results from recent empirical studies indicate a positive relation-

ship between executive control and the efficiency of rule learning (e.g., 

Craig & Lewandowsky, 2013; DeCaro, Thomas, & Beilock, 2008; Rabi 

& Minda, 2014; Ropovik, 2014; Wang, Ren, & Schweizer, 2015). For ex-

ample, Wang et al. (2015) investigated the relationship between execu-

tive control and rule-based category learning. Their results suggest that 

individuals with higher flexibility of mental shifting need fewer trials 

to infer the rules underlying the categorization of stimuli than those 

with lower flexibility. In another recent study on school-aged children, 

Ropovik (2014) examined how inhibition, selective attention, and 

working memory predicted the ability to learn problem-solving rules. 

The results showed that inhibition and selective attention contributed 

substantially to rule learning, and that their effects on learning were 

fully mediated by working memory. These results suggest that individ-

uals who are better able to resist attentional interference can maintain 

more information in working memory so that they can identify and 

apply the rules more efficiently. In addition, Rabi and Minda (2014) 

revealed that inhibitory control was associated with performance in 

rule-based categorization in both children and adults. These findings 

are in line with both the dual-process and the propositional accounts 

of learning. 

Contrary to the dual-process account assuming that associative 

learning may occur independently of executive control, the propo-

sitional account regards associative learning as the impact of pairing 

events in the form of propositional knowledge on behavior (Mitchell 

et al., 2009). Relations between the events need to be established in an 

effortful way in order to arrive at propositional knowledge. This view 

suggests that controlled mental processing such as executive control 

is necessary for associative learning. In addition, associative learning 

involves representing the relations of events that need to be further 

transferred to long-term memory. Individuals with higher working 

memory capacity are likely to be more efficient in employing memory 

strategies to consolidate the memory traces linking different mental 

representations, in preventing interference of irrelevant information at 

the time of encoding, and in retrieval of information than those with 

lower working memory capacity (Healey, Hasher, & Campbell, 2013; 

Richardson, 1998; Unsworth & Spillers, 2010). 

Empirical studies have mainly focused on the relationship of as-

sociative learning with working memory capacity (e.g., Bender & 

Raz, 2012; Kaufman, DeYoung, Gray, Brown, & Mackintosh, 2009; 

Kaufman et al., 2010; Lilienthal, Tamez, Myerson, & Hale, 2013; 

Tamez, Myerson, & Hale, 2008, 2012). They have provided mixed find-

ings so far. For example, the study by Tamez et al. (2008) demonstrated 

that working memory assessed by complex span tasks was moderately 

related to associative learning (r = .59). There are also a series of ag-

ing studies indicating that age-related declines in the establishment 

of novel links between previously unrelated information are strongly 

related to age differences in working memory (Bender & Raz, 2012; 

Naveh-Benjamin, Guez, & Shulman, 2004). However, there are also a 

line of studies reporting contrary findings. For example, Kaufman et 

al. (2009) examined the prediction of general intelligence by associa-

tive learning, working memory, and processing speed. While the main 

finding was that associative learning accounted for unique variance 

in general intelligence, the study also reported a rather small correla-
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tion between measures of associative learning and working memory  

(r = .22). This result was confirmed by another study showing that the 

latent correlation between associative learning and working memory 

was small and not significant (Kaufman et al., 2010). A more recent 

study focusing on the role of inhibition in associative memory revealed 

that older adults’ associative memory deficits might be independent of 

inhibitory and other resource-demanding processes (Guez & Naveh-

Benjamin, 2016).

To summarize, the dual-process and propositional accounts of 

learning differ as to whether executive control is an essential ingredient 

of both rule learning and associative learning. There is already some 

evidence that executive control relates to both rule and associative 

learning. However, the evidence came from separate lines of studies fo-

cusing on either rule or associative learning, which cannot be directly 

compared with each other due to variations in samples and measures 

of executive control or learning. Furthermore, previous studies mostly 

focused on the relationship between overall working memory and 

learning, without further specifying the role of the executive control 

component of working memory in learning. Therefore, it remains un-

clear whether each type of learning is associated with executive control 

when the other components of working memory are eliminated. 

The current study aimed to combine rule and associative learning 

within a single framework and investigated to what extent the execu-

tive control component of working memory contribute to rule learning 

and associative learning. According to the propositional account, both 

associative learning and rule learning are related to executive control, 

whereas the dual-process account predicts that rule learning relates 

to executive control while associative learning may not, or only to a 

minor degree, relate to executive control. Testing these hypotheses was 

expected to clarify the role of executive control in human learning and 

to help settle the aforementioned dispute.

To achieve these aims, two empirical studies were conducted. 

Study 1 employed a classic rule learning task to assess how participants 

acquired the rules underlying a set of exemplars and further used 

these rules to solve new problems (Anderson et al., 1997). Associative 

learning was measured by the classic paired associative learning task, 

in which a participant had to establish novel links between words 

(Schweizer & Koch, 2002). Data on executive control were also col-

lected. Study 2 was conducted to replicate the finding from Study 1 

with respect to the relationship between associative learning and ex-

ecutive control. This relationship was examined further because the 

main dispute between the dual-process and the propositional account 

of learning lied in whether associative learning was related to executive 

control. Study 2 employed the three-term contingency learning task, 

which was more complex than the paired associative learning task 

(Kaufman et al., 2009). 

STUDY 1

Study 1 collected data on rule learning, paired associative learning, 

working memory, short-term memory, and executive control from a 

sample of university students. A novel aspect of this study was that two 

different approaches were employed to represent executive control. 

The first approach was adapted from the seminal work of Engle et al. 

(1999). Executive control was represented as the residual part of work-

ing memory when the storage-related component was removed (see 

also Colom, Rebollo, Abad, & Shih, 2006). In their bifactor models, 

the common variance shared by working memory and short-term 

memory tasks was specified as the storage component, and the re-

sidual variance of the working memory task as the executive control 

component. We used established tasks tapping working memory (i.e., 

the exchange task) and short-term memory (i.e., the memory scan-

ning task), and represented executive control by means of the bifactor 

model. The second approach directly measured executive control using 

an established executive functioning task. The star counting task was 

modified so that the experimental condition required mental switch-

ing, while the control condition did not. The bifactor model was also 

used to separate the auxiliary processes from the shifting process.

Method

PARTICIPANTS
The sample consisted of 184 university students (63 males) aged 

between 18 and 40 years (M = 23.85, SD = 5.05). They were all na-

tive speakers of German. Most of them received financial rewards for 

participation. A few of them got course credit.

EXPERIMENTAL TASKS
Rule learning task (RLT). This task was constructed on the basis 

of the classic rule-learning task by Anderson et al. (1997). Participants 

were first presented with several sets of exemplars. They were asked 

to infer the rules underlying the exemplars and subsequently applied 

these rules to solve problems in the testing phase (Schweizer & Koch, 

2002). The learning exemplars consisted of 32 arrays of symbols (either 

+ or o) following one of five rules. These 32 arrays were grouped into 

five sets, each associated with a specific rule. Two sets implied the ap-

plication of simple rules (labeled G and H), and three sets (labeled as 

J, K, and L) implied complex rules. Sets G and H included four arrays, 

each comprising three symbols, while Sets J, K, and L included eight 

arrays, each comprising four symbols. The arrays within a set followed 

the same rule that determined the last symbol in each array. For in-

stance, the four sets of arrays, oo o, o+ +, +o o and ++ + constituted 

the rule that the last symbol was identical to the second one. Table 1 

presents the five rules of the task with descriptions and examples for 

each rule.

During the learning phase, participants were informed that there 

would be a test requiring them to reproduce the last symbol of each ar-

ray while considering the other symbols within the array. Participants 

were further informed that the identification of the rule would fa-

cilitate learning considerably. The learning of each set was started by 

entering a specific rule code (G, H, J, K, or L), immediately followed 

by one of the arrays associated with the rule. Participants could go up 

and down for inspecting different arrays by pressing either the up key 

or the down key, through which they could check their hypotheses 
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regarding the rule underlying the set of arrays. The learning procedure 

was self-paced and lasted for 10 min. 

In the testing phase, each participant was presented with an answer 

sheet. There were five sets, each comprising four arrays of symbols and 

a specific rule (G, H, J, K, or L). The last symbol of each array was miss-

ing. Participants were asked to determine what the last symbol should 

be according to this rule. No time limit was imposed on responding. 

The scores were the number of correctly solved arrays for each rule.

Associative learning task (ALT). This task was used to tap the abil-

ity of establishing associations between artificial words and assigned 

meanings (Schweizer & Koch, 2002). It consisted of 20 pairs of artificial 

words and associated meanings. Each artificial word was composed of 

six or seven letters. The word did not exist in the German language, but 

was composed of familiar German syllables and could be pronounced 

by a native speaker of the German language easily. For example, the 

word Orkinol was defined as a mixture of salad oil and liqueur. The 

word Wezida was defined as a blended fabric of polyester and nylon.  

In the learning phase, participants were allowed 5 min to learn 

20 pairs of artificial words and their associated meanings. They were 

instructed to look through the list of words and assigned meanings 

by pressing either the up or down key. Whenever participants pressed 

a key, a combination of an artificial word and the assigned meaning 

appeared on the computer screen. After the learning phase, each 

participant was presented with an answer sheet with the same 20 ar-

tificial words and meanings that were seen during the learning phase. 

However, the meanings were switched between artificial words, so that 

half of the artificial words were paired with their correct meanings, and 

half were paired with incorrect meanings. The correct and incorrect 

test items were arranged randomly. The words and meanings were only 

used once so that there were no specific relationships among any of 

them. Participants were asked to determine whether the given pairing 

of meaning and word was correct according to the previously learned 

information. No time limit was imposed on responding. The responses 

to the items were recorded as binary data. Besides a total score, four 

subscores, each based on a subsection comprising five neighboring 

items, were computed.

Working memory task. The Exchange task (ET) was employed to 

measure working memory capacity (Schweizer, 2007). This task stimu-

lated the simultaneous storage and exchange processes. Participants 

were asked to mentally reorder the serial positions of symbols. In each 

item, two arrays of the same four symbols with different orderings were 

presented. Participants had to mentally exchange the positions of ad-

jacent symbols in one array until the sequence became identical to the 

other one and to maintain the number of exchanges simultaneously. 

They were instructed to press the response key after completing the 

reordering, and to enter the number of exchanges. The task included 

three treatment levels, reflecting the increasing demands on memory 

capacity. Participants had to exchange two, three, and four times in 

Treatment Level 1, 2, and 3, respectively. Each treatment level included 

12 items. The total number of correctly completed items was computed 

for each treatment level.

Short-term memory task. This task was a modified version of the 

memory-scanning task (MST, Sternberg, 1966) that asked participants 

to memorize a sequence of letters. Each trial began with a screen 

prompting the participants to press the space bar to start, followed 

by a blank screen lasting for 1 s. A series of letters were successively 

presented on the screen. Each letter appeared for 500 ms. A probe let-

ter was presented after an interval of 2 s. Participants were asked to 

determine whether the probe letter was among the presented letters or 

not by pressing one of two buttons. The task consisted of three treat-

ment levels, each including 18 trails. These three levels varied in the 

number of letters (4, 5, or 6) presented in each trial. The total number 

of correctly completed trials was computed for each treatment level. 

Executive control task. The original star counting task (SCT) was 

adapted to tap executive control, particularly the mental shifting pro-

cess (De Jong & Das-Smaal, 1995; Ren, Altmeyer, Reiss, & Schweizer, 

2013). The task asked participants to count signs in a forward or back-

ward direction. Each trial started with the presentation of a stimulus 

including a starting number and a fixation point surrounded by 8 dots 

on the screen for 400 ms. Following the disappearance of the starting 

stimulus, a varying number (6, 8, 10, or 12) of stimuli appeared suc-

cessively, each for 400 ms. These stimuli were similar to the starting 

stimulus, but one of the 8 dots was replaced by a plus or a minus sign. 

The starting number was to be increased by one for a plus sign and 

decreased by one for a minus sign. Participants were asked to enter 

the final result. 

This task included two treatment levels. There were only plus signs 

in each trial of the first level while both plus and minus signs were ran-

domly presented in the second level. The second level was assumed to 

impose higher demands on executive control, especially on the mental 

shifting process. Participants first completed 12 trials of the first level 

and then 12 trials of the second level. We computed three subscores for 

each level by combining the results of four trials so that the composite 

scores could be used as manifest variables in modeling analyses.

Apparatus and procedure. Participants were tested in pairs in a 

quiet lab. The working memory, short-term memory and executive 

control tasks were computerized tasks. For the learning tasks, learning 

materials were presented on a computer, but the responses were writ-

ten on an answer sheet. To minimize method variance due to the order 

effect, the measures were administered in the same following order 

Type of rules Description of the rules Examples

G Plus rule: if there was a + in the array, 
the correct answer was a +. [o+] → +

H Zero rule: if there was an o in the array, 
the correct answer was an o. [+o] → o

J Adjacent rule: if adjacent stimuli were 
different, the correct answer was an o. [o+o] → o

K
Border rule: if either the left or right 
symbol was a + while the other two were 
not, the correct answer was a +.

[oo+] → +

L
Odd rule: if one or three symbols were 
+, the correct answer was a +, otherwise 
it was an o.

[o+o] → +

TABLE 1.  
Rule Learning Task Rules and Example Descriptions
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across all participants: MST, ET, SCT, AL, and RL. Participants had an 

opportunity to take a short break between the tasks. 

Modeling analyses. Modeling analyses were conducted by LISREL 

8.8 on the basis of the covariance matrix (Jöreskog & Sörbom, 2006). 

Parameters were estimated by means of the maximum likelihood 

method. Criteria recommended by DiStefano (2016) were used to 

evaluate the fit statistics. Specifically, the fit of a model was considered 

good (or acceptable) if χ2/df ≤ 2 (3), RMSEA ≤ .05 (.08), SRMR ≤ .08 

(.10), and CFI ≥ .95 (.90).

RESULTS
Table 2 presents the descriptive results for each set of the associa-

tive learning task and the rule learning task, each treatment level of the 

memory scanning task, the exchange task, and the star counting task, 

as well as the intercorrelations among the variables.

A confirmatory factor analysis model examining the latent cor-

relation between associative learning and complex learning was 

investigated first. As shown in Figure 1, the latent variable represent-

ing associative learning was derived from the four subscores of the 

paired associative learning task, and the latent variable representing 

rule learning from the five subscores of the rule learning task. The 

model showed a good fit to the data, χ2(26) = 31.87, p = .20, χ2/df = 

1.23, RMSEA = .035, SRMR = .057, and CFI = .97. The latent correla-

tion between associative learning and rule learning was not significant  

(r = .16, t = 1.42, p > .05), suggesting a dissociation of these two types 

of learning.

Executive control was represented differently in the two approach-

es. First, the executive control factor was derived from the residual 

variance of the exchange task by removing the variances shared by the 

memory scanning task and the exchange task. The shared variance was 

assumed as the storage-related factor (see Figure 2). Both executive 

control and the storage-related factor were allowed to predict associa-

tive learning and rule learning. The prediction model showed a good 

fit, χ2 (83) = 84.89, p = .42, χ2/df = 2.02, RMSEA = .011, SRMR = .056, 

and CFI = .99. As shown in Figure 2, executive control was moderately 

related to rule learning (r = .40, t = 3.19, p < .05), but not to associative 

learning (r = -.07, t = -.73, p > .05). The difference between the mag-

nitude of these two correlations was significant (Z = 4.68, p < .01). In 

addition, the storage-related factor was related to associative learning 

(r = .27, t = 2.34, p < .05) and rule learning (r = .36, t = 2.62, p < .05) 

at a small level.

In the second approach, a particular key executive process, that is, 

the mental shifting, was represented by the SCT. We also examined a 

bifactor model, in which one factor was derived from the subscores 

across the two treatment levels of the SCT while the other factor was 

linked to the subscores of the second treatment level. Since only the 

second level involved switching operations between forward and 

backward counting, this factor was assumed to reflect the core pro-

cess of mental shifting, whereas the other latent variable represented 

all auxiliary processes associated with the task, such as the perception 

of stimuli, the counting process, the general processing speed, and 

so forth (see Figure 3). These two latent factors were also linked to 

associative and rule learning. This prediction model showed a good 

fit to the data, χ2(83) = 83.02, p = .48, χ2/df = 1.73, RMSEA = .001,  

SRMR = .050, and CFI = 1.00. As shown in Figure 3, the shifting 

process was moderately related to rule learning (r = .50, t = 3.32, p < 

.05), but the link to associative learning was small and not significant  

(r = .23, t = 1.96, p > .05). The difference between the magnitude of 

these two links was significant (Z = 2.99, p < .01). In addition, the 

auxiliary factor of the SCT showed a small correlation with associative 

learning (r = .30, t = 2.75, p < .05).

Note. ET = Exchange test, MST = Memory scanning task, SCT = Star counting task; ALT = Associative learning task, RLT = Rule learning task; Correlations larger 

than .15 are significant at the .05 level.

TABLE 2.  
Descriptive Statistics for All Study 1 Measures and Intercorrelations (N = 184).

Measure M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1.ET-1 11.05 1.41 –
2.ET-2 9.64 2.31 .23 –
3.ET-3 7.52 2.78 .37 .46 –
4.MST-1 16.84 1.25 .17 .10 .13 –
5.MST-2 17.39   .83 .25 .15 .22 .56 –
6.MST-3 15.78 1.34 .08 .16 .16 .40 .43 –
7. SCT1-1 3.74   .58 .05 .12 .15 .23 .05 .25 –
8. SCT1-2 3.71   .63 .20 .21 .11 .22 .15 .25 .31 –
9. SCT1-3 3.68   .57 .19 .23 .21 .36 .23 .17 .36 .41 –
10. SCT2-1 3.17 1.04 .21 .17 .19 .36 .32 .41 .26 .25 .20 –
11. SCT2-2 3.21   .96 .11 .09 .03 .39 .24 .30 .36 .31 .32 .48 –
12. SCT2-3 2.97 1.03 .10 .23 .22 .29 .15 .32 .19 .22 .22 .39 .42 –
13. ALT-1 3.70 1.18 .19 .18 .15 .04 .06 .05 .10 .10 .11 .21 .20 .16 –
14. ALT-2 4.21   .84 .06 .15 -.02 -.07 -.05 .06 .01 .11 -.05 .10 .14 .16 .37 –
15. ALT-3 3.78 1.13 .20 .14 .06 -.01 -.04 .10 .11 .22 .16 .20 .25 .14 .37 .40 –
16. ALT-4 3.77 1.27 .17 .14 .07 .07 -.05 .02 .18 .08 .19 .17 .11 .15 .52 .37 .51 –
17. RLT-1 3.26   .91 .16 .06 .18 .22 .25 .25 .09 .15 .05 .22 .16 .23 .16 .04 .14 .09 –
18. RLT-2 3.09 1.11 .06 .08 .10 .15 .21 .24 .04 -.01 .06 .19 .13 .14 .10 -.06 -.05 -.08 .36 –
19. RLT-3 2.53 1.16 .01 .03 .15 .12 .11 .12 .01 .04 .09 .12 .16 .27 .09 .10 .10 .10 .20 .24 –
20. RLT-4 2.21 1.28 -.01 .01 .04 .02 .10 .11 -.02 .13 .10 .03 .12 .12 .09 .09 .12 .05 .11 .09 .22 –
21. RLT-5 2.36 1.33 .07 .13 .18 .02 .12 .17 .01 .08 .02 .11 .01 .08 -.02 .01 -.07 -.04 .14 .07 .12 .15
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FIGURE 1.

The confirmatory factor model including paired associative and complex learning as latent variables with standardized loadings 
and error variances. ALT-i = a subscore of the associative learning task; RLT-i = a subscore of the rule learning task.

FIGURE 2.

The prediction of associative learning and rule learning by the storage-related factor represented by the common variance in the 
memory scanning task and the exchange task, and by executive control represented by the residual variance in the exchange task. 
MST-i = the score of the i-th level of the memory scanning task; ET-i = the score of the i-th level of the exchange task. Solid lines 
represent significant links and dotted lines - nonsignificant links. 
* p < .05.
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FIGURE 3.

The prediction of paired associative learning and rule learning by the auxiliary factor and the executive control process of the star 
counting task. SCT i-k = the k-th composite score of the star counting task at the i-th treatment level. 
*p < .05.

STUDY 2

Since the dual-process account and the propositional account of learn-

ing hold different views on the relationship between associative learn-

ing and executive control, Study 2 investigated whether the findings 

obtained based on the paired associative learning task could be gener-

alized to another associative learning task, the three-term contingency 

learning task (Kaufman et al., 2009). This study comprised data on 

associative learning and executive control, which was measured by a 

modified version of the star counting paradigm (De Jong & Das-Smaal, 

1995).

Method

PARTICIPANTS
A total of 211 undergraduate students participated in this study. 

There were 98 males and 113 females aged between 18 and 24  

(M = 20.93, SD = 1.14). Participants received financial rewards for 

participation.

MEASURES
Three-term contingency learning task (TCL). This task was 

used to tap the ability to form associations between unrelated words 

(Kaufman et al., 2009). There were four learning blocks, each followed 

by a test block. In the learning block, participants were presented with 

six cue words. Each cue word was associated with three prompts (the 

letters A, B, and C) and three corresponding outcome words. Each trial 

stated with a cue word appearing on the screen with the letters A, B, 

and C listed underneath. Participants were prompted to successively 

press the letter keys. The letters A, B, and C were associated with differ-

ent outcome words. The duration of exposure to each association was 

self-paced (with the maximum length of exposure being 2.5 s). Once 

all six cue words with 18 outcome words were presented, participants 

moved to the test block.

In the test blocks, the sequence of the cue words was identical to 

that of the learning blocks. Participants were presented with a cue 

word together with one of the letters. They were asked to type in the 

outcome words. Both the feedback (Correct or Wrong) and the correct 

outcome words were presented after each response. A second learn-

ing block started immediately following the previous test block. The 

same cue-outcome words were presented in different orders across the 

four learning blocks. The percentage of correctly recalled words was 

computed for each block.

Star counting task (SCT). The original SCT (De Jong & Das-Smaal, 

1995) was modified to tap multiple executive processes. Participants 

were asked to count the stars forward or backward from a starting 

number. The counting stimulus was a 14 × 16 cm rectangle consisting 

of a number of stars with plus, minus, and slash signs between them. 

The plus and minus signs denoted the direction (forward and back-

ward) in which the following stars should be counted. The slashes were 

distractors and were to be ignored during counting. 

Each trial started with a starting number appearing in the center 

of the screen for 1 s, followed by a counting stimulus. Participants had 

to count the stars from left to right and from top to bottom as quickly 

and as accurately as possible. The time limit for each counting was 40 

s and participants were asked to press the Enter key as soon as they 

finished. The stimulus disappeared from the screen when participants 

responded within the time limit or when the time ran out. Participants 

had to enter the final counting number into an input box. There were 

three treatment levels, each consisting of 12 trials. As shown in Figure 

4, the first level included only the plus signs while the second level con-

sisted of plus and minus signs randomly. In the third level, there were 

both plus and minus signs, but the meaning of the signs was reversed, 

that is, a plus sign denoted backward counting while a minus sign de-
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noted forward counting. The reversal of the rule was expected to pose 

extra demands on the inhibition of well-learned responses to the plus 

and minus signs. The opposite meaning in the third level was indicated 

by presenting stimuli with a white background, in contrast to the black 

background for the first and second levels. The sequence of trials from 

different treatment levels was arranged randomly. The percentage of 

correctly completed trials was computed for each level. We computed 

three subscores for each treatment level of the SCT by combining sets 

of four trials to obtain four composite scores serving as manifest vari-

ables in the modeling analyses.

RESULTS
Table 3 presents the descriptive results for each block of the three-

term contingency learning task and each treatment level of the SCT, as 

well as the intercorrelations among the variables.

We tested a three-factor model representing the executive pro-

cesses underlying the star counting task. In this model, the shifting fac-

tor was derived from the subscores of the second and third treatment 

levels, since these two levels required the switching operations between 

forward and backward counting. The inhibition factor was linked to 

the subscores of the third treatment level, since only this level recruited 

the inhibition process. The auxiliary factor was loaded on all subscores 

of the three levels, representing the auxiliary processes stimulated in 

completing this task. The three factors were further linked to the as-

sociative learning factor derived from the four subscores of the three-

term contingency learning task. This model showed an acceptable fit, 

χ2(53) = 102.77, p < .001, χ2/df = 1.94, RMSEA = .067, SRMR = .041, 

and CFI = .95. As shown in Figure 5, there were no significant cor-

relations between associative learning and the three factors of the SCT 

(Auxiliary: r = .19, t = 1.79, p = .07; Shifting: r = .21, t = 1.84, p = .07; 

Inhibition: r = -.02, t = -.15, p = .88).

DISCUSSION

The starting point of this study was the theoretical dispute over wheth-

er associative and rule learning shared the same underlying cognitive 

processes. According to the existing theoretical and empirical evidence, 

executive control was proposed as a potential source that may contrib-

ute to both types of learning. Therefore, in this study, we examined the 

relationship of executive control with rule and associative learning. The 

results from Study 1 showed that paired associative learning shared vir-

tually no variance with rule learning, suggesting that these two types 

may represent different ways of learning. Furthermore, executive con-

trol was substantially related to rule learning, whereas no significant 

relationship was found between executive control and paired associa-

tive learning. The insignificant correlation between executive control 

and associative learning was confirmed by Study 2, based on different 

samples and different measures of associative learning.

Executive control was substantially associated with rule rather than 

with associative learning. This pattern was consistently observed when 

executive control was either represented by the residual part of work-

ing memory after the storage-related processes were stripped off or 

represented by the process of shifting attention across different mental 

operations. The observation of a substantial relationship between exec-

utive control and rule learning was not surprising, given that executive 

processes are mostly recruited to flexibly switch one’s attention from 

invalid features of examples to valid features during the hypotheses 

testing procedure. In addition, executive control is crucial for inhibit-

ing the interference of invalid rules so that valid rules can be main-

tained temporarily for further applications (Rabi & Minda, 2014; Wang 

et al., 2015). This finding was consistent with the hypothesis according 

to both the dual-process and propositional accounts of learning. 

The lack of a relationship between executive control and associa-

tive learning observed in both Study 1 and 2 suggested that executive 

processes played a rather limited role in associative learning. This 

was consistent with the dual-process account, in which mental links 

between representations are usually formed passively and automati-

cally as a direct consequence of contiguous pairings of stimuli, without 

additionally resorting to executive processes (McLaren et al., 2014). 

While this result was consistent with the findings by Kaufman et al. 

(2009, 2010), it contradicted previous studies that reported substantial 

correlations between associative learning and working memory tasks 

(Tamez et al., 2012; Bender & Raz, 2012). One reason for this incon-

sistency may be due to the variations in the measures of associative 

learning. For example, Tamez et al. (2012) used not only the verbal 

three-term contingency learning task, as Kaufman et al. (2009) did, but 

also the visual and spatial learning tasks. The modality of the learning 

task may affect the involvement of executive control during encoding 

and retrieval of the information. Furthermore, most of the previous 

studies did not differentiate executive control from working memory 

FIGURE 4.

Illustration of the star counting task. Panel A: starting number. 
Panel B: stimulus with only plus signs in the first treatment 
level. Panel C: stimulus with both plus and minus signs in 
the second treatment level. Panel D: stimulus with reversed 
meanings of plus and minus signs in the third treatment.

Measures M SD 1 2 3 4 5 6 7
1.SCT-1 .89 .12 –
2.SCT-2 .80 .16 .19 –
3.SCT-3 .78 .20 .34 .49 –
4.TCL-1 .17 .20 .05 .10 .10 –
5.TCL-2 .44 .28 .04 .14 .12 .67 –
6.TCL-3 .60 .30 .12 .22 .20 .54 .85 –
7.TCL-4 .71 .28 .05 .21 .15 .47 .75 .88 –

TABLE 3.  
Descriptive Statistics for All Study 2 Measures and Intercor-
relations (N = 211)

Note. SCT = Star counting task; TCL = Three-term contingency learning task. 

Correlations larger than .14 are significant at the .05 level.
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that was usually assessed by the complex span tasks. It is thus unclear 

whether executive control contributes to associative learning when 

the other components such as storage-related processes are partialed 

out. By achieving a purified representation of executive control, the 

current study reveals that executive control plays a limited role in the 

establishment of links between mental representations. Taken together, 

our finding adds to the evidence supporting the dual-process account 

of learning, which assumes that associative learning seldom relies on 

higher-level mental processing. 

At this point, it should be noted that the storage-related factor de-

rived from the two memory tasks was significantly related to both rule 

and associative learning, although the magnitude of the coefficients 

was small. This suggests that storage capacity is also important for 

acquiring abstract rules. Such a result is in line with the theoretical ac-

count that skill acquisition starts from the encoding and maintenance 

of specific exemplars, which are necessary for developing hypotheses 

regarding the general pattern underlying those exemplars (Anderson 

et al., 1997; Rabi & Minda, 2014; Ropovik, 2014). The significant link 

between the storage factor and associative learning was in line with 

the view that individuals with higher working memory capacity have 

the advantage of consolidating their memory traces binding different 

mental representations (Richardson, 1998; Unsworth & Spillers, 2010). 

Several limitations of the current study should be mentioned. First, 

only one experimental task was used to assess rule learning. Since the 

magnitude of the correlations between executive control and leaning 

is likely to be affected by a variety of factors, such as the types of tasks 

used and the characteristics of the sample, we are cautious in general-

izing our findings. The current findings should be validated in future 

studies by applying more tasks to tap rule learning, so that the results of 

this study can be generalized to other paradigms of learning and execu-

tive control. Second, this study mainly adopted a differential approach 

investigating the relationships of executive control with rule learning 

and associative learning. Within this approach, the two types of learn-

ing were assessed by different measures according to established para-

digms. In order to minimize the variation in learning tasks, an alterna-

tive approach may be to employ the discrimination learning paradigm 

(cf., Mutter, Haggbloom, Plumlee, & Schirmer, 2006), in which both 

associative and inductive reasoning processes are involved and might 

be separated experimentally from each other. Future research may use 

this paradigm to isolate associative learning and rule learning and to 

examine how they are related to executive processes.
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