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Alpha-1 antitrypsin deficiency:
Learning from the past and building the path for the future

Introduction
As part of the diagnostic workup of chronic 
obstructive pulmonary disease (COPD), patients 
will often receive a plain chest radiograph, the pri-
mary purpose of which is to rule out alternative 
diagnoses that might cause shortness of breath 
and/or cough, such as bronchiectasis, fibrosis, 
focal lesions, pneumonia, lung cancer, and tuber-
culosis.1–3 Chest radiographs provide some infor-
mation on the presence of lung pathologies of 
COPD, including more advanced emphysema,4 
which is often sufficient to guide further diagnos-
tic and therapeutic steps. While more sophisti-
cated imaging technologies such as computed 

tomography (CT) should be limited to justify the 
resource expenditure,5 it is warranted for the 
assessment of alpha-1 antitrypsin deficiency 
(AATD)-related lung disease, where it addresses 
the need to provide more detailed spatially 
resolved information. As previously discussed in 
the first chapter of this series of reviews,6 emphy-
sema is the principal pathological process in 
AATD, and establishing its extent and morphol-
ogy, in addition to identifying the presence of 
other pathologies such as bronchiectasis, can 
influence monitoring and treatment decisions. 
The present review provides an introduction to 
the technology underpinning imaging modalities 
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that have been used in AATD and how these 
technologies are crucial to the characterization of 
an individual’s disease state in routine clinical 
practice. The contribution of these technologies 
to new avenues of research in AATD and the cre-
ation of several key clinical trials, in addition to 
the potential of emerging imaging modalities, are 
also reviewed.

CT and the characterization of lung 
pathologies in AATD
CT scanners utilize focused X-rays that are 
rotated around the patient and their transmis-
sion is digitally reconstructed to produce a 
3-dimensional (3D) image consisting of stacked 
“slices.”7 CT scanning provides static images 
and lung density measurements generated from 
digital data collection. Stacked images generated 
by CT scanners consist of volume elements 
(voxels) that can be compiled to show a picture 
of the scanned region; the attenuation (or loss of 
radiation detection due to absorption in the 
body) of each voxel is related to the density of 
the tissue it represents. Tissue density is 
expressed numerically in Hounsfield Units 
(HU),4 and then assigned a gray color tone to 
enable visualization. A HU of 0 represents the 
density of water, negative values are less dense 
(e.g. the lungs) and positive values are more 
dense (e.g. bone). A value of −1000 HU repre-
sents the density of air. Healthy lungs typically 
display attenuation values between −750 and 
−850 HU (mean of −789 HU), while emphyse-
matous lungs are often determined using cutoffs 
of −910 to −960.8,9 Several large clinical studies 
in non-AATD-related COPD have used 
−950 HU;10–12 this threshold method is also 
known as the voxel index (VI).8 Measuring the 
area of the lung that is below the cutoff attenua-
tion value allows the burden of emphysema to be 
quantified as a percentage of the total area of 
lung tissue.13 Additionally, emphysema can also 
be expressed as a percentile density (PD); typi-
cally as the 15th percentile density (PD15)—the 
HU density value at which 15% of voxels are 
below the cutoff.8 Investigators comparing the 
VI and PD quantitative methods have found that 
PD15 is a more consistent measure of lung den-
sity change across a wide range of physiological 
impairments,14 and so PD15 has been widely 
adopted as a standard to assess the extent and 
progression of AATD-related emphysema.8

In AATD, a greater burden of emphysema on 
CT imaging has been shown to correlate with 
more symptoms, poorer health status, and 
increased risk of death.15,16 With regard to AATD 
treatment, CT densitometry is not necessary to 
initiate treatment, but has been established as the 
most specific and sensitive surrogate endpoint 
for the evaluation of the therapeutic benefit of 
alpha-1 antitrypsin (AAT) therapy (AAT aug-
mentation).17 The management of patients with 
AATD and the different treatment options are 
described in more detail within a separate chap-
ter of this review series, authored by Barjaktarevic 
and Campos.18

As with plain chest radiographs, a conventional 
CT scan delivers a dose of radiation; however, 
due to the higher intensity of X-rays required, the 
radiation dose from a chest CT scan is more than 
100 times higher than that from a plain chest 
radiograph (8.2 mSv versus 0.065 mSv).19 This 
limited how often CT scans could be employed, 
as each CT scan added to a patient’s lifetime can-
cer risk (commonly reported to be a 1:2000 
increase per CT scan).19 Therefore, routine/serial 
CT scanning, for example, annually, was usually 
not recommended;20 instead, CT scanning was 
usually based on clinical need or guided by clini-
cal study protocols. However, CT densitometry 
with lower radiation dose protocols, as with those 
used in lung cancer screening studies (~2 mSv),21 
is now being used in the field of AATD, and like 
conventional CT scanning, is well correlated with 
clinical features of the disease.22 To put these 
radiation doses into perspective, the average dose 
from naturally occurring background radiation in 
the United States (US) is 3 mSv per year.23

Within the field of AATD, it is recommended 
that newly diagnosed patients with symptoms of 
COPD and/or impaired lung function receive a 
baseline CT scan.20 CT scanning in clinical prac-
tice [typically high-resolution CT (HRCT)] is 
used to assess disease presentation, specifically to 
characterize the extent and distribution of emphy-
sema and bullae, in addition to assessing the pres-
ence/extent of bronchiectasis. HRCT is superior 
to conventional CT scanning for visual identifica-
tion of small areas of emphysema due to its 
decreased volume averaging and higher spatial 
resolution, and therefore, unlike conventional 
CT, HRCT is able to accurately detect emphy-
sema at a relatively early stage.24,25
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Studies have shown that HRCT data are closely 
related to physiological changes in patients with 
emphysema and AATD.22,26 Specifically, the 
degree of HRCT scan abnormality has been 
shown to be significantly correlated with forced 
expiratory volume in 1 s (FEV1), specific airway 
conductance, residual volume/total lung capacity, 
and transfer factor of the lung for carbon monox-
ide, as well as patient health status as assessed by 
the St. George’s Respiratory Questionnaire and 
the Short-Form health survey (p < 0.001 for all).26 
It was originally suggested that HRCT was asso-
ciated with considerably higher radiation doses in 
comparison to conventional CT scanning; how-
ever, studies have shown that this is not the case, 
and a combination of HRCT and low-dose proto-
cols results in an average dose comparable to that 
associated with chest radiography.27–29

To assist in the analysis of visual imaging from 
CT scanning, quantitative CT (QCT) methods 
have been developed to assess the severity of sev-
eral lung diseases,30 and can provide a more pre-
cise, reader-independent estimate of disease 
extent and severity compared with conventional 
CT.8 Software that automatically recognizes and 
traces contours of the lungs, and produces histo-
grams of lung attenuation values, which are then 
used to distinguish emphysematous tissue from 
non-emphysematous tissue, is available.31 QCT is 
considered by some physicians to be more suited 
to AATD studies rather than clinical practice, but 
should be used to confirm the presence, severity, 
and distribution of emphysema in patients with 
severe AATD and an FEV1 above the historically 
recommended range for treatment (35–60% pre-
dicted).32 QCT has demonstrated that changes in 
lower lung zone CT densitometry relates to sur-
vival in patients with AATD; in a study of patients 
with severe AATD in the United Kingdom (UK), 
lower zone lung density decline was significantly 
associated with subsequent mortality (p = 0.048).33 
Upper zone lung density decline demonstrated a 
similar trend, but this was not significant 
(p = 0.072).33 Furthermore, those who experi-
enced a normal age-related decline in FEV1, that 
is, those who exhibited no significant decline in 
FEV1 between two successive QCT scans, did 
show a decline in lung CT density.33 This sug-
gests that serial CT densitometry would be the 
most reliable way of identifying progressing high-
risk patients, adding support to the clinical use of 
QCT.33

Assessing the type, distribution, and extent of 
radiological changes of patients with AATD 
needs to be confirmed before initiation of phar-
macological intervention in the form of intrave-
nous AAT augmentation,20 as earlier initiation of 
treatment reduces irreversible lung tissue loss.34 
As previously discussed in the chapter by Tejwani 
and Stoller,6 studies have found that the majority 
of patients with AATD have panlobular emphy-
sema, that is, the permanent destruction of the 
entire acinus (typically with basal predomi-
nance), as opposed to centrilobular emphysema, 
that is, affecting the portion of the acinus proxi-
mal to the bronchioles (typically with upper-lobe 
predominance).35 Although a subsection of 
AATD patients have a more centrilobular-pre-
dominant phenotype,36 panlobular emphysema is 
one of the hallmarks of AATD (Figure 1).37,38 
However, the AATD genotype and its impact on 
anti-elastase concentrations in the lungs may also 
play a role on the type, distribution, and extent of 
emphysema in patients with AATD. A study 
from the UK found that patients with a less 
severe protease inhibitor (PI) genotype (i.e. 
PI*SZ) generally have more apical and less basal 
involvement than individuals with the most 
severe genotype (PI*ZZ).37

By HRCT, panlobular emphysema appears as 
uniform expansion of air spaces from the bron-
chioles to the alveoli.39 In advanced disease, the 
lumen around alveoli are slightly enlarged com-
pared with normal alveoli, which is less apparent 
in early emphysema.39 This can make early pan-
lobular emphysema difficult to discern by CT, 
which poses a key diagnostic challenge and can 
limit the ability of physicians to initiate appro-
priate pharmacological intervention, that is, 
AAT augmentation therapy early in the disease 
course.40

Knowledge of emphysema morphology has other 
important functions as a prognostic indicator and 
in helping to guide suitability for surgical interven-
tion in AATD. Lung volume reduction surgery 
(LVRS), a palliative treatment option for advanced 
lung disease with significant hyperinflation, is gen-
erally thought to be more suitable for patients with 
more heterogeneous emphysema (more often 
associated centrilobular emphysema).35 Recently, 
CT has become more widely used to guide target 
lung regions for LVRS, with the procedure increas-
ingly being performed endoscopically with use of 
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implanted valves instead of surgical lung resec-
tion.41 Surgical approaches to disease management 
in AATD is further discussed within the chapter by 
Barjakterevic and Campos.18 When pharmacologi-
cal and non-pharmacological treatment options 
are no longer viable, lung transplantation may be 
necessary, which is the focus of the chapter by 
Zamora and Ataya.42

The role of CT in AATD research
Although CT is better known for producing visuali-
zation of organs, as previously discussed, the images 
produced by CT scans directly relate to tissue den-
sity.8 Thus, in a similar manner to dual energy 
X-ray absorptiometry (DEXA) scans used to meas-
ure bone density in the field of osteoporosis, chest 
CT scans can provide quantitative measures of tis-
sue density, and, therefore, an indicator of emphy-
sema progression in longitudinal assessments. Due 
to the challenges associated with clinical trials in 
rare diseases (e.g. difficulties with recruitment/
small sample sizes), the higher sensitivity of lung 
densitometry versus other endpoints including 
spirometry, mortality/survival, and patient-reported 
outcomes, makes lung densitometry more suited to 
investigating the clinical efficacy of therapies aimed 
at slowing progression of emphysema in AATD.43–45  
Early work to validate the use of lung densitometry 
in AATD demonstrated correlations with change 
in health status and spirometry,14,46 in addition to 
patient survival.15,33,47 Initial clinical trials (the 
Dutch-Danish and EXACTLE trials), explored 
and refined the use of CT densitometry 

for determining the efficacy of AAT therapy in the 
setting of a double-blind placebo-controlled 
trial.44,48,49 Although these trials were underpow-
ered to determine a statistically significant effect, 
observed trends were suggestive of a lower rate of 
lung density decline. In the later RAPID clinical 
trial program, which was sufficiently powered, the 
clinical efficacy of AAT therapy was demonstrated 
using CT densitometry.50,51 These trials are dis-
cussed in more detail in the later treatment chapter 
by Barjakterevic and Campos.18

Due to a lack of standardization of CT densitom-
etry technology, methodology, software, calibra-
tion methods, and limited experience for analysis 
and interpretation of data in most clinics, the 
technique is not often implemented in routine 
clinical assessments.8 A procedure for standard-
izing image analysis has been proposed,52 but 
there is still a need for standardization of the tech-
nology and methodology.8 As the technical abili-
ties of modern CT scanners is evolving at a rapid 
pace, standardization of image acquisition proto-
cols is likely to be a continuous task.52 
Nevertheless, an important advantage of densi-
tometry is that it provides a numerical classifica-
tion of the degree of emphysema, avoiding 
reliance on the subjective interpretation of CT 
scans by clinicians. However, while CT scanning 
best captures the pathological changes associated 
with pulmonary emphysema and has been shown 
to be the most sensitive parameter to detect 
emphysema progression,17 the use of CT lung 
densitometry as an endpoint for clinical studies 

(a) (b)

Figure 1.  Typical presentation of emphysema in AATD. Chest CT scan (a) coronal cut; (b) axial view of an AATD 
patient with basal-predominantly emphysema.
AATD, alpha-1 antitrypsin deficiency; CT, computed tomography.
Reproduced with permission from Newell et al.38
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has been a matter of debate with regulatory bod-
ies for some time and has not been formally 
accepted in the field of AATD. For investigating 
the effects of AAT therapy, the US Food and 
Drug Administration (FDA) mandates the use of 
other clinically meaningful endpoints, such as 
FEV1, serious exacerbations, exercise capacity, 
and symptoms as primary endpoints.53 Due to the 
high variability of these endpoints and the slow 
deterioration of pulmonary emphysema in 
AATD, this would require a large number of 
patients in a placebo-controlled trial with a study 
duration of several years, which is deemed impos-
sible. Therefore, determination of a minimal clin-
ically important difference (MCID) is an 
important step in the validation of CT densitom-
etry and links an endpoint to patient-related 
parameters. For CT densitometry, the MCID has 
been proposed as −2.89 g/L.54

New methodologies on the horizon: lung 
magnetic resonance imaging
Magnetic resonance imaging (MRI) is a funda-
mentally different technology to CT; rather than 
using ionizing radiation, MRI utilizes magnetic 
fields to align the magnetization of hydrogen 
nuclei in the structure being scanned.4 Until 
recently, the use of lung MRI scans has been lim-
ited due to the high proportion of air, and there-
fore, low levels of hydrogen in lung structures. 
This has changed with the introduction of inhaled 
hyperpolarized contrast agents [3He (helium) and 
129Xe (xenon)] that can directly reveal regional 
function without any background signal.55

Although a more expensive technology than 
CT,56 a major advantage of MRI is that it does 
not use ionizing radiation, making it more suited 
to serial scanning. Thus, MRI removes a key ethi-
cal barrier to the use of lung imaging in epidemio-
logical studies, potentially opening up new 
avenues of research. However, at present, the 
spatial resolution of lung MRI is fairly limited 
compared with HRCT, and HRCT is therefore 
superior in terms of visualization of small struc-
tural changes.57 Nevertheless, visualization of 
function imposes less stringent resolution require-
ments as spatial discrimination at the level of an 
acinus is usually sufficient. Furthermore, whereas 
function must be inferred from CT, it can be 
interrogated directly by hyperpolarized gas MRI. 
For example, both helium and xenon report on 

ventilation and apparent diffusion coefficient 
(ADC). The latter is an established marker for 
alveolar structure and emphysema progression 
that correlates with traditional measures of gas 
transfer.58,59 The ability of lung MRI to provide 
such functional information regionally is a signifi-
cant advantage over standard pulmonary function 
tests (PFTs).60

As 3He supply is limited due to the small amount 
of helium in the atmosphere, and because 3He is 
required by the US Department of Homeland 
Security for neutron detection,61 alternative 
agents are required to sustain functional lung 
MRI. Recently, 129Xe has emerged as the most 
prominent alternative to 3He MRI.62–64 In 
addition,129Xe MRI appears to more readily 
detect ventilation defects than 3He MRI, likely 
due to its higher density and lower diffusivity in 
distal airways.65 Unlike 3He, 129Xe is soluble in 
tissues and freely diffuses from alveoli through 
barrier tissues, including cells of the alveoli, inter-
stitium, capillaries, and finally to the red blood 
cells (RBCs). When 129Xe enters these compart-
ments, it exhibits unique resonance frequencies 
that enable it to be separately detectable in each,66 
allowing 129Xe MRI to quantify ventilation, mem-
brane diffusing capacity, and regional capillary 
blood volume with very good resolution and sen-
sitivity.59,60 Furthermore, it has been shown that 
emphysema and chronic bronchitis have specific 
129Xe MRI signatures, which can be useful infor-
mation for clinical phenotyping.67 The clinical 
utility of lung MRI will likely be a supplement to 
traditional PFTs, especially when regional gas 
exchange function is needed. The technology is 
currently undergoing FDA approval and should 
be approved for clinical use in the next few years; 
costs are likely to be higher than standard MRI 
but a 129Xe MRI is substantially quicker to per-
form and can be completed in approximately 
10 min rather than 60 min; thus xenon MRI has 
the potential for scanning a larger number of 
patients.

The literature pertaining to use of lung MRI for 
characterizing emphysema progression in AATD 
is limited at present. However, early studies have 
shown promising results. A Danish pilot study 
on the progression of emphysema by 3He MRI 
over 2 years in nine patients with AATD revealed 
a high correlation between time trends in diffus-
ing capacity of the lungs for carbon monoxide 
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(DLco) and MRI ADC (p < 0.001).68 A later 
study from Canada compared 3He MRI param-
eters (including ADC), CT lung area, and DLco 
between eight patients with AATD, eight ex-
smoking patients with non-AATD COPD, and a 
healthy control group of five never smokers.34 
Results showed that only MRI parameters were 
significantly different between AATD and non-
AATD COPD patients, with the former group 
showing worse ventilation and ADC, indicating 
higher levels of parenchymal destruction, par-
ticularly in the basal regions.59 This suggests that 
lung MRI is able to detect lung disease earlier in 
disease pathogenesis than CT. In addition, sig-
nals from barrier uptake and RBC transfer pro-
vided by 129Xe roughly correspond to membrane 
diffusion and pulmonary capillary blood volume 
in the Roughton and Forster equation for pul-
monary gas diffusion.69 The ability to assess 
these two components of lung diffusion can pro-
vide novel insights into the pathophysiology of 
lung diseases, including emphysema, which 
show increased barrier defects (Figure 2, red 
zone, middle panel) and RBC transfer defects 

(decreased capillary blood volume; Figure 2, red 
zone, lower panel).

Ongoing work at Duke University in the US is 
investigating the use of 129Xe MRI in patients 
with AATD (Figure 2).70 In addition, an ongo-
ing pilot study is investigating whether early 
signs of lung disease can be discerned with use of 
129Xe MRI in individuals who are heterozygous 
for AATD,71 that is, patients with the PI*MZ 
genotype. Initial results of the study in four 
PI*MZ individuals with normal lung function by 
standard PFTs showed regional abnormalities 
not detectable by CT, which may reflect early 
signs of lung disease.71 Several clinical trials are 
also underway to determine the utility of 129Xe 
MRI in evaluating pulmonary function in a vari-
ety of lung conditions such as asthma, COPD, 
cystic fibrosis, and pulmonary hypertension, in 
addition to AATD.72,73 The inability to view 
regions of the lung with ventilation impairment 
may be a limitation of 129Xe MRI as the gas 
exchange function in those regions cannot be 
assessed. However, this would alternatively 

Ventilation

Barrier:gas

RBC:gas

Defect: 41%, Low: 22%
High: 7%

Defect: 28%, Low: 42%
High: <1%

Defect: 13%, Low: 21%
High: 8%

Figure 2.  Quantitative 3D functional maps of ventilation, barrier uptake and RBC transfer in a patient 
with AATD (PI*ZZ). The ventilation image (top panel) shows significant regions of ventilation defect in red, 
comprising 41% of the thoracic cavity; defects predominate in the basal regions of the lung. Similarly, barrier 
uptake (middle panel) is significantly reduced (red and orange regions), suggesting a loss of surface area for 
gas exchange associated with emphysema. Finally, transfer or 129Xe to RBCs is also reduced, suggesting a loss 
of capillary blood volume in the red and orange regions (bottom panel).
3D, three-dimensional; AATD, alpha-1 antitrypsin deficiency; PI*ZZ, protease inhibitor homozygous for the severe Z 
mutation; RBC, red blood cell.
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provide information on which areas of the lung 
have ventilation impairment. 129Xe MRI is cur-
rently under review by the FDA as a diagnostic 
method to assess in vivo lung function, but only 
time will tell as to whether this method will 
become a clinically recognized biomarker to 
clinically assess lung function.

Alternative imaging methodologies
Another type of imaging that has been used in 
studies of AATD is positron emission tomogra-
phy (PET), which measures gamma rays emitted 
from radiolabeled markers to create an image of 
where the markers are most concentrated. 
Imaging using 18fluorodeoxyglucose PET-CT 
(18FDG PET-CT) can provide quantitative and 
spatial data of pulmonary glucose uptake by pul-
monary neutrophils, providing a noninvasive 
biomarker of pulmonary neutrophilic inflamma-
tion. The ECLIPSE-AATD study utilized 
18FDG PET-CT, demonstrating that 18FDG 
uptake by pulmonary neutrophils was greater in 
patients with non-AATD COPD compared with 
patients with severe AATD (PI*Z phenotype), 
and that in patients with non-AATD COPD 
there was a correlation between 18FDG uptake 
and clinical measures of disease severity.74 
However, it was expected that 18FDG uptake by 
active inflammatory neutrophils would be 
greater in AATD than non-AATD COPD, 
which is inconsistent with the conventional 
understanding that neutrophilic inflammation in 
AATD is comparable in nature but more severe 
than in non-AATD COPD.74 An alternative 
explanation is therefore required to account for 
the reported findings. 18FDG PET-CT was also 
used as an outcome measure for augmentation 
therapy in patients with AATD, but there were 
no significant differences in 18FDG uptake after 
12 weeks of treatment.74 Overall, PET shows a 
potentially useful role in quantitative imaging in 
AATD; however, a different radiolabeled marker 
that monitors a key biochemical process in 
AATD is required for this imaging method to be 
truly useful in studies of AATD.75

Optical coherence tomography (OCT) is a mini-
mally invasive technique that can produce ultra-
high-resolution images of the lung in real time, 
without exposure to ionizing radiation.76 
However, although OCT is limited to imaging of 
the airways, OCT measurements of airway 

dimensions do have a strong correlation with CT 
measurements.77 There is also a strong correla-
tion between OCT measurements and FEV1, 
although the slope was not sufficiently steep 
enough to detect subtle FEV1 changes that are 
likely to have clinical relevance.77 Although OCT 
has been used in several studies of non-AATD 
COPD,77,78 there are yet to be any studies specifi-
cally in AATD.

Conclusions
CT is an essential tool in the clinical manage-
ment of patients with AATD and has been cen-
tral to research efforts in the field. Standardized 
protocols are required to support the more 
widespread use of CT densitometry, and low-
dose radiation CT scanning may facilitate the 
use of serial scanning in the future. In the longer 
term, 129Xe shows the most promise as a diag-
nostic method by providing a greater level of 
information regarding regional functional lung 
defects, and potentially lung pathophysiology 
related to AATD at a very early stage. However, 
due to costs, limited availability, and pending 
regulatory approval, the technology will likely 
initially be limited to answering specific research 
questions.
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