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The mood disorders major depressive disorder and bipolar disorder are prevalent, are inad-
equately treated, and little is known about their etiologies. A better understanding of the
causes of mood disorders would benefit from improved animal models of mood disorders,
which now rely on behavioral measurements.This review considers the limitations in relat-
ing measures of rodent behaviors to mood disorders, and the evidence from behavioral
assessments indicating that glycogen synthase kinase-3 (GSK3) dysregulation promotes
mood disorders and is a potential target for treating mood disorders. The classical mood
stabilizer lithium was identified by studying animal behaviors and later was discovered to
be an inhibitor of GSK3. Several mood-relevant behavioral effects of lithium in rodents
have been identified, and most have now been shown to be due to its inhibition of GSK3.
An extensive variety of pharmacological and molecular approaches for manipulating GSK3
are discussed, the results of which strongly support the proposal that inhibition of GSK3
reduces both depression-like and manic-like behaviors. Studies in human postmortem brain
and peripheral cells also have identified correlations between alterations in GSK3 and mood
disorders. Evidence is reviewed that depression may be associated with impaired inhibitory
control of GSK3, and mania by hyper-stimulation of GSK3. Taken together, these studies
provide substantial support for the hypothesis that inhibition of GSK3 activity is therapeutic
for mood disorders. Future research should identify the causes of dysregulated GSK3 in
mood disorders and the actions of GSK3 that contribute to these diseases.
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INTRODUCTION
Major depressive disorder and bipolar disorder, in which patients
experience manic episodes typically interspersed with depressive
episodes, are commonly referred to as mood disorders. These
are debilitating and prevalent illnesses, with a lifetime incidence
of approximately 20% in the United States, and they are life-
threatening due to suicide as well as other causes (Wong and
Licinio, 2001; Nestler et al., 2002; Berns and Nemeroff, 2003;
Belmaker, 2004). The pathophysiological underpinnings of mood
disorders are unknown. Research into the causative mechanisms
has been greatly hampered by the lack of adequate animal mod-
els of these diseases. However, studies of behaviors in rodents,
including investigations of the mechanisms of action of thera-
peutic agents, have provided substantial evidence of a number
of connections between glycogen synthase kinase-3 (GSK3) and
mood disorders. Altogether, these findings suggest that dysregula-
tion of GSK3 that causes its increased activity in specific cellular
locations, pathways, and circuits, promotes susceptibility to mood
disorders, and that inhibition of GSK3 is an important compo-
nent of the therapeutic actions of interventions used to treat mood
disorders.

ASSESSING CHARACTERISTICS OF MOOD DISORDERS IN
RODENTS
Progress in understanding and treating mood disorders faces a
difficult paradox. On one hand, there is no doubt that progress

would be enhanced by mood disorder models in animals, prefer-
ably rodents. On the other hand, it is unlikely that rodents are
capable of experiencing mood states that are equivalent to mania
or major depression. Thus, unlike most other diseases, it may not
be possible to precisely model the defining characteristics of mood
disorders in animals. This has led to measurements of behav-
iors, instead of mood, in rodents, although it remains unclear
to what extent assessments of rodent behaviors can be useful
for clarifying the causes of mood disorders and for developing
new therapeutics (Chen et al., 2010; Nestler and Hyman, 2010).
Nonetheless, much effort has been exerted in the pursuit of mea-
suring behavioral characteristics in rodents because of the high
value of such models in developing better treatments for mood
disorders (Matthews et al., 2005; Gould and Einat, 2007). In this
regard, it is important to remember that the classical mood stabi-
lizer lithium was initially conceived as a possible therapeutic for
psychiatric diseases based on its behavioral effects in guinea pigs
(Cade, 1949).

The rationale for using rodent behaviors to estimate mood is
strengthened when it is possible to obtain predictable actions of
drugs, such as by administration of antidepressants or mood sta-
bilizers. However, care must be taken that administration of these
drugs reasonably models therapeutic usage in human patients. For
example, antidepressants have differential effects when adminis-
tered acutely or chronically, and the latter have traditionally been
favored as modeling actions in patients because of their delayed
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therapeutic effects in major depression. Regarding lithium, many
studies originally used injections that produce large fluctuations in
serum levels of lithium. More recently, relatively stable therapeutic
levels have been achieved by administering lithium in the food of
rodents in a manner that produces serum lithium concentrations
that are within the therapeutic range in humans. Generally, the
range of 0.4–1.2 mM lithium is achieved in rodent serum using
food pellets that contain 0.2–0.4% lithium, which can be main-
tained for months as long as the rodents are provided with a source
of extra sodium to prevent hyponatremia (Thomsen and Olesen,
1974).

Quite a few models have been developed for studying antide-
pressant actions and depression-like behavior in rodents. Hereafter
this will be referred to as depression for simplicity with the under-
standing that there are immense limitations in this categorization
since behavior, rather than mood, is measured. Extensive reviews
of these developments and their limitations have been published
previously (Nestler et al., 2002; Cryan and Mombereau, 2004;
O’Donnell and Gould, 2007; Chen et al., 2010). Therefore, only
limited examples will be discussed here with a focus on those that
have been employed in studies of the role of GSK3 in depres-
sion. One widely used model is the learned helplessness model of
depressive-like behavior (Chourbaji et al., 2005). In this test, expo-
sure to uncontrollable and inescapable shock will afterward cause
depressed rodents to exhibit a deficit in escape when it is available,
and this failure to escape can be ameliorated by chronic admin-
istration of antidepressants. The forced swim test (FST) and tail
suspension test (TST) also have been used to identify in rodents
drugs with antidepressant effects (Porsolt et al., 1977). These are
only a few examples of a growing number of tests that have been
applied to measure depressive-like behavior in rodents and anti-
depressant actions (Nestler et al., 2002; Cryan and Mombereau,
2004; O’Donnell and Gould, 2007).

In contrast to depression, progress has been more limited
in developing rodent models of bipolar disorder. Furthermore,
these studies have primarily focused on the manic-like compo-
nent of behavior. This will be referred to as mania for simplicity,
again with the understanding that there is currently not a true
rodent model of the condition that humans experience as mania.
Mania is a complex group of symptoms and no single mea-
sure can identify a manic rodent. Therefore, investigators have
attempted to model characteristics of mania in rodents while
understanding the limitations of these models. These models
are most useful when disturbances in several rodent behaviors
are observed that fall within the definition of mania, although
not unique to mania, and that are ameliorated by a mood
stabilizer (Machado-Vieira et al., 2004; Gould and Gottesman,
2006; Einat, 2007; Kovacsics et al., 2009). The two most com-
mon assessments of mania in rodents are basal locomotor activ-
ity, either in the home cage or in a novel environment, and
amphetamine-induced hyperactivity. The latter has been used
in part because amphetamine can worsen symptoms or induce
mania relapse in patients, and mood stabilizers can alleviate these
responses (reviewed in Einat et al., 2003; O’Donnell and Gould,
2007). Further behavioral measurements have been employed to
attempt to study additional components of manic-like behavior in
rodents. Recent evidence was reported that increased preference

for sweet solutions provides a model for increased reward seek-
ing, a central component of manic behavior that can be reduced
by administration of mood stabilizers (Flaisher-Grinberg et al.,
2009). Enhanced sucrose preference was displayed by CLOCK
mutant mice that were characterized as exhibiting mania-like
behavior (Roybal et al., 2007) and by heterozygote bcl-2 defi-
cient mice (Lien et al., 2008). Furthermore, CLOCK mutant mice
exhibiting characteristics of manic-like behavior were resistant
to learned helplessness-induced depression-like behavior (Roy-
bal et al., 2007). Increased acoustic startle response has also
been observed in mice characterized as manic-like or bipolar-like,
including mice expressing neuron-specific mutant mitochondrial
DNA polymerase (Kasahara et al., 2006) and mice postnatally over-
expressing constitutively active S9A–GSK3β in neurons (Prickaerts
et al., 2006).

Thus, several approaches have been developed for measuring
behaviors in rodents that have provided a wealth of novel informa-
tion and that may be relevant for studying depression and mania.
However, still needed are more behavioral approaches and meth-
ods to validate the applicability of these behavioral measurements
to mood disorders. Particularly lacking are animal models that
display the episodic and progressive natures of mood disorders.

ACTIONS OF LITHIUM ON RODENT BEHAVIORS
Since lithium is an effective mood stabilizer for bipolar disorder, its
effects on locomotor activity of rodents has been the focus of much
research. The activity of normal rodents in a familiar environment
has generally been found to be unaffected by lithium, although
this depends on the administration protocol (Smith, 1980; Gould
et al., 2007b; O’Donnell and Gould, 2007). Additionally, strain-
selective actions of lithium on basal and drug-induced behaviors
is an important variable (Can et al., 2011; Pan et al., 2011). The
absence of lithium effects in wild-type rodent locomotor activ-
ity heightens interest in the reduced locomotor activity induced
by lithium in transgenic mice that exhibit increased locomotor
activity and in mice given stimulant drugs that increase loco-
motor activity. For example, rodents that spontaneously exhibit
increased locomotor activity that is reduced by lithium treatment
include sleep-deprived rats (Gessa et al., 1995), rats administered
ouabain (Jornada et al., 2010; Gao et al., 2011), mouse knock-
outs of the kainate receptor subunit GluR6 (Shaltiel et al., 2008),
mouse knockouts of the fmr1 gene that model Fragile X Syn-
drome (Yuskaitis et al., 2010), diacylglycerol kinase β knockout
mice (Kakefuda et al., 2010), muscarinic M1 receptor knockout
mice (Creson et al., 2011), and mouse knockouts of the AMPA
receptor GluA1 subunit (Fitzgerald et al., 2010). This differen-
tial effect of lithium on normal compared with abnormal states
of locomotor activity provides some support for the rationale
that studies of rodent locomotor behaviors may be useful for
examining therapeutic interventions for bipolar disorder. These
studies also exemplify the well-known fact that multiple single
alterations (e.g., various genetic manipulations) can cause equiv-
alent behavioral outcomes in mice (locomotor hyperactivity),
which is undoubtedly also the case for mood disorders. Alto-
gether, it is remarkable that lithium is capable of normalizing
behavioral locomotor hyperactivity in such a variety of mutant
mice.
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Studies of drug-induced increased locomotor activity that is
reduced by lithium have predominantly used amphetamine, but
other drugs also have been examined. Long ago, lithium was found
to reduce hyperactivity and/or stereotypic behavior induced by
amphetamine (Cox et al., 1971; Berggren et al., 1978; Borison
et al., 1978) or by cocaine (Flemenbaum, 1977; Antelman et al.,
1998). There has recently been a resurgence in studies exam-
ining lithium’s control of amphetamine-induced hyperactivity
(reviewed in Einat et al., 2003; O’Donnell and Gould, 2007). For
example, lithium antagonized locomotor behaviors induced by
amphetamine and dopamine D2 receptor stimulation (Beaulieu
et al., 2004, 2005, 2008a). Lithium administration also reversed
heightened amphetamine-induced hyperactivity or sensitization
to amphetamine displayed by ERK1 knockout mice that exhibit
increased behavioral excitement (Engel et al., 2009), heterozygote
bcl-2 deficient mice (Lien et al., 2008), and omega-3 fatty acid
deficient mice (McNamara et al., 2008). In addition to locomotor
hyperactivity, lithium treatment also has been reported to reduce
heightened sweet solution preference in CLOCK mutant mice that
were characterized as exhibiting mania-like behavior (Roybal et al.,
2007) and in heterozygote bcl-2 deficient mice (Lien et al., 2008).

STRATEGIES TO STUDY THE ACTIONS OF GSK3 AS A
THERAPEUTIC TARGET OF LITHIUM
The discovery that lithium directly inhibits GSK3 raised the pos-
sibility that this action contributes to the mood stabilizing action
of lithium in bipolar disorder (Klein and Melton, 1996; Stambolic
et al., 1996). In addition to directly inhibiting the activity of GSK3,
in vivo treatment with a therapeutically relevant level of lithium
also increases the inhibitory serine-phosphorylation of GSK3,
which was suggested to amplify the direct inhibitory action of
lithium on GSK3 (De Sarno et al., 2002). This amplification mech-
anism has received support from a variety of studies (Eom and
Jope, 2009; Polter et al., 2010; Pan et al., 2011). There is increasing
evidence that many of the behavioral actions of lithium in rodents
results from inhibiting GSK3 (Jope, 1999; Manji et al., 2000; Phiel
and Klein, 2001; Harwood and Agam, 2003; Jope and Johnson,
2004), and that the diverse effects of lithium may largely be due
to the numerous substrates of GSK3 and its consequential influ-
ences on many cellular functions. Evidence has been reported that
GSK3 phosphorylates more than 100 substrates, and projections
suggest that there may be many more proteins that are phospho-
rylated by GSK3 (Pilot-Storck et al., 2010; Taelman et al., 2010).
Thus, it is inevitable that an inhibitor of GSK3, such as lithium,
would have many effects on cellular functions. However, GSK3
is clearly not the only target of lithium (Chiu and Chuang, 2010),
which also directly inhibits phosphoglucomutase (Ray et al., 1978),
bisphosphate 3′-nucleotidase 1 (Spiegelberg et al., 1999), inosi-
tol monophosphatase (Hallcher and Sherman, 1980), and other
inositol polyphosphatases (Inhorn and Majerus, 1987). Another
proposed target of lithium, destabilization of the Akt-β-arrestin–
protein phosphatase 2A protein complex (Beaulieu et al., 2004),
was recently attributed to inhibition of GSK3 (O’Brien et al., 2011).
Thus, multiple targets of lithium must be considered as potential
contributors to its behavioral effects, although many of the major
advances in recent years have identified the outcomes of GSK3
inhibition.

The identification of behavioral, or mood-altering, effects of
lithium raised the possibility that these may be mediated by inhibi-
tion of GSK3, a potential causal relationship that requires verifica-
tion. The two major strategies for doing so utilize pharmacological
and molecular approaches. The pharmacological approach has
been strengthened in recent years because many academic and
pharmaceutical laboratories have engaged in intensive efforts to
develop new small molecule selective inhibitors of GSK3 (Meijer
et al., 2004; Martinez et al., 2006). This was particularly driven
by the discovery that lithium inhibits GSK3 and the abundant
evidence that GSK3 contributes to prevalent diseases, such as dia-
betes and Alzheimer’s disease, as well as mood disorders. This has
resulted in the availability of several selective agents for testing if
other GSK3 inhibitors cause effects similar, or not, to lithium, and
several of these new inhibitors have been widely used. Frequently
used inhibitors include indirubin derivatives (Leclerc et al., 2001),
L803-mts (Plotkin et al., 2003), SB216763, with care taken con-
cerning its solubility as originally described (Coghlan et al., 2000),
TDZD derivatives (Martinez et al., 2002), paullone derivatives
(Leost et al., 2000), and AR-A014418 (Bhat et al., 2003), although
the reports of behavioral effects of AR-A014418 are mitigated by
other studies indicating that it does not significantly enter the CNS
(Vasdev et al., 2005; Selenica et al., 2007; Hicks et al., 2010). Par-
ticularly valuable are studies of the kinase specificities of several
GSK3 inhibitors (Davies et al., 2000; Murray et al., 2004; Bain
et al., 2007), which enable investigators to utilize a panel of GSK3
inhibitors with differing off-target actions to provide reasonable
confidence in ascribing overlapping effects of the inhibitors to their
common target GSK3. The kinase specificity studies (Davies et al.,
2000; Murray et al., 2004; Bain et al., 2007) identified CT99021
(Wagman et al., 2004) as the most specific GSK3 inhibitor of those
tested. This information is also valuable for finding if GSK3 may
be an off-target effect of inhibitors of other kinases. Also valu-
able is an important report of the in vivo CNS penetration and
actions of a panel of GSK3 inhibitors (Selenica et al., 2007). Thus,
many tools are available for pharmacologically identifying actions
of GSK3.

Molecular approaches also have begun to be used to test if
increased GSK3 activity has effects opposite to lithium treat-
ment, and if reducing GSK3 molecularly has outcomes similar
to lithium treatment. Increased GSK3 activity has been studied by
overexpressing GSK3 and by using GSK3 knockin mice. However,
although overexpression of GSK3 has provided a wealth of infor-
mation about the actions of GSK3 in cells, in vivo CNS studies are
hampered because GSK3 overexpression can cause neurodegener-
ation (Lucas et al., 2001; Spittaels et al., 2002). However, targeted
overexpression of GSK3β in the nucleus accumbens induced a
depression-like phenotype in multiple behavioral measurements
(Wilkinson et al., 2011). Instead of overexpression of GSK3,
another approach was taken by Alessi and colleagues to increase
GSK3 activity by developing GSK3 knockin mice (McManus et al.,
2005). The two GSK3 isoforms, GSK3α and GSK3β, are mainly
regulated by inhibitory phosphorylation on Ser21–GSK3α and
Ser9–GSK3β (Figure 1). This is normally maintained by signaling
pathways, such as serotonergic activity (Li et al., 2004), that may
be deficient in mood disorders, resulting in inadequately inhib-
ited GSK3. The importance of inhibitory control of GSK3 can be
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FIGURE 1 | Summary of the involvement of GSK3 in mood disorders. A
simplified scheme is shown to represent examples of how GSK3 may be
dysregulated in mood disorders. In depression, deficiencies in signals that
normally maintain inhibition of GSK3, such as signaling induced by
serotonin or neurotrophins, can cause up-regulation of GSK3 activity, which
is capable of promoting susceptibility to depression. Mania may involve
excessive dopaminergic signaling, which induces activation of GSK3. Part
of the therapeutic actions of antidepressants and mood stabilizers may be
derived from their direct or indirect effects that cause inhibition of GSK3.

studied using GSK3α21A/21A/β9A/9A knockin mice, with the regu-
latory serines of one or both GSK3 isoforms mutated to alanines
(McManus et al., 2005). These mutations maintain GSK3 maxi-
mally active, but importantly within the physiological range since
both GSK3 isoforms are expressed at normal levels. GSK3 knockin
mice develop and reproduce normally with no overt phenotype.
For studying the outcomes of molecular deficiencies in GSK3, the
Woodgett laboratory has provided invaluable leadership by first
producing all of the transgenic mice available for these studies
(MacAulay and Woodgett, 2008; Force and Woodgett, 2009). They
found that GSK3β knockout mice cannot be used because they are
embryonically lethal (Hoeflich et al., 2000), but GSK3β± heterozy-
gote knockout mice (O’Brien et al., 2004) and GSK3α knockout
mice (Kaidanovich-Beilin et al., 2009) have been used to study the
effects of reduced GSK3 expression. Thus, there are now multiple
pharmacological and molecular tools available to modify GSK3
activity in vivo in order to examine effects on behavior, which are
discussed below.

DEPRESSION AND GSK3 IN RODENTS
Many of the neuromodulators that are widely thought to be
deficient in depression, such as serotonin, BDNF (brain-derived
growth factor), and VEGF (vascular endothelial growth factor),
normally stimulate signaling pathways that maintain inhibitory
control of GSK3. Thus, we hypothesize that deficiencies in these
signals in depression leave GSK3 inadequately inhibited, and that
restoration of the inhibitory control of GSK3 by therapeutic drugs
is an important part of their therapeutic mechanism of action
(Figure 1).

The concept that dysregulated GSK3 promotes depression-
like behavior in rodents has been extensively supported by

multiple pharmacological approaches. Early studies indicated that
lithium, when administered properly, attenuated several mea-
sures of depression in rodents and enhanced the antidepressant
effects of serotonin reuptake inhibitors (Faria and Teixeira, 1993;
Nixon et al., 1994; Redrobe and Bourin, 1999). Following the 1996
discovery that lithium inhibits GSK3 (Klein and Melton, 1996;
Stambolic et al., 1996), many findings supported the conclusion
these responses to lithium were likely due to inhibition of GSK3.
These include findings of clear antidepressant effects in rodents
of a variety of new small molecule inhibitors of GSK3 in addi-
tion to lithium (Gould et al., 2004; Kaidanovich-Beilin et al., 2004;
O’Brien et al., 2004; Shapira et al., 2007; Beaulieu et al., 2008a;
Silva et al., 2008), including on depressive behavior exhibited by
tryptophan hydroxylase 2 mutant mice with deficient serotonin
(Beaulieu et al., 2008b). Other studies have shown that classi-
cal antidepressants, as well as atypical antipsychotics, also inhibit
GSK3 in mouse brain after in vivo administration of clinically rel-
evant doses (Li et al., 2004, 2007a; Alimohamad et al., 2005; Roh
et al., 2007; Beaulieu et al., 2008b; Okamoto et al., 2010). Fur-
thermore, blocked inhibitory serine-phosphorylation of GSK3 in
GSK3 knockin mice abrogated the neurogenesis-stimulating effect
of fluoxetine and lithium administration, suggesting that at least
some of the responses to fluoxetine and lithium depend on their
induction of inhibitory serine-phosphorylation of GSK3 (Eom
and Jope, 2009). Additionally, inhibition of GSK3 is required for
the rapid antidepressant effect of ketamine in the learned help-
lessness model of depression in mice (Beurel et al., 2011b). In
addition to inhibiting GSK3 via serine-phosphorylation, antide-
pressants also increase signaling by Wnt2, which inhibits GSK3
in the Wnt signaling pathway (Okamoto et al., 2010). Expressing
or depleting disheveled, a protein capable of inhibiting GSK3 in
the Wnt signaling pathway, induced multiple behavioral outcomes
consistent with the concept that inhibiting GSK3 counteracts dis-
rupted mood-relevant behaviors with the important emphasis
that these effects resulted from alterations in the nucleus accum-
bens (Wilkinson et al., 2011). Conversely, GSK3 was found to
be activated via decreased inhibitory serine-phosphorylation in
the brains of mice exhibiting the learned helplessness model of
depression (Polter et al., 2010). This activation of GSK3 during
depression-like behavior was further shown to occur in the nucleus
accumbens of mice exhibiting social defeat stress (Wilkinson et al.,
2011). Taken together, these multiple approaches support the
concept that impaired inhibition of GSK3 promotes depression-
like behavior, and inhibition of GSK3 promotes resistance to
depression.

In conjunction with these pharmacological studies, strategies
using molecular modifications of GSK3 have firmly established
that GSK3 promotes depression in rodents. The reduced GSK3β

level in heterozygote GSK3β± knockout mice was demonstrated
to be sufficient to reduce depression-like immobility in the FST
(O’Brien et al., 2004) and the TST (Beaulieu et al., 2008a), and
reduced immobility in the TST in tryptophan hydroxylase 2
mutant mice (Beaulieu et al., 2008b). Decreasing GSK3β levels
by bilateral intra-hippocampal injections of lentivirus-expressing
short-hairpin RNA targeting GSK3β decreased depression-like
immobility times in both the forced swim and TSTs (Omata
et al., 2011). Decreased immobility times in the FST and the
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TST also were displayed by mice lacking a functional GSK3α

gene (Kaidanovich-Beilin et al., 2009). These studies demonstrate
that lowered expression of either isoform of GSK3 reduces vul-
nerability to depression-like behaviors in rodents. Additionally,
overexpression of Wnt2, which inhibits GSK3 in the Wnt signaling
pathway, reduced susceptibility to depression-like behavior in the
learned helplessness paradigm (Okamoto et al., 2010). Conversely,
increased GSK3 activity in GSK3 knockin mice was associated
with increased susceptibility to the learned helplessness model of
depression and increased immobility time in the FST and TST
(Polter et al., 2010). Definitive evidence that GSK3 is the causal
target of lithium in modifying behaviors in mice was shown by
the finding that transgenic expression of GSK3β in mouse brain
rescued lithium-sensitive behaviors, including immobility in the
FST, exploratory behavior, and open arm time in the elevated zero
maze (O’Brien et al., 2011).

Studies of mice expressing mutant DISC1 or with defi-
cient DISC1 expression have further supported the concept that
impaired inhibitory control of GSK3 promotes susceptibility to
depression. DISC1 mutations have been implicated as a risk factor
for schizophrenia, bipolar disorder, and recurrent major depres-
sion. Mice deficient in functional DISC1 exhibit depression-like
behavior, as well as other behavioral abnormalities (Clapcote et al.,
2007; Hikida et al., 2007; Li et al., 2007; Pletnikov et al., 2008; Shen
et al., 2008). Dysregulated GSK3 may contribute to some of these
behaviors because wild-type DISC1 directly binds and inhibits
GSK3, actions lost with mutated DISC1 (Mao et al., 2009; Lip-
ina et al., 2011a). Importantly, administration of GSK3 inhibitors
normalized depression-like behavior in the FST and improved
the impaired neurogenesis in DISC1 deficient mice (Mao et al.,
2009; Lipina et al., 2011b), and genetic inactivation of GSK3α

rescued spine deficits in DISC1 mutant mice (Lee et al., 2011).
These are exciting findings because they provide a specific mech-
anism whereby a molecular variant associated with susceptibility
to mood disorders may cause inadequate inhibitory regulation of
GSK3.

MANIA AND GSK3 IN RODENTS
As noted above, basal locomotor hyperactivity is a commonly used
measure of manic-like activity in rodents, although this is likely
only a marginally adequate model. Increased locomotor activity
was exhibited by mice postnatally overexpressing constitutively
active S9A–GSK3β in neurons (Prickaerts et al., 2006) and GSK3
knockin mice displayed increased locomotor activity in a novel
open field (Polter et al., 2010), whereas decreased locomotion was
displayed by mice lacking a functional GSK3α gene (Kaidanovich-
Beilin et al., 2009). Mice deficient in functional DISC1 that impairs
its ability to inhibit GSK3 also exhibit spontaneous hyperactivity
in the open field (Hikida et al., 2007; Pletnikov et al., 2008) that
was normalized by reducing GSK3 activity (Mao et al., 2009; Lip-
ina et al., 2011a,b). These findings are consistent with the concept
that increased GSK3 activity is directly correlated with locomotor
hyperactivity.

Locomotor hyperactivity induced by drugs, particularly
amphetamine, is also widely used to model manic behavior
in rodents. Particularly interesting are the studies by Beaulieu
et al. (2004) that identified an important role for GSK3 in the

locomotor response to amphetamine. They demonstrated that
amphetamine administration activated cortical and striatal GSK3
(Beaulieu et al., 2004, 2005, 2008a), and GSK3 was activated in
mouse striatum in dopamine transporter knockout mice (DAT-
KO) due to reduced Akt activity (Beaulieu et al., 2004). Loco-
motor hyperactivity displayed by mice lacking the dopamine
transporter was reduced by administration of five different GSK3
inhibitors (Beaulieu et al., 2004). GSK3β± heterozygote knockout
mice displayed attenuated locomotor activation after ampheta-
mine administration compared with wild-type mice, while basal
locomotor activity of the two cohorts was equivalent (Beaulieu
et al., 2004). Others have also shown that inhibitors of GSK3 reduce
amphetamine-induced locomotor hyperactivity, further strength-
ening the conclusion that active GSK3 is a critical mediator of
this response (Kozikowski et al., 2007; Kalinichev and Dawson,
2011). Increased amphetamine-induced locomotor hyperactiv-
ity was exhibited by mice deficient in functional DISC1, which
eliminates its inhibition of GSK3 (Lipina et al., 2010), and by
GSK3 knockin mice (Polter et al., 2010). Conversely, overexpres-
sion of β-catenin, which partially models reduced GSK3 activity,
attenuated amphetamine-induced hyperactivity in mice (Gould
et al., 2007a). These findings clearly demonstrated that GSK3
is activated after amphetamine administration and that GSK3
mediates some of the behavioral effects of dopamine, support-
ing a relationship between GSK3 activity and certain manic-like
behaviors.

GSK3 IN SUBJECTS WITH MOOD DISORDERS
It is a challenging task to confirm in humans, hypotheses that are
developed from in vitro and animal studies. This is particularly
true for mood disorders because the target tissue is inaccessi-
ble and there is no clear pathological parameter or biomarker
that can be assessed. Nonetheless, significant progress has been
made investigating potential alterations of GSK3 in humans with
mood disorders. The most direct assessment reported is the ele-
vated GSK3 activity, associated with decreased Akt activity, in
postmortem samples from ventral prefrontal cortex from patients
with major depression disorder (Karege et al., 2007, 2011). In con-
trast, lower GSK3β expression was reported in prefrontal cortex of
teenage suicide victims (Pandey et al., 2009). There is also evidence
of fluctuations in the inhibitory serine-phosphorylation of GSK3
in peripheral blood mononuclear cells, generally with decreases
associated with disease and increases following therapy (Li et al.,
2007b, 2010). These findings suggest that it may be possible to
develop measurements of phosphorylated GSK3 as a biomarker
to reflect disease state and/or treatment responses. Thus, limited
information is available concerning the functional status of GSK3
in humans with mood disorders. However, these findings gener-
ally support the concept developed in animal studies that GSK3
is inadequately inhibited in association with mood disorders and
is inhibited in humans treated with lithium. This is an area in
great need of further research in order to evaluate whether new
GSK3 inhibitors should be tested as therapies in mood disorder
patients.

Genetic studies have explored GSK3 and related genes in
patients with mood disorders. Associations that have been iden-
tified include an increase in copy number variations affecting the
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GSK3β gene locus in bipolar disorder (Lachman et al., 2007), and
GSK3β polymorphisms linked to the age of onset of bipolar disor-
der and of major depressive disorder and the therapeutic responses
to lithium (Benedetti et al., 2004a,b, 2005; Szczepankiewicz et al.,
2006a; Saus et al., 2010) or to antidepressants (Tsai et al., 2008),
and to gray matter volume in patients with major depressive disor-
der (Inkster et al., 2009). However, others have not found GSK3β

polymorphisms associated with bipolar disorder (Lee et al., 2006;
Nishiguchi et al., 2006) or lithium response (Szczepankiewicz et al.,
2006b). Since cellular signals regulating GSK3, rather than GSK3
expression, have been implicated in most studies of mood disor-
der models, examinations of signaling pathways linked to GSK3
may prove most informative. This approach is exemplified by a
recent report that polymorphisms in several genes encoding pro-
teins directly related to the function of GSK3 are associated with
regional gray matter volume changes in major depressive disorder
patients (Inkster et al., 2010).

ACTIONS OF GSK3 THAT MAY CONTRIBUTE TO MOOD
DISORDERS
Discussions of the role of GSK3 in mood disorders inevitably lead
to the question: What is the target phosphorylated by hyperactive
GSK3 that causes increased susceptibility to mood disorders? Ten
years ago this was a relevant question because relatively little was
known about the actions of GSK3 and few substrates had been
identified. However, this question may now be less pressing con-
sidering our greater understanding of the regulatory roles of GSK3
in cellular functions and the numerous substrates of GSK3 that are
known, and projections of many more that remain to be verified
(Pilot-Storck et al., 2010; Taelman et al., 2010). Thus, it may be
more pertinent to identify cellular processes regulated by GSK3
that are also dysregulated in mood disorders, rather than identi-
fying individual substrates abnormally phosphorylated by GSK3
in mood disorders. This is somewhat analogous to studies of how
GSK3 promotes intrinsic apoptotic signaling (Beurel and Jope,
2006). Although the mechanisms mediating apoptotic signaling
are much better understood than mechanisms regulating mood
disorders, a single target of GSK3 that underlies its promotion
of apoptosis has not been identified. Instead a variety of actions
appear to account for GSK3 lowering the threshold for apoptosis
that are, in part, related to the initial insult. In this regard, studies
of abnormal cellular functions that may contribute to mood disor-
ders and studies of the actions of GSK3 have converged on several
common themes. These include, but are not limited to, cellular
stress response mechanisms, neurogenesis, and immune system
abnormalities, particularly inflammation. There is evidence that
alterations in each of these may promote the onset or severity of
mood disorders, and that GSK3 has a strong regulatory role in
each.

Substantial evidence indicates that mood disorders are asso-
ciated with neuronal stress, such as oxidative stress and endo-
plasmic reticulum (ER) stress (Kato and Kato, 2000; Wang, 2007;
Andreazza et al., 2008; Ng et al., 2008; Steckert et al., 2010).
Initiating causes for increases in neuronal stress associated with
mood disorders remain largely undetermined. However, it is well-
established that many cell stressors can increase the activity of
GSK3 in specific cellular compartments, such as insults causing

ER stress (Song et al., 2002) or causing DNA damage (Watcha-
rasit et al., 2002). Furthermore, a well-established characteristic
of hyperactive GSK3 is its promotion of detrimental cellular
responses to multiple types of insults, including oxidative stress
and ER stress, which can be alleviated by GSK3 inhibitors (Beurel
and Jope, 2006). Thus, these insults may contribute to abnor-
mal activation of GSK3, and hyperactive GSK3 may contribute to
reduced neuronal resilience in stressful environments. However,
it is also important to consider that such stresses also affect glia
cells, and there is growing evidence for glia abnormalities in mood
disorders (Rajkowska and Miguel-Hidalgo, 2007), which may be
associated with the increased inflammatory markers associated
with mood disorders, as discussed below.

Neurogenesis, the proliferation, and neuronal differentiation
of neural precursor cells, may be impaired in mood disorders (Lie
et al., 2004). This is supported by findings that antidepressants
(Malberg et al., 2000; Manev et al., 2001; Malberg and Duman,
2003; Santarelli et al., 2003; Warner-Schmidt and Duman, 2007;
David et al., 2009) and lithium (Chen et al., 2000; Hashimoto et al.,
2003; Silva et al., 2008; Wexler et al., 2008) increase neurogenesis in
mice, and chronic stress associated with depression-like behaviors
decreases neurogenesis (Malberg and Duman, 2003; Dranovsky
and Hen, 2006; McEwen, 2008). Dysregulated GSK3 in mood
disorders may contribute to deficient neurogenesis because neu-
rogenesis is impaired by 40% in GSK3 knockin mice (Eom and
Jope, 2009), neurogenesis was increased by GSK3 deletion (Kim
et al., 2009), and GSK3 overexpression inhibited, and the GSK3
inhibitor SB216763 increased, neural precursor cell proliferation
that is impaired in mice with DISC1 mutations (Mao et al., 2009).
Furthermore, the stimulatory actions of fluoxetine and lithium on
neurogenesis were blocked in GSK3 knockin mice in which the
drugs could not increase the inhibitory serine-phosphorylation
(Eom and Jope, 2009). These results indicate that hyperactive
GSK3 impairs neurogenesis and that fluoxetine and lithium need
to inhibit GSK3 by serine-phosphorylation to promote neurogen-
esis. These findings raise the possibilities that impaired neurogen-
esis by dysregulated GSK3 contributes to increasing susceptibility
to mood disorders, and that the rescue of neurogenesis contributes
to responses to therapeutic drugs.

Substantial evidence has accumulated demonstrating that
mood disorders are associated with activation of the inflam-
matory system and other alterations of the immune system
(Chourbaji et al., 2008; Dantzer et al., 2008; Miller et al., 2009;
Rivest, 2009; Miller, 2010). Additionally, inflammatory cytokines
impair glucocorticoid responsiveness, raising the possibility that
the chronic inflammation associated with mood disorders con-
tributes to reduced glucocorticoid responses in these disorders
(Pace et al., 2007). A crucial role for GSK3 in promoting inflam-
mation was first established by the finding that GSK3 promotes the
production of several pro-inflammatory cytokines following stim-
ulation of multiple types of Toll-like receptors in human mono-
cytes (Martin et al., 2005). GSK3 deficiency induced with GSK3
inhibitors or by molecular means greatly reduced the production
of several pro-inflammatory cytokines. Remarkably, GSK3 regu-
lates oppositely the anti-inflammatory cytokine IL-10, so GSK3
inhibition increased IL-10 levels (Martin et al., 2005). Lithium
and other GSK3 inhibitors also reduced by >90% inflammatory
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cytokine production by mouse primary astrocytes (Beurel and
Jope, 2009a) and microglia (Yuskaitis and Jope, 2009), similarly
to peripheral cells (Beurel and Jope, 2009b), and GSK3 counter-
acts down-regulation of inflammation (Beurel and Jope, 2010).
Mechanisms for these actions include the findings that GSK3
is required for activation of NF-κB (Hoeflich et al., 2000; Mar-
tin et al., 2005) and STAT3 and STAT5 (Beurel and Jope, 2008),
critical transcription factors in inflammation. In vivo, chronic
administration of a therapeutically relevant dose of lithium res-
cued 70% of mice from an otherwise 100% lethal inflamma-
tory response to lipopolysaccharide (Martin et al., 2005). In vivo
chronic lithium treatment also markedly suppressed EAE (exper-
imental autoimmune encephalomyelitis), an animal model of
multiple sclerosis that involves substantial neuroinflammation,
and the production of inflammatory Th17 cells that contribute
to EAE pathogenesis (De Sarno et al., 2008; Beurel et al., 2011a).
These results demonstrate that a therapeutically relevant dose
of lithium effectively ameliorates CNS inflammatory diseases
in vivo. These and other immune-regulating actions of GSK3
(Beurel et al., 2010) demonstrate that dysregulated GSK3 may
contribute to immune system alterations that are associated with
mood disorders and suggest that the immune system actions
of lithium may contribute to its therapeutic effects in mood
disorders.

Thus, stress response mechanisms, neurogenesis, and immune
system abnormalities, are examples of processes strongly regu-
lated by GSK3 that may be disrupted in mood disorders. There
are multiple additional cellular functions regulated by GSK3 that
may be crucial in mood disorders, such as circadian rhythm alter-
ations, mitochondrial function, neurotransmitter synthesis and
receptor-induced signaling, that are equally important potential
targets. These three are only presented as representative examples
of the concept that focusing on GSK3-regulated processes, rather
than individual substrates of GSK3, may be most informative for

advancing the understanding of how dysregulated GSK3 promotes
susceptibility to mood disorders.

SUMMARY
Figure 1 presents a simplified summary of how GSK3 is pro-
posed to be involved in mood disorders. Clusters of symptoms
define these disorders, which are undoubtedly induced by mul-
tiple combinations of genetic and environmental influences. An
important outcome is impaired inhibitory regulation of GSK3,
albeit not globally, but in particular circuits, cells, and signal-
ing pathways. Substantial evidence now supports the concept
that depression is associated with reduced signaling that other-
wise would maintain GSK3 inhibited, which may involve deficient
serotonin or BDNF, for example, and genetic changes, such as
diminished functional DISC1 that otherwise contributes to GSK3
inhibition. Increased activation of GSK3 also may occur in mania,
although in this case it may not result from deficient inhibitory
signaling to GSK3 but from excessive activating signaling, such
as can be mediated by increased dopaminergic signaling through
dopamine D2 receptors. Because many signals converge on GSK3,
which integrates these to modulate cellular responses, pharma-
cologically bolstering the inhibition of GSK3 can compensate for
multiple combinations of genetic and environmental influences
to promote the re-establishment of mood stability, thus counter-
acting conditions that would otherwise induce extremes in mood
fluctuations. Therefore, although alterations in GSK3 activity may
not constitute a primary insult in mood disorders, the role of
GSK3 as an integrator of multiple signals allows therapies directed
toward inhibiting GSK3 to compensate for a variety of genetic and
environmental conditions that disturb mood homeostasis.
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