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Abstract: Quantitative Structure Activity Relationship (QSAR) models can inform on the correlation
between activities and structure-based molecular descriptors. This information is important for the
understanding of the factors that govern molecular properties and for designing new compounds
with favorable properties. Due to the large number of calculate-able descriptors and consequently,
the much larger number of descriptors combinations, the derivation of QSAR models could be treated
as an optimization problem. For continuous responses, metrics which are typically being optimized in
this process are related to model performances on the training set, for example, R2 and Q2

CV. Similar
metrics, calculated on an external set of data (e.g., Q2

F1/F2/F3), are used to evaluate the performances
of the final models. A common theme of these metrics is that they are context -” ignorant”.
In this work we propose that QSAR models should be evaluated based on their intended usage.
More specifically, we argue that QSAR models developed for Virtual Screening (VS) should be
derived and evaluated using a virtual screening-aware metric, e.g., an enrichment-based metric.
To demonstrate this point, we have developed 21 Multiple Linear Regression (MLR) models for seven
targets (three models per target), evaluated them first on validation sets and subsequently tested
their performances on two additional test sets constructed to mimic small-scale virtual screening
campaigns. As expected, we found no correlation between model performances evaluated by
“classical” metrics, e.g., R2 and Q2

F1/F2/F3 and the number of active compounds picked by the models
from within a pool of random compounds. In particular, in some cases models with favorable
R2 and/or Q2

F1/F2/F3 values were unable to pick a single active compound from within the pool
whereas in other cases, models with poor R2 and/or Q2

F1/F2/F3 values performed well in the context of
virtual screening. We also found no significant correlation between the number of active compounds
correctly identified by the models in the training, validation and test sets. Next, we have developed
a new algorithm for the derivation of MLR models by optimizing an enrichment-based metric
and tested its performances on the same datasets. We found that the best models derived in this
manner showed, in most cases, much more consistent results across the training, validation and
test sets and outperformed the corresponding MLR models in most virtual screening tests. Finally,
we demonstrated that when tested as binary classifiers, models derived for the same targets by
the new algorithm outperformed Random Forest (RF) and Support Vector Machine (SVM)-based
models across training/validation/test sets, in most cases. We attribute the better performances of
the Enrichment Optimizer Algorithm (EOA) models in VS to better handling of inactive random
compounds. Optimizing an enrichment-based metric is therefore a promising strategy for the
derivation of QSAR models for classification and virtual screening.
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1. Introduction

Quantitative Structure Activity Relationship (QSAR) analysis could be broadly defined as the
application of mathematical/statistical methods in order to find an empirical relationship between
dependent variables obtained for a set of objects, and independent variables which describe in some
ways these objects. In the most common QSAR applications, the dependent variables are activities
(defined in the broadest possible way), the objects are molecules/materials and the independent
variables are structure-based molecular/materials descriptors. Over the years, QSAR analysis has been
widely and successfully used in various research areas including chemistry, biology, toxicology and
materials sciences in order to both analyze the factors affecting molecular properties and to design new
compounds with improved properties [1–7].

Building predictive QSAR models requires the following steps: (1) Data collection, namely,
the assembly of a large enough, well curated dataset of compounds with accurate activities, preferably
measured by one source (e.g., laboratory) or at least according to the same protocol. (2) Data preparation,
which typically includes structure curation and descriptors calculation and pre-processing (e.g., removal
of constant, nearly constant and correlated descriptors). (3) Model derivation employing one of
numerous machine learning approaches. The modeling process begins with a training set (modeling
set), and proceeds by performing regression based or classification-based analysis to construct a model
of activity as a function of the descriptors. Machine learning techniques are mostly used in this
area, because they can deal with very complex relationships between structures (as perceived by the
descriptors) and activities [8]. (4) Model validation. Whenever possible, QSAR models should be
validated on an external set (termed validation set or test set) [9]. An external set can be obtained by
splitting the input dataset prior to the model development phase or by obtaining additional data [10,11].
When the number of samples in the input dataset is too small to allow for a reasonably large test set,
models are usually evaluated using cross validation. Thus, the most common metrics for evaluating
QSAR equations developed for continuous responses are R2 (for the training set) and Q2

F1/F2/F3 (for the
external set) [12–14]. Classification-based models, i.e., models derived for categorized responses are
evaluated by metrics derived from the confusion matrix (e.g., the Matthews Correlation Coefficient;
MCC).

Due to the large number of molecular descriptors available for QSAR analysis (for example,
the popular DRAGON software can calculate ~5300 descriptors [15]) the number of descriptors
combinations is too large to allow for an exhaustive search for that combination that would afford
the best model. As a result, the derivation of QSAR models could be treated as a single objective,
multi-variables optimization problem [16]. Solving the so-called features selection problem requires
an optimization engine and an objective function to be optimized. Several optimization algorithms
have been used to derive QSAR models including Genetic Algorithm (GA) [17,18], Particle Swarm
Optimization (PSO) [19], Iterative Stochastic Elimination (ISE) [20] and Metropolis Monte Carlo coupled
with Simulated Annealing (MC/SA) [21]. As to objective functions, the most commonly used ones are
model evaluation metrics calculated for the training set such as R2

train, Q2
train−CV , MAE (Mean Averaged

Error) or the regression standard deviation.
As mentioned above, QSAR models could highlight the factors affecting molecular properties and

could also be used to design new compounds with improved properties. The success of the latter task
depends on the ability to transform the insight obtained from the models into new designs, which in
turn requires the models to be interpretable. Alternatively, the design problem could be replaced by
using QSAR models in order to perform virtual screening (VS) of large collections of commercially
available compounds found in numerous databases in search for those compounds with favorable
properties. Indeed, several such efforts, using QSAR models developed on both continuous and
categorized responses, were reported in the literature [22–24].

Many QSAR models derived from continuous responses in whichever manner yet with VS in
mind are still evaluated using R2/Q2-like metrics. We argue however that there is no a priori reason
to expect QSAR models characterized by favorable R2/Q2 values to perform well in VS (and vice
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versa). Thus, alternative, VS-aware, metrics should be used for both model derivation and evaluation.
Specifically, and borrowing from the most common methods used for VS, namely, pharmacophore
modeling and docking, we propose that QSAR models for VS should be evaluates based on metrics
derived from enrichment/Receiver Operating Characteristics (ROC) data.

To test this hypothesis, we focused on Multiple Linear Regression (MLR) as a common method
for deriving QSAR equations. First we derived 21 MLR models for seven datasets corresponding to
seven targets (5-Hydroxytryptamine Receptor 2C (5HT2C); Muscarinic acetylcholine receptor M2 (M2);
Histamine H1 receptor (H1); human Ether-à-go-go-Related Gene (hERG); Muscarinic acetylcholine
receptor M3 (M3), Dopamine receptor (D1), Alpha-2C adrenergic receptor (Alpha2C)), and evaluated
their performances on the training set (using R2), on an external validation set (using Q2

F1/F2/F3) and
finally on two additional external sets (termed test sets) designed to mimic small-scale virtual screening
campaigns. In accord with our hypothesis we found little correlation between the R2/Q2

F1/F2/F3 metrics
and the ability of these equations to pick up active compounds from within a collection of random
(assumed to be mostly inactive) compounds. Similarly, we found poor correlation between model
performances on training/validation/test sets when using a VS-aware evaluation metric.

Next, in order to obtain models where performances on training/validation sets would better
inform on performances for VS, we developed an algorithm that derives QSAR models in the form of
MLR equations by directly optimizing an enrichment-based function. We term this new algorithm
Enrichment Optimizer Algorithm (EOA) and the resulting equations, EOA models or equations.
When tested on the seven, above-described datasets, this new algorithm indeed gave more consistent
results for the training, validation and test sets. Importantly, performances of the best EOA models on
the test sets, which, as noted above, were constructed to mimic small-scale VS campaigns, were in
almost all cases either similar to or better than performances obtained with the original MLR equations.
An advantage of our new algorithm is that it can use as input binary activity data (i.e., active/inactive)
rather than quantitative data as typically required by continuous response MLR equations.

Finally, since virtual screening is akin to a classification problem, we compared the performances
of our new algorithm on the seven data sets with those of two of the state of art classifiers, namely,
Random Forest (RF) and Support Vector Machine (SVM), obtaining overall better results across
training/validation/test sets, in most cases. We attribute the better performances of the EOA models in
VS to better handling of inactive random compounds.

2. Results

Table 1 presents the results of the MLR models obtained for the seven datasets considered in this
work and Table S1 provides the actual equations. In each case, models were derived by optimizing
the regression standard deviation metric in the space of the input descriptors using 106 MC steps
(see Methods section for more details). Model performances on the training and validation sets
were evaluated using the “classical” metrics, R2 and Q2

F1/F2/F3 for the training and validation set,
respectively, as well as by counting the number of active compounds found within the first L places
(See Tables 1 and 2 for the values of L) of the sorted list of the predicted pKi values. Enrichment factors
derived from this metric using Equation (5) (see Methods section) are also provided in parenthesis
(see Table 5 in the Methods section for maximal enrichment values attainable for each dataset). For the
test sets, only the number of active compounds found within the first L places of the sorted activity list
and the corresponding enrichment values are provided (since no information on the actual activities of
the random compounds is available).
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Table 1. Results of the Multiple Linear Regression (MLR) models.

Set # Actives = L
#

Descriptors
MC
Steps

Train Validation Test1 Test2

R2
# Actives Among

L Top Places
(Enrichment)

Q2
F1 Q2

F2 Q2
F3

# Actives among
L Top Places
(Enrichment)

# Actives among
L top Places

(Enrichment)
# Actives = L

# Actives among
L Top Places
(Enrichment)

M2
50

7 106 0.77 48 (2.6) 0.66 0.66 0.67 43 (2.4) 32 (66.4)
67

47 (54.5)
M2 10 106 0.80 48 (2.6) 0.63 0.63 0.64 45 (2.5) 0 (0) 1 (1.2)
M2 13 106 0.82 48 (2.6) 0.61 0.61 0.62 42 (2.3) 0 (0) 0 (0)

H1
50

7 106 0.73 47 (2.5) 0.59 0.59 0.63 42 (2.3) 0 (0)
42

0 (0)
H1 10 106 0.78 48 (2.6) 0.45 0.45 0.49 39 (2.1) 0 (0) 0 (0)
H1 13 106 0.82 49 (2.6) 0.56 0.56 0.60 41 (2.2) 0 (0) 0 (0)

5HT2C
50

7 106 0.58 43 (2.4) 0.14 0.14 0.18 32 (1.8) 10 (20.8)
58

21 (32.5)
5HT2C 10 106 0.65 44 (2.5) 0.08 0.08 0.12 34 (1.9) 1 (2.1) 5 (7.7)
5HT2C 13 106 0.70 45 (2.5) −0.08 −0.08 −0.03 30 (1.7) 1 (2.1) 6 (9.3)

hERG
100

7 106 0.34 67 (4.7) 0.28 0.28 0.16 64 (4.5) 87 (45.6)
26

21 (160.5)
hERG 10 106 0.36 69 (4.8) 0.32 0.31 0.23 68 (4.8) 87 (45.6) 23 (175.8)
hERG 13 106 0.39 71 (5.0) 0.33 0.33 0.24 72 (5.0) 91 (47.7) 22 (168.2)

M3
75

7 106 0.85 74 (2.0) 0.66 0.66 0.68 68 (1.8) 0 (0)
4

0 (0)
M3 10 106 0.89 74 (2.0) 0.68 0.68 0.70 67 (1.8) 0 (0) 0 (0)
M3 13 106 0.91 75 (2.0) 0.73 0.73 0.75 70 (1.9) 0 (0) 0 (0)

D1
58

7 106 0.83 57 (2.0) 0.81 0.81 0.80 56 (1.9) 20 (30.9)
20

2 (25.8)
D1 10 106 0.86 57 (2.0) 0.77 0.77 0.75 57 (2.0) 0 (0) 0 (0)
D1 13 106 0.88 58 (2.0) 0.74 0.74 0.72 56 (1.9) 0 (0) 0 (0)

Alpha2C
57

7 106 0.77 53 (1.9) 0.77 0.77 0.77 56 (2.0) 33 (52.8)
1

0 (0)
Alpha2C 10 106 0.80 53 (1.9) 0.70 0.70 0.70 55 (1.9) 26 (41.6) 0 (0)
Alpha2C 13 106 0.83 54 (1.9) 0.71 0.71 0.72 53 (1.9) 29 (46.4) 0 (0)
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Table 2. Best (out of five repeats, based on the performances on the test sets) results obtained for
the seven datasets using Enrichment Optimizer Algorithm (EOA). A compilation of all the results is
provided in Tables S2–S8 (first sheet in each table) in the Supplementary Materials. Red, yellow and
green coloring represent cases where EOA performances on test sets are poorer than, similar to or better
than the corresponding Multiple Linear Regression (MLR) models presented in Table 1.

Set
#

Descriptors # Actives = L
MC

Steps

# Actives among L Top Places in
Best Model (Enrichment) Test2

Train Validation Test1 # Actives = L

# Actives among
L Top Places in

Best Model
(Enrichment)

M2 7 50 106 47 (2.5) 40 (2.1) 40 (83.1)
67

56 (65.0)
M2 10 50 106 47 (2.5) 44 (2.4) 39 (81.0) 54 (62.6)
M2 13 50 106 47 (2.5) 42 (2.3) 38 (78.9) 54 (62.6)

H1 7 50 106 48 (2.6) 37 (2.1) 31 (64.4)
42

23 (67.6)
H1 10 50 106 49 (2.6) 42 (2.3) 32 (66.4) 24 (70.5)
H1 13 50 106 48 (2.6) 38 (2.0) 32 (66.4) 22 (64.6)

5HT2C 7 50 106 45 (2.5) 34 (1.9) 0 (0)
58

6 (9.3)
5HT2C 10 50 106 45 (2.5) 32 (1.8) 1 (2.1) 8 (12.4)
5HT2C 13 50 106 47 (2.6) 33 (1.8) 0 (0) 0 (0)

hERG 7 100 106 67 (4.7) 60 (4.2) 86 (45.1)
26

22 (168.2)
hERG 10 100 106 75 (5.3) 61 (4.3) 89 (46.6) 23 (175.8)
hERG 13 100 106 77 (5.4) 59 (4.1) 87 (45.6) 23 (175.8)

M3 7 75 106 74 (2.0) 65 (1.7) 49 (45.4)
4

3 (964.7)
M3 10 75 106 74 (2.0) 67 (1.8) 0 (0) 0 (0)
M3 13 75 106 74 (2.0) 70 (1.9) 57 (52.9) 3 (964.7)

D1 7 58 106 56 (1.9) 54 (1.9) 29 (44.8)
20

11 (141.9)
D1 10 58 106 57 (2.0) 55 (1.9) 20 (30.9) 1 (12.9) *
D1 13 58 106 57 (2.0) 54 (1.9) 41 (63.4) 17 (219.3)

Alpha2C 7 57 106 49 (1.7) 47 (1.6) 25 (40.0)
1

0 (0)
Alpha2C 10 57 106 49 (1.7) 45 (1.6) 25 (40.0) 0 (0)
Alpha2C 13 57 106 56 (2.0) 52 (1.8) 15 (24.0) 0 (0)

* This is the only case where a different model gave better results on Test2. The statistics of the model in terms of the
number of active compounds retrieved within the first L place (enrichment) are: Training: 57 (2.0); Validation: 53 (1.8);
Test1: 14 (21.6); Test2: 3 (38.7).

Analyzing the results presented in Table 1, we first note the favorable correlation between the
number of active compounds identified in the training and validation sets. Correlating these numbers
across all models, we find a Pearson correlation coefficient (r2) of 0.9, a slope of 1.2 and an intersect
of −13.0. Since the validation sets constitute perfectly valid external sets (i.e., they were not used
to train the models in any way), we take this to indicate that the MLR models are not over-fitted.
At the same time, however we observe a large mismatch (and no numerical correlation) between
model performances evaluated using R2/Q2

F1/F2/F3 and using the enrichment metric calculated for
the test sets, in accord with our basic conjecture. Thus, all models generated for the M2, M3, D1,
and Alpha2C sets are characterized by favorable R2/Q2

F1/F2/F3 values, which are mirrored, by excellent
enrichment values for both training and validation sets. Yet, only the M2 and D1 models constructed
from 7 descriptors and all Alpha2C models were able to identify active compounds from within test
set 1 (see below for a more detailed discussion). For the H1 set we observed a similar trend as for
M2, M3, and D1 with respect to performances on the training and validation sets (albeit with lower
Q2

F1/F2/F3 values), and even poorer performances for test set 1. For the 5HT2C set, a sharp decrease
from R2 (0.58–0.70) to Q2

F1/F2/F3 (−0.08–0.18) is observed, yet the corresponding decrease in enrichment
values (from 43–45 to 30–32) is moderate while the enrichment for test set 1 is extremely poor. Finally,
for the hERG dataset, both R2 and Q2

F1/F2/F3 values are low yet the enrichment values for the training,
validation and test set 1 are excellent. Looking at the results obtained for test set 2, we first note that
due to data set limitations (see Methods section), in some cases the number of active compounds is too
low to attach much meaning to the results (e.g., M3, Alpha2C and to a lesser extent D2). Nevertheless,
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we still observe poor correlation in terms of the number of retrieved active compounds between
training and test sets (Pearson correlation, r2 = 0.16 and 0.00 for test set 1 and test set 2, respectively)
and between validation and test sets (r2 = 0.25 and 0.00 for test set 1 and test set 2, respectively) across
all models.

Table 2 presents the best (out of five repeats) corresponding results, as judged by performances
on the test sets obtained with the EOA models. A compilation of all the results is provided in Tables
S2–S8 (first sheet in each table) in the supplementary material. Model performances are expressed
in terms of the number of active compounds found within the first L places of the sorted list of the
predicted pKi values. Enrichment factors derived from this metric using Equation (5) are also provided
in parenthesis. To facilitate a comparison with the MLR results (Table 1) we colored in red, yellow
and green EOA models with performances on test sets poorer than, similar to or better than the
corresponding MLR models.

Similar to MLR, EOA models also demonstrate good correlation between the number of active
compounds identified in the training and validation sets (r2 = 0.85, slope = 0.9, intercept = −1.4)
suggesting that the models are not over-fitted. The intercept value is smaller than that observed for the
MLR models (−13.0) suggesting a better training/validation correspondence in terms of the retrieved
actives. Moreover, in comparison with MLR models, EOA models show an overall better consistency
across the training, validation and test sets with Pearson correlation coefficients (r2) between the
number of active compounds retrieved in the training and test set 1 and in the validation and test set
1 of 0.37 and 0.28, respectively. Importantly, these values increase to 0.63 and 0.51 upon the removal of
a single (out of 21) deviating model (M3 model with 10 descriptors). This consistency is most apparent
for the M2, hERG, and two of the M3 models, is less apparent for the H1, and D1 models but is absent
from the 5HT2C and Alpha2C models. Because of the overlap between the active compounds in the
validation and test set 1 (see Method section for more details), we attribute the poorer performances on
the test set to poorer handling of random (yet presumed to be inactive) compounds. Still, EOA models
perform in this respect better than MLR models. Indeed, for four datasets, M2 H1, M3 and D1,
the performances of the EOA models on the test set were significantly better than those of MLR while
for two datasets (5HT2C and hERG) both methods performed similarly. Only for the Alpha2C dataset
did the MLR models outperform the EOA models. Looking at the results obtained for test set 2 we first
re-iterate the small number of active compounds in some of the dataset and the large discrepancy in
this parameter across all sets, which hampers rigorous quantitative analyses. Nevertheless, we observe
that EOA models were as good as or better than MLR models in 18 cases. It is interesting to note that
in all cases (except the D1 model with 10 descriptors; see footnote of Table 2) the best EOA models for
the two test sets were identical.

The MLR results obtained for the M2 and M3 datasets are intriguing (Table 1). Favorable
R2/Q2

F1/F2/F3 values were obtained for all models yet only the M2 model constructed from seven
descriptors was able to pick active compounds from within the pool of random compounds when run
on both test sets (a single compound was also picked up from within test set 2 by the M2 model with
10 descriptors). One possible explanation for this phenomenon is that the applicability domain of the M2
model with 7 descriptors better covers the test set compounds than the applicability domains of the M2
models with 10 and 13 descriptors. To test this hypothesis, a principle component analysis (PCA) was
performed on the descriptors spaces comprising the three M2 models while considering the training,
validation and test set 1 and the results are presented in Figure 1. While the first two PCs cover only
<50% of the original variance, it is clear that for the 7-descriptors space the average distances between
the training and test set compounds are smaller than in the 10- or 13-descriptors spaces. To quantify
this visual observation, we calculated the average distances between all training and test compounds
in all three spaces using all PCs and found the distance in the 7-descriptors space to be statistically
significantly smaller (using Student’s t-test) than the distances in both 10- and 13-descriptors spaces
(4.75± 1.06, 5.56± 1.96 and 5.50± 1.30, for the 7-, 10- and 13-descriptors space, respectively). We note,
that due to the central limit theorem, a t-test could also be used for non-normal distributions provided
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the size of the samples is large enough which is the case here. Thus, we propose that test set
1 compounds (and test set 2 as well, since the decoy compounds of both test sets, are identical) are more
within the boundaries of the applicability domain for the 7-descriptors M2 model than for the 10- and
13-descriptors models which may explain the better performances of the first model. This applicability
domain-based rationalization is in fact analogous to the above-mentioned suggestions that EOA models
better handle random test set compounds.
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Figure 1. Principle Component Analysis (PCA) plots of training set (orange), validation set (grey) and
test set 1 (blue) compounds in the space of the descriptors comprising the 7-descriptors model (left),
10-descriptors model (middle) and 13-descriptors model (right) for the M2 dataset. The first two PCs
cover 49%, 42%, and 35% of the original variance for the 7-descriptors, 10-descriptors, and 13-descriptors
models, respectively.

Importantly however, based on the results presented in Table 2, the EOA algorithm is less affected
by whichever factors (e.g., applicability domain) which led to the poor performances of the 10- and
13-descriptors M2 MLR models in virtual screening. This may explain the overall better performances
of the EOA algorithm on test sets 1 and 2.

Virtual screening is engaged with the identification of a small set of active compounds from
within a large pool of random, yet presumed to be inactive compounds. Thus, this procedure could be
considered as a binary classification problem (albeit performed on a highly skewed dataset). This is
true even if the VS engine assigns continuous activity data to the screened compounds because in
order to submit a certain number of virtual hits to biological evaluation, the continuous data should be
binned into active/inactive groups by applying an activity threshold. With this in mind, we wanted
to compare the performances of EOA models, this time evaluated as binary classifiers, with those
of two of the state of the arts classifiers, namely, Random Forest (RF) and Support Vector Machine
(SVM). For consistency, we used the same seven datasets, yet derived different training/validation/test
sets, also including compounds with binary (rather than continuous) activity data (see Table 6 in the
Methods section for training/validation/test sets compositions). Each set was modeled five times using
different random seeds to initiate the MC/SA procedure. The results are provided in Tables 3 and 4 for
test set 1 and test set 2, respectively. To allow for a facile comparison with RF/SVM results, we colored
in green the best models (as judged be performances on the test sets) from within EOA, SVM and RF.
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Table 3. A comparison of the performances of Enrichment Optimizer Algorithm (EOA) models with those of Random Forest (RF) and Support Vector Machine (SVM)
for the seven datasets considered in this work. For EOA we provide the results obtained with the best models as determined according to performances on test set 1.
A complete listing of the results obtained with all models is provided in Tables S2–S8 (2nd–5th sheets) of the Supplementary Materials. Each cell contains the number
of active compounds found within the first L places and in parenthesis, the enrichment calculated according to Equation (5) and the Matthews Correlation Coefficient
(MCC). Green coloring represent the best models (as judged be performances on the test set) from within EOA, RF and SVM.

Set Run
# Actives among L Top Places (Enrichment; MCC)

EOA RF SVM

Train Validation Test 1 Train Validation Test 1 Train Validation Test 1

M2

1 46 (9.2; 0.91) 41 (8.2; 0.80) 50 (103.8; 1.00) 42 (8.4; 0.88) 39 (7.8; 0.77) 39 (81.0; 0.88) 43 (8.6; 0.92) 36 (7.2; 0.84) 36 (74.8; 0.85)
2 46 (9.2; 0.91) 40 (8.0; 0.78) 48 (99.7; 0.96) 42 (8.4; 0.83) 37 (7.4; 0.73) 37 (76.8; 0.86) 42 (8.4; 0.83) 37 (7.4; 0.84) 37 (76.8; 0.86)
3 45 (9.0; 0.89) 41 (8.2; 0.80) 47 (97.6; 0.94) 43 (8.6; 0.86) 42 (8.4; 0.79) 42 (87.2; 0.92) 41 (8.2; 0.84) 37 (7.4; 0.73) 37 (76.8; 0.86)
4 44 (8.8; 0.87) 42 (8.4; 0.82) 48 (99.7; 0.96) 40 (8.0; 0.81) 40 (8.0; 0.80) 40 (83.1; 0.89) 41 (8.2; 0.82) 38 (7.6; 0.77) 38 (78.9; 0.87)

H1

1 44 (8.8; 0.87) 36 (7.2; 0.69) 38 (78.9; 0.76) 46 (9.2; 0.92) 29 (5.8; 0.61) 29 (60.2; 0.73) 41 (8.2; 0.88) 33 (6.6; 0.76) 33 (68.5; 0.81)
2 42 (8.4; 0.82) 31 (6.2; 0.58) 47 (97.6; 0.94) 47 (9.4; 0.91) 33 (6.6; 0.67) 33 (68.5; 0.78) 40 (8.0; 0.85) 34 (6.8; 0.78) 34 (70.6; 0.82)
3 38 (7.6; 0.73) 34 (6.8; 0.64) 42 (87.2; 0.84) 47 (9.4; 0.88) 39 (7.8; 0.77) 39 (81.0; 0.70) 39 (7.8; 0.86) 31 (6.2; 0.73) 31 (64.4; 0.79)
4 43 (8.6; 0.84) 29 (5.8; 0.53) 39 (81.0; 0.78) 41 (8.2; 0.82) 27 (5.4; 0.46) 27 (56.1; 0.52) 39 (7.8; 0.79) 27 (5.4; 0.7) 27 (56.1; 0.73)

5HT2C

1 50 (10.0; 1.00) 50 (10.0; 1.00) 50 (103.8; 1.00) 50 (10.0; 0.98) 50 (10.0; 0.98) 50 (103.8; 1.00) 50 (10.0; 1.00) 48 (9.6; 0.98) 48 (99.7; 0.98)
2 50 (10.0; 1.00) 50 (10.0; 1.00) 50 (103.8; 1.00) 50 (10.0; 0.98) 50 (10.0; 0.99) 50 (103.8; 1.00) 50 (10.0; 1.00) 50 (10.0; 1.00) 50 (103.8; 1.00)
3 50 (10.0; 1.00) 50 (10.0; 1.00) 50 (103.8; 1.00) 50 (10.0; 0.99) 50 (10.0; 0.96) 50 (103.8; 1.00) 50 (10.0; 1.00) 50 (10.0; 1.00) 50 (103.8; 1.00)
4 50 (10.0; 1.00) 50 (10.0; 1.00) 50 (103.8; 1.00) 50 (10.0; 0.98) 50 (10.0; 0.99) 50 (103.8; 1.00) 50 (10.0; 1.00) 50 (10.0; 1.00) 50 (103.8; 1.00)

hERG

1 41 (8.2; 0.80) 29 (5.8; 0.53) 42 (87.2; 0.84) 39 (7.8; 0.83) 23 (4.6; 0.41) 23 (47.8; 0.31) 35 (7.0; 0.81) 19 (3.8; 0.55) 19 (39.5; 0.61)
2 42 (8.4; 0.82) 22 (4.4; 0.38) 38 (78.9; 0.76) 42 (8.4; 0.90) 26 (5.2; 0.56) 26 (54.0; 0.33) 38 (7.6; 0.84) 19 (3.8; 0.52) 19 (39.5; 0.61)
3 39 (7.8; 0.76) 23 (4.6; 0.40) 45 (93.4; 0.90) 35 (7.0; 0.77) 32 (6.4; 0.68) 32 (66.4; 0.64) 31 (6.2; 0.77) 22 (4.4; 0.63) 22 (45.7; 0.66)
4 38 (7.6; 0.73) 29 (5.8; 0.53) 47 (97.6; 0.94) 34 (6.8; 0.78) 19 (3.8; 0.49) 19 (39.5; 0.55) 33 (6.6; 0.8) 18 (3.6; 0.56) 18 (37.4; 0.60)

D1

1 42 (8.4; 0.82) 37 (7.4; 0.71) 44 (91.4; 0.88) 42 (8.4; 0.86) 33 (6.6; 0.71) 33 (68.5; 0.69) 45 (9.0; 0.94) 44 (8.8; 0.84) 44 (91.4; 0.94)
2 42 (8.4; 0.82) 33 (6.6; 0.62) 46 (95.5; 0.92) 50 (10;.0 0.97) 31 (6.2; 0.71) 31 (64.4; 0.55) 44 (8.8; 0.91) 35 (7.0; 0.81) 35 (72.7; 0.84)
3 41 (8.2; 0.80) 41 (8.2; 0.80) 45 (93.4; 0.90) 48 (9.6; 0.93) 37 (7.4; 0.68) 37 (76.8; 0.71) 46 (9.2; 0.94) 36 (7.2; 0.79) 36 (74.8; 0.85)
4 39 (7.8; 0.76) 37 (7.4; 0.71) 45 (93.4; 0.90) 48 (9.6; 0.98) 40 (8.0; 0.82) 40 (83.1; 0.87) 42 (8.4; 0.91) 37 (7.4; 0.80) 37 (76.8; 0.86)

M3

1 44 (8.8; 0.87) 42 (8.4; 0.82) 49 (101.7 0.98) 50 (10.0; 0.98) 50 (10.0; 0.96) 50 (103.8; 1.00) 45 (9.0; 0.94) 45 (9.0; 0.92) 45 (93.4; 0.95)
2 48 (9.6; 0.96) 44 (8.8; 0.87) 48 (99.7; 0.96) 38 (7.6; 0.84) 35 (7.0; 0.78) 35 (72.7; 0.84) 40 (8.0; 0.88) 35 (7.0; 0.82) 35 (72.7; 0.84)
3 44 (8.8; 0.87) 41 (8.2; 0.80) 48 (99.7; 0.96) 41 (8.2; 0.88) 32 (6.4; 0.78) 32 (66.4; 0.80) 41 (8.2; 0.9) 33 (6.6; 0.80) 33 (68.5; 0.81)
4 48 (9.6; 0.96) 44 (8.8; 0.87) 44 (91.4; 0.88) 44 (8.8; 0.92) 37 (7.4; 0.84) 37 (76.8; 0.86) 42 (8.4; 0.91) 37 (7.4; 0.85) 37 (76.8; 0.86)

Alpha2C

1 40 (8.0; 0.78) 34 (6.8; 0.64) 37 (76.8; 0.74) 42 (8.4; 0.86) 35 (7.0; 0.72) 35 (72.7; 0.84) 37 (7.4; 0.85) 33 (6.6; 0.77) 33 (68.5; 0.81)
2 43 (8.6; 0.84) 29 (5.8; 0.53) 44 (91.4; 0.88) 42 (8.4; 0.87) 38 (7.6; 0.78) 38 (78.9; 0.87) 39 (7.8; 0.86) 34 (6.8; 0.78) 34 (70.6; 0.82)
3 43 (8.6; 0.84) 35 (7.0; 0.67) 43 (89.3; 0.86) 41 (8.2; 0.85) 38 (7.6; 0.75) 38 (78.9; 0.79) 42 (8.4; 0.91) 34 (6.8; 0.76) 34 (70.6; 0.82)
4 40 (8.0; 0.78) 37 (7.4; 0.71) 42 (87.2; 0.84) 39 (7.8; 0.81) 40 (8.0; 0.81) 40 (83.1; 0.89) 44 (8.8; 0.93) 41 (8.2; 0.82) 41 (85.1; 0.90)
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Table 4. The same as Table 3 but the best Enrichment Optimizer Algorithm (EOA) models were selected based on their performances on test set 2. Asterisks (*) denote
cases where the same model performed best for both test set 1 and test set 2.

Set Run
# Actives among L Top Places (Enrichment; MCC)

EOA RF SVM

Train Validation Test 2 Train Validation Test 2 Train Validation Test 2

M2

1 * 46 (9.2; 0.91) 41 (8.2; 0.80) 6 (857.8; 1.00) 42 (8.4; 0.88) 39 (7.8; 0.77) 5 (714.9; 0.91) 43 (8.6; 0.92) 36 (7.2; 0.84) 5 (714.9; 0.91)
2 47 (9.4; 0.93) 37 (7.4; 0.71) 6 (857.8; 1.00) 42 (8.4; 0.83) 37 (7.4; 0.73) 5 (714.9; 0.91) 42 (8.4; 0.83) 37 (7.4; 0.84) 5 (714.9; 0.91)
3 49 (9.8; 0.98) 42 (8.4; 0.82) 5 (714.9; 0.83) 43 (8.6; 0.86) 42 (8.4; 0.79) 1 (143; 0.41) 41 (8.2; 0.84) 37 (7.4; 0.73) 2 (285.9; 0.58)

4 * 44 (8.8; 0.87) 42 (8.4; 0.82) 5 (714.9; 0.83) 40 (8.0; 0.81) 40 (8.0; 0.80) 5 (714.9; 0.91) 41 (8.2; 0.82) 38 (7.6; 0.77) 5 (714.9; 0.91)

H1

1 46 (9.2; 0.91) 36 (7.2; 0.69) 115 (32.8; 0.84) 46 (9.2; 0.92) 29 (5.8; 0.61) 84 (24; 0.77) 41 (8.2; 0.88) 33 (6.6; 0.76) 81 (23.1; 0.77)
2 * 42 (8.4; 0.82) 31 (6.2; 0.58) 128 (34.5; 0.91) 47 (9.4; 0.91) 33 (6.6; 0.67) 85 (22.9; 0.76) 40 (8.0; 0.85) 34 (6.8; 0.78) 81 (21.8; 0.76)
3 * 38 (7.6; 0.73) 34 (6.8; 0.64) 115 (34.3; 0.86) 47 (9.4; 0.88) 39 (7.8; 0.77) 88 (26.2; 0.72) 39 (7.8; 0.86) 31 (6.2; 0.73) 71 (21.2; 0.73)
4 * 43 (8.6; 0.84) 29 (5.8; 0.53) 120 (33.3; 0.87) 41 (8.2; 0.82) 27 (5.4; 0.46) 90 (25.0; 0.70) 39 (7.8; 0.79) 27 (5.4; 0.70) 97 (26.9; 0.84)

5HT2C

1 * 50 (10.0; 1.00) 50 (10.0; 1.00) 98 (53.5; 1.00) 50 (10.0; 0.98) 50 (10.0; 0.98) 98 (53.5; 1.00) 50 (10.0; 1.00) 48 (9.6; 0.98) 97 (52.9; 0.99)
2 * 50 (10.0; 1.00) 50 (10.0; 1.00) 97 (54.0; 1.00) 50 (10.0; 0.98) 50 (10.0; 0.99) 97 (54; 1.00) 50 (10.0; 1.00) 50 (10.0; 1.00) 97 (54.0; 1.00)
3 * 50 (10.0; 1.00) 49 (9.8; 0.98) 98 (53.5; 1.00) 50 (10.0; 0.99) 50 (10.0; 0.96) 98 (53.5; 1.00) 50 (10.0; 1.00) 50 (10.0; 1.00) 98 (53.5; 1.00)
4 * 50 (10.0; 1.00) 50 (10.0; 1.00) 98 (53.5; 1.00) 50 (10.0; 0.98) 50 (10.0; 0.99) 98 (53.5; 1.00) 50 (10.0; 1.00) 50 (10.0; 1.00) 98 (53.5; 1.00)

hERG

1 * 41 (8.2; 0.80) 29 (5.8; 0.53) 112 (37.2; 0.89) 39 (7.8; 0.83) 23 (4.6; 0.41) 65 (21.6; 0.47) 35 (7.0; 0.81) 19 (3.8; 0.55) 62 (20.6; 0.70)
2 * 42 (8.4; 0.82) 22 (4.4; 0.38) 110 (78.9; 0.87) 42 (8.4; 0.90) 26 (5.2; 0.56) 72 (23.9; 0.49) 38 (7.6; 0.84) 19 (3.8; 0.52) 51 (16.9; 0.63)
3 37 (7.4; 0.71) 28 (5.6; 0.51) 103 (34.2; 0.81) 35 (7.0; 0.77) 32 (6.4; 0.68) 70 (23.2; 0.66) 31 (6.2; 0.77) 22 (4.4; 0.63) 61 (20.2; 0.69)
4 42 (8.4; 0.82) 32 (6.4; 0.6) 111 (36.8; 0.88) 34 (6.8; 0.78) 19 (3.8; 0.49) 42 (13.9; 0.54) 33 (6.6; 0.80) 18 (3.6; 0.56) 47 (15.6; 0.61)

D1

1 * 42 (8.4; 0.82) 37 (7.4; 0.71) 40 (102.4; 0.89) 42 (8.4; 0.86) 33 (6.6; 0.71) 35 (89.6; 0.75) 45 (9.0; 0.94) 44 (8.8; 0.84) 38 (97.3; 0.92)
2 42 (8.4; 0.82) 37 (7.4; 0.71) 41 (105; 0.91) 50 (10.0; 0.97) 31 (6.2; 0.71) 35 (89.6; 0.64) 44 (8.8; 0.91) 35 (7.0; 0.81) 35 (89.6; 0.88)
3 41 (8.2; 0.80) 37 (7.4; 0.71) 38 (93.2; 0.82) 48 (9.6; 0.93) 37 (7.4; 0.68) 39 (95.6; 0.77) 46 (9.2; 0.94) 36 (7.2; 0.79) 35 (85.8; 0.87)
4 40 (8.0; 0.78) 37 (7.4; 0.71) 43 (105.4; 0.93) 48 (9.6; 0.98) 40 (8.0; 0.82) 44 (107.9; 0.96) 42 (8.4; 0.91) 37 (7.4; 0.80) 39 (95.6; 0.92)

M3

1 * 44 (8.8; 0.87) 42 (8.4; 0.82) 65 (77.7; 0.98) 50 (10.0; 0.98) 50 (10.0; 0.96) 66 (78.9; 1.00) 45 (9.0; 0.94) 45 (9.0; 0.92) 55 (65.7; 0.91)
2 * 48 (9.6; 0.96) 44 (8.8; 0.87) 66 (78.9; 1.00) 38 (7.6; 0.84) 35 (7.0; 0.78) 47 (56.2; 0.84) 40 (8.0; 0.88) 35 (7.0; 0.82) 48 (57.4; 0.85)
3 * 44 (8.8; 0.87) 41 (8.2; 0.8) 64 (76.5; 0.97) 41 (8.2; 0.88) 32 (6.4; 0.78) 40 (47.8; 0.78) 41 (8.2; 0.90) 33 (6.6; 0.80) 43 (51.4; 0.81)
4 44 (8.8; 0.87) 41 (8.2; 0.8) 61 (72.9; 0.92) 44 (8.8; 0.92) 37 (7.4; 0.84) 47 (56.2; 0.84) 42 (8.4; 0.91) 37 (7.4; 0.85) 46 (55; 0.83)

Alpha2C

1 * 40 (8.0; 0.78) 34 (6.8; 0.64) 6 (255.5; 0.54) 42 (8.4; 0.86) 35 (7.0; 0.72) 8 (340.6; 0.85) 37 (7.4; 0.85) 33 (6.6; 0.77) 7 (298.0; 0.80)
2 * 43 (8.6; 0.84) 29 (5.8; 0.53) 9 (383.2; 0.82) 42 (8.4; 0.87) 38 (7.6; 0.78) 9 (383.2; 0.90) 39 (7.8; 0.86) 34 (6.8; 0.78) 8 (340.6; 0.85)
3 * 43 (8.6; 0.84) 35 (7.0; 0.67) 8 (340.6; 0.73) 41 (8.2; 0.85) 38 (7.6; 0.75) 7 (298.1; 0.54) 42 (8.4; 0.91) 34 (6.8; 0.76) 7 (298.0; 0.80)
4 * 40 (8.0; 0.78) 37 (7.4; 0.71) 6 (482.7; 0.75) 39 (7.8; 0.81) 40 (8.0; 0.81) 5 (402.3; 0.79) 44 (8.8; 0.93) 41 (8.2; 0.82) 6 (482.7; 0.87)
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Looking at Table 3 (test set 1), a comparison between the best EOA and RF models for the test sets
suggests identical or better performances of the former in terms of enrichment and MCC for 27 and
25 models, respectively. A similar comparison between EOA and SVM suggests identical or better
performances for the former in terms of enrichment and MCC for 28 and 23 models, respectively.
Looking at Table 4, similar comparisons suggest identical or better performances of EOA with respect
to RF in terms of enrichment and MCC for 24 and 22 models, respectively, and identical or better
performances of EOA with respect to SVM in terms of enrichment and MCC for 28 and 21 models,
respectively. Thus, in most cases best EOA models outperform both RF and SVM models. It is also
noteworthy that in 19 cases, the same model was found to be the best one for both test 1 and test 2.
Table S9 provides the components, which are used to calculate the MCC values, namely, True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN) rates for all EOA, RF and SVM
models derived in this work as well as their average values (last sheet). Based on these data, it is
evident that on average, the best EOA models (averaged over test set 1 and test set 2) outperform RF
models in terms of Test-TP, Test-TN, Test-FP, Test-FN, Test-MCC, and Test-enrichment and SVM models
in terms of Test-TP, Test-FP, Test-MCC, and Test-enrichment. In both cases, the largest differences
in favor of the EOA models are found in the Test-FP rate. This is an important parameter in virtual
screening, in particular for less resource rich entities, since a high FP rate may lead to investing
substantial resources in inactive compounds. A comparison of averaged values across all EOA-models
with those obtained for RF suggests similar performances in terms of all parameters except that RF has
a slightly better MCC. A similar comparison with SVM suggests similar performances in terms of most
parameters except that SVM affords slightly better MCC values and markedly better Test-FN rates
whereas EOA is slightly better in terms of enrichment.

3. Discussion

The last few years have witnessed the development of extremely large datasets of commercially
available or virtual yet synthetically feasible drug-like molecules and materials with potentially
interesting properties [25–27]. Virtually screening such large collections is beyond the capabilities
of many computational techniques (e.g., pharmacophores, docking) and due to the enormity of the
chemical/material space this gap is unlikely to be closed in the near future. Machine learning-based
models on the other hand are ideally suited for large scale VS campaigns due to their speed and since
in many cases they could rely on rapidly calculate-able 2-dimensional descriptors [28,29]. However,
how exactly to evaluate the performances of such models for VS is still, in our view, an open question.

Evaluating QSAR models has been the subject of extensive discussions in the literature [9,12–14,30]
with the general outcome that models are typically evaluated on external test sets using a metric that
quantifies the agreement between experimental and predicted activities. Similar metrics are used for
feature selection when the derivation of QSAR models is treated as an optimization problem. However,
most of these discussions evolved around the selection of the appropriate dataset on which the model
should be validated or on the mathematical details of the validation metrics and were less concerned
with the intended usage of the resulting models.

The main message of the present work is that the development of machine learning models
should explicitly take into account their intended usage and that failure to do so, may lead to
misinterpreting the model performances. More specifically, we propose that machine-learning models
developed with virtual screening in mind, should be derived and evaluated using a virtual screening
aware metric. Importantly, we do not claim that QSAR models developed and validated by other
means are not appropriate for VS. Indeed, several successful applications of such models have been
reported in the literature. However, we suggest that, a priori, there is no reason to expect that
QSAR models characterized by favorable values of the most common performance-evaluating metrics
(e.g., R2/Q2) should necessarily perform well in virtual screening and vice versa. This is because:
(1) Favorable R2/Q2 values typically characterize QSAR models operating within their applicability
domains. However, in the context of virtual screening, such models are often expected to go beyond this
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domain. (2) Poor R2/Q2 values can still characterize models that are nevertheless able to successfully
classify compounds into two group (e.g., active and inactive) as in fact done in virtual screening. Stated
differently, a poor regressor is not necessarily a poor classifier.

With this in mind, the present work has two main goals: (1) Testing whether “standard” model
evaluation metrics could inform on the performances of QSAR models in VS. (2) Developing a novel
algorithm for the derivation of QSAR models (in the form of MLR equations) by directly optimizing
the most common metric employed in VS, namely, enrichment.

With respect to the first goal, using MLR models derived for seven data sets by optimizing the
model’s standard deviation, we have demonstrated a lack of correlation between the R2/Q2

F1/F2/F3
metrics and the number of active compounds retrieved/enrichment metric. This lack of correlation
suggests that the performances of MLR models in the context of VS cannot be reliably predicted from
their performances on a training set or even on a validation set. Thus, models with either favorable or
poor R2/Q2 values performed both well and poorly when evaluated in the context of VS. A lack of
correlation between an R2/Q2-like metric (the RMSD between experimental and predicted EC50 values)
and enrichment was anecdotally observed by Mueller et al. in an artificial neural network (ANN)-based
VS of mGluR5 potentiators [23]. For the M2 dataset, we have traced this lack of correlation to a potential
incompatibility between test set compounds and the models’ applicability domain. We propose that
this is but one example of a more general phenomenon, namely, that random compounds largely fall
outside the applicability domain of the MLR models derived in this work. This suggestion is supported
by the observed lack of correlation between the enrichment metric calculated for the training/validation
sets and for the test sets.

With respect to the second goal, we have demonstrated, on the same datasets that models derived
by optimizing an enrichment-like function (i.e., EOA models), provide results that are more consistent
across training/validation/test sets. Furthermore, in the context of VS, almost all of these models
performed either similar to or better than the MLR models, perhaps due to a larger applicability
domain. Furthermore, when tested as binary classifiers, EOA models demonstrated superiority over
models derived by the RF or SVM methods.

The presumed larger applicability domain of the EOA models, suggests that hits retrieved upon
the application of such models to VS, may be more diverse than hits retrieved when VS is performed
with “standard” MLR models. Since “standard” MLR models work well only within their (smaller)
applicability domain, they will likely correctly predict the activities of only a small portion of the
database, that portion which is structurally similar to the compounds used for their construction.
Chemotype diversity of hit compounds is important in particular in early stages of drug development
projects. Finally, while in the present work, MLR and EOA models were developed based on identical
datasets (to allow for a fair comparison), the ability of EOA to use binary activity data is likely to
translate into models covering larger parts of the chemical space. This is because available databases
typically contain more compounds with binary than quantitative activity data. Such models will have
larger applicability domains and consequently will again be able to retrieve hits that are more diverse.
This however is also true for other classification-based models.

4. Methods

4.1. Datasets

Datasets containing experimentally measured ligand affinities data (pKi values or categorical
values) for six protein targets belonging to the GPCR family, namely, 5-Hydroxytryptamine Receptor
2C (5HT2C), Muscarinic acetylcholine receptor M2 (M2), Histamine H1 receptor (H1), Muscarinic
acetylcholine receptor M3 (M3), Dopamine receptor (D1), and Alpha-2C adrenergic receptor (Alpha2C)
were retrieved from the ChEMBL [31] database. A seventh data set containing experimentally
measured inhibition constants (pKi values) for inhibitors of the human Ether-à-go-go-Related Gene
(hERG) anti-target was retrieved from Braga et al. [32].
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All datasets considered in this work (including the ZINC compounds; see below) were first
processed by Schrodinger’s LigPrep program [33] in order to obtain reliable conformations, tautomeric
forms and protonation states. Next, each dataset was subjected to descriptors calculations by the
Canvas program [34]. Overall, 760 descriptors were calculated and were subsequently pre-processed
by removing constant, nearly constant (70%) and correlated (r2 > 0.7) descriptors. These remaining
descriptors were normalized using Z-Score normalization.

Next, compounds were assigned at random into training sets, validation sets and test sets as
detailed below. Overall, training and validation sets were of similar sizes yet they varied in terms of
the percentage of active vs. inactive compounds. Thus, some of the sets were balanced whereas others
included many more inactive compounds than active compounds. This imbalance was introduced
since we were interested in the application of the resulting equations to virtual screening where the
main challenge is the identification of a small number of active compounds from within a set of random
yet presumed to be largely inactive compounds. This imbalance was even more pronounced in the test
sets, which were designed to mimic small-scale VS campaigns. For each model, two test sets were
used. In the first (test set 1), the same set of active compounds used in the validation set was taken
and combined with ~5000 decoys retrieved from the ZINC database [35]. Using the same set of active
compounds for both validation and test was done for two reasons: (1) For some of the datasets the
number of active compounds was too small to allow for spreading them across training, validation and
test sets. For the sake of consistency, we decided to treat all datasets in the same manner. (2) Using the
same set of active compounds in both validation and test sets, allowed us to hypothesize on reasons
for differences in performances between the two sets as we have done. We note that the validation sets
were not used in any way to train the models or to select best models and therefore the overlap in
active compounds did not affect the performances of the models on the validation/test sets in any way.
A second test set (test set 2) was constructed by taking all active compounds, which were not assigned
to any of the previous sets and combining them with the same decoy compounds. For some targets,
test set 2 only contained a very small number of active compounds.

4.2. Multiple Linear Regression (MLR)

In this work, we chose to compare our algorithm with Multiple Linear Regression (MLR) coupled
with feature selection, which is a common method for deriving QSAR models. MLR models were
built for each of the seven datasets considered in this work using the Canvas package [34]. Canvas
builds MLR models by optimizing the regression standard deviation of the model in the space of the
descriptors [36]. Training, validation and test sets for the seven targets were built as described above.
For the 5HT2C, M2, H1, D1, M3, Alpha2C, and hERG datasets, active compounds were defined as
having pKi values > 8.6, 8.5, 8.5, 8.01, 9.2, 8.0 and 10.5, respectively whereas inactive compounds were
defined as having pKi values < 7.52, 5.56, 5.5, 5.78, 5.81, 6.12 and 7.52, respectively. We deliberately kept
a gap between active and inactive compounds to avoid potential experimental errors. Reducing this
gap is however beneficial since it will allow to construct models based on more data points. This will
be dealt with in future work. Table 5 provides information on the datasets used for the derivation of
MLR models.

For each set, MLR models were derived using 7, 10, and 13 descriptors. All parameters for model
derivation were set to their default values except that the number of Monte Carlo (MC) steps used
for the optimization was set to 106. Models were derived from the training sets, validated on the
validation sets and used to virtually screen the test sets.
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Table 5. Description of the seven datasets used for the derivation of Multiple Linear Regression (MLR) models. The “Maximal Enrichment” column provides the
maximal possible enrichment at L, attainable for the data set for a comparison with the enrichment values provided in Tables 1 and 2.

Dataset
#

Descriptors
Training Set Validation Set Test Set 1 Test Set 2

#
Actives

#
Inactives

Maximal
Enrichment

#
Actives

#
Inactives

Maximal
Enrichment

#
Actives

#
Random

Maximal
Enrichment

#
Actives

#
Random

Maximal
Enrichment

5HT2C 7, 10, 13 50 87 2.7 50 87 2.7 50 5141 103.8 67 5141 77.7
M2 7, 10, 13 50 84 2.7 50 84 2.7 50 5141 103.8 42 5141 123.4
H1 7, 10, 13 50 90 2.8 50 90 2.8 50 5141 103.8 58 5141 89.6

hERG 7, 10, 13 100 600 7.0 100 600 7.0 100 5141 52.4 26 5141 198.7
M3 7, 10, 13 75 75 2.0 75 75 2.0 75 5141 69.5 4 5141 1286.3
D1 7, 10, 13 58 58 2.0 58 58 2.0 58 5141 89.6 20 5141 258.1

Alpha2C 7, 10, 13 57 57 2.0 57 57 2.0 57 5141 91.2 1 5141 5142.0
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Model performances on the training and validation sets were evaluated using R2, Q2
F1, Q2

F2 and
Q2

F3 (Equations (1)–(4)):

R2 = 1−
∑N

i=1

(
y f it

i −yi

)2

∑N
i=1(yi−ymean)

2 ≡ 1− RSS
SS (1)

Q2
F1 = 1−

∑NEXT
i=1

(
ypred

i −yi

)2

∑NEXT
i=1 (yi−ymean−TR)

2 ≡ 1− PRESS
SSEXT(ymean−TR)

(2)

Q2
F2 = 1−

∑NEXT
i=1

(
ypred

i −yi

)2

∑NEXT
i=1 (yi−ymean−EXT)

2 ≡ 1− PRESS
SSEXT(ymean−EXT)

(3)

Q2
F3 = 1−

[∑NEXT
i=1

(
ypred

i −yi

)2
]
/nEXT[∑NEXT

i=1 (yi−ymean−TR)
2
]
/nTR

≡ 1− PRESS/nEXT
SSEXT(ymean−TR)/nTR (4)

where in Equation (1), the summation runs over all training set compounds, y f it
i are the predicted

(fitted) values, ymean are the mean activities, RSS is the residual sun of squares and SS is the total sum of
squares. In Equation (2), the summation runs over all validation set compounds, ypred

i are the predicted
values, ymean−TR are the mean activities for the training set compounds, PRESS is the predicted sum of
squares and SSEXT(ymean−TR) is the total sum of squares for the validation set calculated by the training
set mean. In Equation (3), the mean is calculated from the validation set. In Equation (4) the PRESS is
divided by the number of compounds of the validation set and the SSEXT(ymean−TR) is divided by the
number of compounds of the training set [14].

In addition, models’ performances on all sets were also evaluated by the number of active
compounds found within the first L places of a list sorted according to the predicted pKi values, where
L denotes the number of active compounds used in the training/validation/test sets. We note that the
test sets were constructed to mimic small-scale virtual screening campaigns by having a relatively
small number of known actives embedded in a much larger pool of random, yet presumed to be
inactive compounds.

4.3. Random Forest (RF) and Support Vector Machine (SVM)

Random Forest (RF) is a classification technique which operates by deriving multiple decision
trees and combining their predictions using a consensus approach [35]. In this work we have used the
RF method as implemented in the Canvas package [34]. The ensemble model was generated based on
1000 trees. All other parameters were set to their default values. No restrictions were imposed on the
number of descriptors used to construct the classifiers.

Support Vector Machine (SVM) is a supervised machine-learning algorithm that can be used either
as a classifier or as a regressor. When used as a classifier, as done in the present work, SVM classifies
compounds into two classes (e.g., active and inactive) by finding a hyperplane that maximizes the
separation between the classes [37,38]. In the present work we use the SVM algorithm, specifically
LIBSVM [39], as implemented in the WEKA package [40], with default parameters. No restrictions
were imposed on the number of descriptors used to construct the classifiers.

For the purpose of deriving RF/SVM models, we have randomly selected from each of the seven
parent datasets considered in this work eight subsets each consisting of 50 active compounds and
450 inactive compounds and used four of them as training sets and four as validation sets. Test sets
1 and 2 were constructed as described above. For the 5HT2C, M2, H1, hERG, M3, D1, and Alpha2C

datasets, active compounds were defined as having pKi values > 8.5, 9.0, 8.0, 9.52, 9.12, 8.0, and 8.1,
respectively and compounds having pKi values < 4.5 or labeled as “inactive” populated the inactive
compounds pool. For each subset, models were derived using 7, 10, and 13 descriptors for a total of
12 models. Table 6 provides information on the datasets used for the derivation of the RF/SVM models.
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Table 6. Description of the four datasets used for the derivation of Random Forest (RF) and Support Vector Machine (SVM) models. The “Maximal Enrichment”
column provides the maximal possible enrichment at L, attainable for the data set for a comparison with the enrichment values provided in Tables 3 and 4.

Dataset
#

Descriptors
Training Set Validation Set Test Set 1 Test Set 2

#
Actives

#
Inactives

Maximal
Enrichment

#
Actives

#
Inactives

Maximal
Enrichment

#
Actives

#
Inactives

Maximal
Enrichment

#
Actives

#
Inactives

Maximal
Enrichment

5HT2C 7, 10, 13 50 450 10.0 50 450 10.0 50 5141 103.8 97–98 * 5141 53.4–54.0
M2 7, 10, 13 50 450 10.0 50 450 10.0 50 5141 103.8 6 5141 857.8

H1 7, 10, 13 50 450 10.0 50 450 10.0 50 5141 103.8 133–140
* 5141 37.7–39.7

hERG 7, 10, 13 50 450 10.0 50 450 10.0 50 5141 103.8 126 5141 41.8
M3 7, 10, 13 50 450 10.0 50 450 10.0 50 5141 103.8 66 5141 78.9
D1 7, 10, 13 50 450 10.0 50 450 10.0 50 5141 103.8 45–46 * 5141 112.8–115.2

Alpha2C 7, 10, 13 50 450 10.0 50 450 10.0 50 5141 103.8 8–11 * 5141 468.4–643.6

* Different sets have slightly different numbers of active compounds.
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Models performances were first evaluated by counting the number of active compounds within
the top L = 50 places of the ranked activity list and by calculating the corresponding enrichment value
at the (L/M) × 100 point of the library according to:

Enrichment((L/M) × 100) =
% active compounds in L f irst places

% active compounds in library
(5)

where (L/M) × 100 determines the percentage of library at which enrichment is calculated (in this
work, limited to a single point determined by the percentage of active compounds in the dataset).
Performances were evaluated for training validation and test sets.

In addition, each model was characterized by the Matthew Correlation Coefficient (MCC) according
to:

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

where TP, TN, FP, and FN stand for true positives, true negatives, false positives and false
negatives, respectively.

4.4. A Novel Algorithm for the Derivation of QSAR Equations (Enrichment Optimization Algorithm; EOA)

In this work, we present a novel algorithm for the derivation of QSAR equations suitable for
virtual screening, based on the optimization of an enrichment-like objective function. We chose
Monte Carlo/Simulated Annealing (MC/SA) as the optimization engine due to its generality and
ease of implementation and since it is also the method implemented in Canvas’s MLR algorithm.
Still, other optimization engines, for example, genetic algorithm or particle swarm optimization could
also be used and may lead to faster convergence. The algorithm is composed of two phases, namely
model derivation and model selection. The model derivation phase accepts as input a set of L active
compounds embedded within a set of weakly active/inactive compounds (the algorithm can handle
imbalanced sets with a ratio of active:weakly active/inactive ≤1:10) where each of the compounds is
characterized by N molecular descriptors. It then maximizes the number of the L actives within the
first L places of an ordered list of predicted activities generated as follows: At each step, a subset of
k descriptors and k weights is selected and used to build a simple MLR model to predict the activities
of all compounds. The activities are then sorted from highest to lowest and the number of known
active compounds within the first L places of the resulting ordered list is counted. This number is
then maximized, using a MC/SA procedure, in the space of the descriptors and weights. In this first
implementation of the algorithm, the number of descriptors was held constant and only their identities
and weights were changed. The specific steps are as follows:

1. Given a dataset of M compounds (of which L are active), characterized by N descriptors:
2. Select {Xi} i=1, k random descriptors.
3. Select {Ci} i=1, k random weights.

4. For each compound calculate a predictive activity value: A j =
k∑

i=1
XiCi.

5. Sort
{
A j

}
j=1,M

, from highest to lowest.

6. Count the number of known actives, within the first L places of the sorted list. Call this number P1.
7. Optionally select new descriptors with new weights and/or modify the weights of the current

descriptors so that Cnew
i = Cold

i ± ∆J, where, ∆J = random number between speci f ic ranges.

8. Calculate Anew
j =

k∑
i=1

XiCnew
i or Anew

j =
k∑

i=1
Xnew

i Cnew
i

9. Sort {Anew
j } j=1,M, from highest to lowest.

10. Count the number of actives, within the first L places of the sorted list. Call the number P2.
11. If P2 > P1, accept and set: P1 = P2; Xold

i = Xnew
i ; Cold

i = Cnew
i .
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12. If P2 ≤ P1, accept according to the Metropolis MC criterion:

13. A number, r, between 0 to 1 is generated randomly and the step is accepted if r < e−
∆E
RT , where

∆E = P1 − P2. When using MMC simulations to obtain the canonical ensemble, R is the gas
constant and T is the absolute temperature. When using MMC as global optimizer as in the
present case, R and T are constants with no physical meaning and their values simply determine
the acceptance rate. In the present case, the term RT was linearly reduced in accord with the
simulated annealing procedure.

14. If the step is rejected, keep the old values of the descriptors and weights.
15. Go back to step 7.
16. During the simulation process, keep the best value of P, Pbest and its associated descriptors and

weights. If several solutions lead to the same value of Pbest, keep them all.

The above procedure is run until a pre-defined number of MC steps has been performed or until a
model producing the highest possible value for the objective function (L) has been developed.

One potential drawback of using enrichment (as calculated in this work) as the objective function
to be optimized is that the range of possible values is rather small. Thus, for a data set containing
L active compounds, the objective function can be characterized by at most L+1 values. For example,
for L = 10, the objective function is limited to a value from within {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. As a result,
several QSAR equations may lead to the same final value of the objective function (Pbest) requiring the
development of a post-processing ranking mechanism. Within the framework of the current algorithm,
we did not attempt to rank different solutions that produced the highest possible value of the objective
function (i.e., for which Pbest = L) but simply let the procedure terminate if such a solution was obtained.
Several mechanisms could be envisioned for ranking such solutions but would require numerical
values for the activities of known actives (e.g., Ki or IC50 values). This requirement will limit the
scope of the method to cases where this information is available. However, for different solutions that
produced the same, albeit not maximal value of the objective function, i.e., solutions that were able to
rank Pbest < L active compounds within the first L places in the ordered list, a post-processing ranking
mechanism was implemented. To this end we examined active compounds that were ranked beyond the
first L places and inactive compounds that were ranked within the first L places and preferred solutions
where both types of compounds had ranks closer to L. To account for the skewness of the dataset
(i.e., having more inactive than active compounds) the ranks of the active and inactive compounds
were independently normalized using z-score. Specifically, the following steps were implemented:

1. Keep a list {B} of the Z best solutions having the best score, {Bl}l=1,Z = Pbest.
2. For each solution Z in {B} independently normalize the indices of the L active compounds and the

M-L inactive compounds. Designate the normalized indices as j’ and j”, respectively.
3. For each solution Z in {B} calculate a score SZ as follows:

a. Sum the normalized j’ indices for the active compounds with ranks > L, Sactive =
M−L∑
v=1

j′v.

b. Sum the normalized j” indices for the inactive compounds with ranks < L, Sinactive =
L∑

u=1
j′′ u.

c. Set Sz = Sactive − Sinactive

4. The solution with the lowest score is the best one and will be tested on the validation and test sets.

The above-described algorithm was implemented via a series of scripts programmed in Python
version 3.6.

We have used the new algorithm to derive EOA models for all the datasets described
in Tables 5 and 6 using the same number of descriptors and the same compositions of training
sets/validation sets/test sets used for the MLR (Section 4.2), RF and SVM (Section 4.3) analyses.
For comparison with MLR, 15 models were derived for each dataset, consisting of five models for
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each the three sets of descriptors (7, 10, and 13 descriptors). The models differed by the random seeds
used to initiate the MC optimization process. For comparison with RF/SVM, 60 models were derived
for each dataset, consisting of five models for each of the seven training/validation/test sets and the
three sets of descriptors. As for MLR, the models differed by the random seeds used to initiate the
MC optimization process. The performances of all resulting models were evaluated by the number of
active compounds found within the first L places of a list sorted according to the predicted pKi values,
where L denotes the number of active compounds used in the training/validation/test sets. This number
was converted into an enrichment factor using Equation (5). In the case of RF/SVM, models were also
evaluated using MCC.

A typical MC/SA run consisted of 106 MC steps. Simulated annealing was implemented by means
of a saw tooth procedure whereby repeated annealing cycles where performed. In each cycle the
RT term was linearly decreased from 0.3 to 0.01 or from 0.6 to 0.01 in 0.01 intervals, running 300 MC
steps per interval. The range of values of the RT term were defined to maintain an acceptance rate of
~25–30% for the M2, H1, 5HT2C and hERG sets, and ~45–60% for the D1, M3 and Alpha2C sets.

All training/validation/test sets used in this work are provided in Tables S10–S16 in the
Supplementary Materials.

5. Conclusions

The two main conclusions emerging from this work are the following: (1) QSAR models
derived in order to be used for VS should be best evaluated using a metric that can reflect on
their success in a VS campaign. This conclusion is a specific example of a more general principle
suggesting that computational models in general, should be derived with their intended usage in mind.
(2) Deriving QSAR models by directly optimizing an enrichment-based metric is a promising strategy
for the development of QSAR models that could favorably be used as classifiers and for VS.

Clearly more work along several research lines including algorithmic improvements and
application to additional datasets should be performed in order to quantify the extent of improvement
in enrichment/diversity and consequently in VS performances, that could be achieved with the new
algorithm. One drawback of the current EOA algorithm is that initiating model derivation with
different random seeds leads to different final models with different performances, in particular on
test sets, thereby complicating the selection of the model to be actually used for VS. This diversity in
performances may suggest that the search in descriptors space for the best descriptors’ combinations
did not fully converge calling for better optimizers. However, the overall good performances of
all models on the training sets argues against this explanation. Another potential explanation is
that the enrichment-based metric optimized by the EOA algorithm can accept only a small set of
values (as explained in more details in the Methods section). This suggests that a range of QSAR
models can yield excellent results for the training set yet perform sub-optimally on validation/test
sets. This problem could be overcome by developing more complex, “values-rich” enrichment-based
functions, for example by also including information about inactive compounds that should be pushed
to the bottom of the ranked list. In addition, the availability of multiple QSAR models calls for a
consensus approach for virtual screening. Finally, it will be important to test whether other model
derivation techniques besides MLR, which might be able to generate models with better prediction
statistics could also benefit from being evaluated by a VS-aware metric. Work along these lines is
currently being performed in our laboratory.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/21/7828/s1.
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