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Abstract

Image processing is one of the most important applications of recent machine learning (ML)

technologies. Convolutional neural networks (CNNs), a popular deep learning-based ML archi-

tecture, have been developed for image processing applications. However, the application of ML

to microscopic images is limited as microscopic images are often 3D/4D, that is, the image sizes

can be very large, and the images may suffer from serious noise generated due to optics. In this

review, three types of feature reconstruction applications to microscopic images are discussed,

which fully utilize the recent advancements in ML technologies. First, multi-frame super-resolution

is introduced, based on the formulation of statistical generative model-based techniques such as

Bayesian inference. Second, data-driven image restoration is introduced, based on supervised

discriminative model-based ML technique. In this application, CNNs are demonstrated to exhibit

preferable restoration performance. Third, image segmentation based on data-driven CNNs is

introduced. Image segmentation has become immensely popular in object segmentation based

on electron microscopy (EM); therefore, we focus on EM image processing.

Key words: image processing, image super-resolution, Bayesian estimation, maximum likelihood estimation, deep learning, image
segmentation

Introduction

How do we recover image features of our interests from the degraded
images acquired by optical/electron microscopy? Because the micro-
scopic image acquisition essentially includes a degradation process,
their recovery is not straightforward, and hence, it becomes a difficult
inverse problem. The optics of fluorescent microscopy suffers from
the diffraction of photons, which is represented by point spread
function (PSF). Although one may think that deconvolution with the
PSF would be able to recover the original image, it is not the case

indeed. Even if the PSF of the microscope is available, the detailed
process, from which precise points in the target tissue a set of photons
measured at a single detector (like a photon multiplier) have been
produced, includes uncertainty, that is, the photon diffraction process
is generally irreversible. Furthermore, the detectors may suffer from
shot noises, which are also irreversible because of the difficulty in
identifying every detail of individual shot noises. Such irreversibility
makes the process to obtain microscopic images, which is called
forward optics, a data degeneration process. Thus, reverse optics

http://creativecommons.org/licenses/by-nc/4.0/
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(opposite of forward optics) should be an ill-posed inverse problem.
In other words, numerous possible original images can be obtained
from a single observed image.

In this review, we discuss three kinds of microscopic image
processing techniques which fully utilize the recent advancements
in machine learning (ML) technologies. Their targets are to recover
high-resolution (HR) images based on blurred and low-resolution
(LR) images, which is termed image super-resolution or image
restoration, and to recover image features such as cellular attribution,
which is a type of image segmentation. In the last two or three
decades, a number of ML methods with constrained optimization
have been proposed, and very recently, they have partly been
replaced with data-driven deep learning methods. In terms of
statistical ML, these two are different in their approaches; the
former is a generative model-based approach and the latter is a
discriminative model-based approach [1], but they share the same
objective, which is to recover original image features by solving
ill-posed inverse problems stemming from the irreversible forward
optics.

The first topic discussed in this review is the integration of a
set of (that is, multiple) degraded images into a single HR image.
This is software-based, multi-frame image super-resolution [2], which
is different from hardware-based super-resolution [3,4]. Software-
based image super-resolution could be economical and is applicable
in various situations irrespective of the specifications of the mea-
surement hardware, but it requires prior knowledge of the mea-
surement environments. In this case, we presume that the set of
multiple images comprises more information than a single image.
The second topic is data-driven image-restoration of a LR image,
even from a single shot, by fully employing a database of pairs
of low- and HR images [5]. Recent advancements in convolutional
neural networks (CNNs) [6,7] have enabled the development of
non-linear filters with the full usage of huge databases. We here
demonstrate, with quantitative evaluation, how a variant of CNN,
3D U-Net, can restore blurred and noise-contaminated images. Even
if the acquired images have sufficiently rich information, moreover,
recovering the attribution of each pixel to either of multiple cells
or sub-cellular structures is not an easy task, which is a typical
instance of image segmentation and the third topic of this review. The
most prominent example can be seen in image processing of electron
microscopy (EM). Although EMs can clearly capture membranes,
they do exhibit not only neuronal/glial membranes but also those
of sub-cellular structures such as mitochondria. Such complicated
situations make the image segmentation from EM a non-trivial task.
We would like to discuss that 2D/3D CNNs and their variants
are now state-of-the-art in such an EM-based image segmentation
problem.

The remainder of this review is organized as follows. First,
the conventional ML technologies with the generative model-based
approach for, in particular, multi-frame super-resolution is discussed
in section ‘Generative-model based approaches to multi-frame super-
resolution’. This section is also important for showing mathemat-
ical formulations to solve difficult inverse problems that underly
in many feature extraction problems from microscopic images. In
section ‘Deep learning-based image super-resolution and restoration’,
image restoration from single frames, which is a similar problem
to the super-resolution from multiple frames, is discussed. Here,
data-driven approaches like those with deep learning are in recent
trends. We show quantitative comparisons between model-based and
deep learning-based approaches. In section ‘EM image segmentation’,
EM-based image segmentation is discussed, with a particular interest

in the usage of data-driven 2D/3D CNNs. Since there have been many
comparison studies including open challenges in this topic, we put
our focus on the qualitative descriptions of the current state-of-the-
art methods.

Generative model-based approaches to

multi-frame super-resolution

The objective of this section is to discuss generative model-based sta-
tistical technologies to deal with microscopic images, in a particular
application to multi-frame super-resolution. It is also important to
show mathematical formulations to solve difficult inverse problems
that underly in many feature extraction problems from microscopic
images. We first discuss the difficulty underlying the inverse-optic
problems. After presenting the conventional maximum likelihood
formulation, we discuss a constrained optimization approach, i.e.
maximum a posteriori (MAP) formation, and more advanced inte-
gration approach, i.e. Bayesian formulation (Table 1). We show
some demonstrations when applied to 2D natural images and 4D
microscopic images.

Preliminaries

Let x be a HR image and yt be the tth LR image downsampled from
x. We assume that there are multiple observations, i.e. t = 1,...,T,
where T is the number of observations. As we attempt to restore
a single HR image x based on multiple LR images {y1,...,yt,...,yT},
this problem is known as multi-frame image super-resolution. We
assume that each LR image has been observed after different com-
binations of image rotation, image shift, image blurring due to the
photon diffraction, and image downsampling; these processes can be
collectively represented as an imaging parameter θ t. As the photon
energies measured by each photon detector are additive, the entire
process becomes linear for the HR image x, if the parameters θ t are
known in advance, that is

yt = W (θt) x + nt (t = 1, . . . , T) . (1)

Note that W is a linear matrix whose row and column dimen-
sionalities are the numbers of pixels of the low- and HR images, y
and x, respectively, and is a product of matrices each representing
image rotation, image shift, image blurring or image downsampling.
Usually, however, it is non-linear with respect to parameter θ . We also
assume that the shot noise nt obeys a spatio-temporally independent
(i.e. white) Gaussian noise

nt ∼ N
(
0, β−1I

)
, (2)

where β > 0 denotes a spatially uniform precision, and I is the identity
matrix with the same dimensionality as that of the measured image.

According to the formulation of Bayesian super-resolution [8], the
inverse problem of Eqs. (1) and (2) can be described as

p
(
x| {y1, . . . , yT

}) = p(x)
∏T

t=1
∫

p (yt|x, θt) p (θt) dθt

p
({

y1, . . . , yT
}) , (3)

where p(x) is the prior for the HR image, which represents the
naturality of the target objects in the image plane, and p(θ t) is the
prior for the observation parameters. In the subsequent subsections,
we often either do not define the prior p(θ t) explicitly or assume it to
be uniform. Furthermore, we resolve the integration with respect to
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the parameter θ using the expectation-maximization algorithm [9].
The probability P(yt|x,θ t) is known as the likelihood and is defined
by the forward optics, Eqs. (1) and (2). Typical natural images
comprise edges and smooth textures surrounded by multiple edges;
this characteristic may be represented as a stochastic process called
line process [10]. If the target objects observed by microscopy have
such a characteristic, we use the prior p(x) to represent the line
process. In contrast, if the target has only a few blight points, like in
the dark-field microscopy, we may employ sparseness prior to obtain
a HR image with few white pixels. Conventionally, popular prior p(x)
has been defined as a band-diagonal Gaussian, which represents the
local smoothness of the given image. If the prior and the likelihood
are given by smooth Gaussian and the spatially uniform Gaussian,
respectively, the deconvolution process with these models can be
considered as the well-established normalized linear filtering [2,11].
If the prior is presented as a line process, the posterior distribution
of x becomes a mixture of Gaussians, with a large, finite number
of Gaussian components. As a result, the inverse problem becomes
intractable; thus, an approximation for obtaining the posterior, Eq.
(3), is required [8]. Note that if we use the simplest Gaussian prior,
the naive application of Eq. (3) cannot break the diffraction limit.
To realize subdiffraction limit, we need appropriate priors [8], other
kinds of information like that in the temporal domain [12] and/or
uncertainty resolution based on Bayesian integration.

Maximum likelihood and MAP estimation

According to the simplest idea to solve the super-resolution problem,
Eqs. (1) and (2), we obtain the combination of x and the set of
parameters, {θ1,...,θT}, that maximizes the likelihood

[X, {θt}] = argmax
x,{θt}

T∑
t=1

∥∥yt − W (θt) x
∥∥2, (4)

which is known as the maximum likelihood estimation (MLE) and
equivalent to the standard least square estimation. As the dependence
of the objective function on the parameter set is non-linear, an
iterative algorithm, such as the expectation-maximization algorithm
[13], is required to solve this problem. Moreover, it is noteworthy that
if the blurring function (i.e. PSF) is just Gaussian, which may be dif-
ferent from the realistic microscopic diffraction process, the reduced
problem becomes much simpler and has been used in many single-
molecular morphology estimation problems. This scenario is known
as super-resolution based on registration, because the estimation of
the parameter set {θ t} corresponds to the registration (estimation of
rotation and shift mostly, because the blur is just Gaussian) over
multiple LR images.

However, this type of MLE may not work well because the non-
linear combination of the rotation and shift makes the indeterminacy
of the HR image x severe. This serious indeterminacy would make
the estimation algorithm vulnerable. One possible modification to
address this issue is to introduce regularization.

[X, {θt}] = argmax
x,{θt}

T∑
t=1

∥∥yt − W (θt) x
∥∥2 + λ

∥∥θt − θO
∥∥2 + η‖Lx‖2,

(5)
where θ0 is a rough estimation of the observation parameter, and
L represents a high-pass filter, similar to the Laplacian filter. The
optimization of Eq. (5) corresponds to the MAP estimation, which is
an advanced version of the previous MLE. The second and third terms

in Eq. (5) present the preference to estimate the rather consistent
shift/rotation between different images and that to estimate HR
image comprising a smaller number of edges and several smooth
textures. These terms can also be seen as our constraints on the
estimation and are called priors. Here, one of the simplest priors for
the HR image, Laplacian, is presented. A more powerful one is to
prefer sparseness in spatial gradients of the HR image x, which is
called total variation (TV) regularization [14]. In the context of data-
driven image restoration (see section ‘Deep learning-based image
super-resolution and restoration’), we will use this TV regularization
method as a representative of generative model-based methods like
what we discussed in this section. Although the MAP estimation
resembles the original Bayesian formation of the used multi-frame
super-resolution, Eq. (3), it does not involve the integration as in the
case with Bayesian formation.

Bayesian super-resolution

Because of the regularization stemming from the prior, the MAP
estimation often produces stable solutions more than the MLE.
However, it could be still difficult to obtain a good restored image
using the MAP estimation because of the complicated and non-linear
relationship between the registration parameters and the HR image to
be estimated. Such non-linearity often produces enumerable combi-
nations of sub-optimal registration parameters, thereby making the
estimation of the HR image difficult, even though the priors could
ease the difficulty to some extent. A possible solution to further
resolve this indeterminacy is to introduce integration to the HR
image. Because the integration copes with the uncertain estimation
of the HR image, the indeterminacy when estimating the registration
parameters is expected to be reduced.

The Bayesian super-resolution dates back to the seminal work by
Tipping and Bishop [15]. They attempted to apply the expectation-
maximization algorithm to increase the marginal likelihood, often
known as evidence, Eq. (3), in terms of x and the parameter set
{θ1,...,θT}, simultaneously. After estimation, the posterior distribu-
tion of the HR image is given by

p
(
x| {y1, . . . , yT

}
,
{
θ1, . . . , θT

}) = p(x)p ({tt} | {θt} , x)∫
p(x)p

({
yt

} | {θt} , x
)

dx

= N (x|μ, �) , 6)

where

� =
⎛
⎝αLTL + β

T∑
t=1

W(θt)
TW (θt)

⎞
⎠

−1

and

μ = β�

⎛
⎝ T∑

t=1

W(θt)
Tyt

⎞
⎠ . (7)

This estimation is equivalent to the following optimization

{
θ̂t

}
= Y=argmin{θt}β

T∑
t=1

∥∥yt–W (θt) x
∥∥2 +α‖Lμ‖2 − log | � | . (8)

Although this objective function resembles a typical constrained
square loss, it includes the estimation of the covariance matrix �

of the posterior distribution of x. This non-linear effect stemming
from the uncertain estimation of x is helpful to resolve the complex
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Fig. 1. Multi-frame image super-resolution applied to the eye part of a natural ‘LENA’ image. (a) The original high-resolution (HR) image; 15 (T = 15) low-resolution

(LR) images with different registration parameters and different occlusion patterns are obtained from the HR image. As this is a simulation study, we applied a

Gaussian PSF, whose precision (inverse variance) was small and large on occluded and non-occluded LR pixels, respectively, and one-sixteenth down-sampling

to obtain a single LR image. Shift and rotation were also applied individually to each LR image. (b) An average image over the 15 partially occluded LR images,

PNSR = 20.85 dB. (c) Bayesian super-resolved image with a hierarchical likelihood model (i.e. a non-uniform PSF) to deal with the partial occlusion, 31.38 dB

(highest). (d) Bayesian with a non-hierarchical likelihood model (i.e. a uniform PSF) whose noise precision was lowly estimated, 25.57 dB. (e) Bayesian with a

uniform PSF whose noise precision was best tuned, 28.06 dB [17]. The figure reproduction was permitted by the Journal of Systems Science and Complexity

(Springer Nature Switzerland AG).

relationship between the registration parameters {θ t} and the HR
image x, which would stabilize the estimation of the registration
parameter.

In contrast, Pickup et al. [16] presented the integration over the
registration parameters. Their objective function was defined as

p
(
x| {yt

}) = p(x)

p
({

yt
})

∫
p ({θt}) p

({
yt

} | {θt} , x
)

d {θt} , 9)

which is the marginalized version of the posterior distribution (Eq.
(3)) with respect to the registration parameters {θ t}. To perform
the marginalization with respect to the registration parameters, one
needs a prior for them, and Pickup et al. used the Huber distribution
that enhances the edge preservation of the HR image. This is a
suitable approach because the uncertain estimation of the registration
parameters could critically affect the estimation of the HR image
x. They used the Laplace approximation to estimate the parameter
posterior and simplified the integration of the marginal likelihood
Eq. (9) with respect to the parameter. Although the Laplace approx-
imation cannot address the multi-modality of the complicated (i.e.
probably multi-modal) distribution of the registration parameters, it
is a practical solution for performing the Bayesian super-resolution
within a reasonable computation time.

Figure 1 demonstrates the multi-frame super-resolution of two-
dimensional natural images, LENA, where T = 15. Here, a hierarchi-
cal likelihood model was used to cope with the structural occlusion
(represented as a highly noisy region) independently applied to each
image [17]. Figure 2 shows another demonstration when applied to

Fig. 2. Multi-frame super-resolution applied to the fluorescent 4D (two photon

microscopy, XYZT) image sequences of a neuronal fiber from an in vivo (anes-

thetized) mouse. Upper: one frame image (integrated over the Z-direction).

There are blurs and shot noises. Original image sequence was taken with

dual colors (green: morphologies, red: calcium activities), with the image

size of 1024 (pixels) × 256 (pixels) × 21 (slices) × 760 (frames), and the voxel

size of 72.2 × 72.2 × 1008.5 (nm3). We used only the green channel for this

demonstration. Red color was removed. Lower: super-resolved image. Neural

fiber structure is colored green, showing the registered image over time, but

with enhancement in pixel number (that is super-resolution). Because the

image movements have been calibrated, some blurs can be observed due

to the imperfect registration over time. Regardless, the image has higher

resolution and reduced noise than the original one frame image shown in

the upper panel.

the 4D (XYZT) two-photon microscopic image of neurites from an
in vivo (anesthetized) mouse. In this in vivo case, we regarded a series
of images taken in the timelapse manner as a set of multiple images,
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that is the registration parameters are correlated between adjacent
image frames. Considering such a time-series factor, we applied a
linear dynamical system-based modeling to the parameter estimation,
whereas we avoided the integration with respect to the parameters or
the HR image, due to the complexity of the integration. However, a
very HR image has been obtained by the used simplified Bayesian
(indeed, MAP) estimation.

Deep learning-based image super-resolution and

restoration

This section introduces the ML technologies of image restoration
from singleframe microscopic images, this is a mathematical similar
problem to the image super-resolution from multiple frames that
was discussed in section ‘Generative-model based approaches to
multi-frame super-resolution’. For this problem, the constrained opti-
mization approach like the MAP estimation with TV regularization
was the conventional standard, but data-driven deep learning-based
approach has been developed as a new standard. Reflecting this
trend, we show quantitative comparisons between generative model-
based like TV regularization and discriminative model-based (i.e.
deep learning-based) approaches in this section.

Image restoration has generally relied on supervised ML, that
is on a database comprising pairs of original images and their
corresponding annotated (labeled) images. Each annotated image can
be a clean image denoised/deblurred from the original image. Several
works address the effectiveness of image restoration in the field of
fluorescent microscopy [18–20]. Also, there are recent deep learning-
based denoising methods [21,22] that also share their source codes
including pre-trained models to the public. In bio-medical image
segmentation, U-net [23], an advanced CNN-based deep learning
with an encoder–decoder type of architecture successfully yields
fine segmentation results while preserving image details. This is
achieved by the skip connections in the encoder–decoder architec-
ture that enable decoding from features that were encoded with
different spatial scales. Here, we demonstrate the different results
obtained using three methods: deconvolution with TV regularization,
as a typical method in the generative model-based approach, plain
encoder–decoder style CNN and U-net. The latter two are based on
discriminative models, although the objective here is the same among
the three methods. We employed peak-signal-to-noise ratio (PSNR)
and a structural similarity index measure (SSIM) [24] to evaluate the
performance of denoising. When calculating SSIM, we obtained the
local SSIM for image patches with 5 × 5 × 5 pixels and then averaged
the obtained values over all the patches.

To evaluate the denoising performance of the three types of
methods, we prepared the ground-truth images and their respective
noisy images through simulation. We obtained five two-photon
images in 3D (three images from transparent brain imaging and
two images from in vivo imaging), using scanning microscopy, with
a single channel, in which the pixels were represented in 16 bits;
each image size was approximately 512 × 512 × 400. Based on the
obtained real images, we produced ground-truth images Î by manu-
ally removing possible noises from the real images. Subsequently, we
prepared simulated two-photon images based on the abovementioned
manually annotated ground-truth images. To simulate the forward
optics in two-photon microscopy, we assumed Gaussian PSF (blur) G
and pixel-wise Gaussian shot noises; the ground-truth images were
blurred by convolving Gaussian PSF with three different standard
deviations (SDs): 0.4 (condition B1, in Table 2), 0.8 (B2) and 1.2
(B3). Pixel-wise white noise N was subsequently added by a normal

distribution of mean zero and three different values of SD: 500
(condition N1, in Table 2), 1000 (N2) and 1500 (N3). According to
Itest = Î ∗ GPSF + N where ∗ refers to 3D convolution, we prepared
45 3D test images from five different 3D images disturbed by
9 (= 3 × 3) different noise settings. During restoration, the
performance of the algorithm was estimated by verifying the
similarity of the denoised image and its corresponding ground-truth
image in terms of the SSIM and PSNR metrics. Notably, these test
images were not used for training the denoising models and were
only used for testing.

Denoising performance comparison

We compared the three methods: deconvolution with TV regulariza-
tion, and two different CNN models, baseline CNN and U-net. In the
first method, the following objective function was minimized:

I∗ = argminI
∥∥I ∗ G − Itest

∥∥ + λTV ‖�I‖ , (10)

where Itest is the input noisy image and ∗ denotes convolution
with a 3D Gaussian filter G and a fixed SD of 0.9. The remaining
parameters were set heuristically as follows. The smoothness, �I,
was calculated by averaging the difference between the center and
surrounding pixels. The weight of the TV regularization was set to
λTV = 0.15. We obtained the deconvolved image I∗ by minimizing
the abovementioned equation using a gradient descent method. Note
that this method is a type of MAP estimation introduced in section
‘Maximum likelihood and MAP estimation’.

The used U-net (implementation of original U-net can be found
at https://github.com/zhixuhao/unet) architecture comprised seven
encoding and decoding blocks where each block was comprised of
three convolutional layers (Fig. 3, lower). ReLU was added after
each block except for the last one. U-net used batch normalization.
Similarly, the baseline CNN comprised seven encoding and decoding
blocks and therefore had an architecture similar to that of the U-
net (Fig. 3, upper); it was based on the encoder–decoder architecture
but without skip connections. The loss function L for training CNN-
based models was as follows:

L =
∥∥∥Î − φ(I)

∥∥∥
1
. (11)

This loss function is the Manhattan distance (L1 distance)
between the trained model output ϕ(I) and the desired output Iˆ.
For training, the ADAM optimizer was employed with a mini-batch
having three images, each of 96 × 96 × 96 pixels. All networks were
trained with a learning rate of 0.001 with a decaying factor 0.9. We
performed the optimization for 25 epochs where each epoch was
composed of 1300 mini-batches.

Table 2 summarizes the performance of restoration found by
averaging the results of the test images; the upper and lower tables
detail the SSIM and PSNR values, respectively. The input images are
fairly noisy, and this can be seen in the overall SSIM and PSNR values
of 0.0642 and 17.51 dB, respectively. The averaged SSIM and PSNR
values of the denoised images by Deconv with TV, Baseline CNN
and U-net were 0.8567/27.21, 0.9339/27.07 and 0.9514/29.11 dB,
respectively. Therefore, data-driven deep learning-based methods,
i.e. the Baseline CNN and U-net, generally demonstrated superior
denoising performance than that of the classical deconvolution-based
(or generative model-based) method (i.e. Deconv with TV). The
deconvolution-based method presents the results that are comparable
to those of the deep learning-based methods, only if the input image
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Table 1. Glance at difference in methodologies between generative model-based approaches to multi-frame image super-resolution

Inference method Objective function Likelihood Prior Integration Reference

Maximum likelihood Equation (4) Linear transform,
Gaussian noise

None No

Maximum a posteriori Equation (5) Linear transform,
Gaussian noise

Laplacian/Gaussian
for HR image

No [2,11]

Linear transform,
Gaussian noise

Total variation
for HR image

No [14]

Bayesian Equation (8) Linear transform,
Gaussian noise

Laplacian for
HR image

Yes, over HR
image

[15]

Bayesian Equation (9) Linear transform,
Gaussian noise

Huber for
parameter

Yes, over
parameter

[16]

Most of them were originally developed for 2D image processing. Since the maximum likelihood is just a seminal technique, we do not provide literature.

Table 2. The denoising performances of the three methods change when different noise was artificially applied to the input images

Noise level N1-B1 N1-B2 N1-B3 N2-B1 N2-B2 N2-B3 N3-B1 N3-B2 N3-B3 Overall

Input (SSIM) 0.1035 0.0946 0.0835 0.0664 0.0583 0.0496 0.0475 0.0406 0.0339 0.0642
Deconv with TV 0.9573 0.9413 0.9285 0.9599 0.9457 0.9326 0.6916 0.6823 0.6713 0.8567
Baseline CNN 0.9368 0.9365 0.9334 0.9377 0.9354 0.9298 0.9373 0.9327 0.9251 0.9339
U-net 0.9825 0.9705 0.9557 0.9670 0.9504 0.9333 0.9506 0.9337 0.9187 0.9514
Noise level N1-B1 N1-B2 N1-B3 N2-B1 N2-B2 N2-B3 N3-B1 N3-B2 N3-B3 Overall
input (PSNR) 22.89 22.47 21.99 16.89 16.75 16.60 13.41 13.33 13.26 17.51
Deconv with TV 29.09 27.69 26.61 28.99 27.79 26.77 26.58 25.98 25.37 27.21
Baseline CNN 27.33 27.33 27.11 27.41 27.22 26.79 27.28 26.89 26.28 27.07
U-net 34.58 31.64 29.42 30.53 28.58 26.99 28.10 26.68 25.51 29.11

The test images were gradually degraded as the level of white noise (N) and Gaussian blur (B) increased from 1 to 3 (Please refer to the main text for more details). The
table presents the average performances in terms of SSIM (upper) and PSNR (lower).

is not exceedingly noisy, e.g. when the SSIM value was 0.9573 for
the N1-B1 condition, but its performance rapidly decreased with
the increase in the noise level. The benefit of using the CNN-based
methods became evident with the increase in the level of noise.
Table 2 presents the results that confirm the effectiveness of U-
net. On the contrary, the baseline CNN demonstrated more stable
performance but lost several image details.

Figure 4 presents the results of denoising when noisy data were
used in condition N2-B2. The deconvolution-based method (Deconv
with TV) introduced vagueness to the edge pixels due to its regu-
larization parameter that prefers the smaller value between adjacent
pixels. Although the baseline CNN presented images that were closer
to the ground-truth, the resulting image was still blurry, due to which
several small structures disappeared. U-net demonstrated a better
performance in terms of the restoration of structures in a more
detailed manner. Therefore, U-net often exhibits superior robustness
to noise as compared with the other models, including the ability to
preserve detailed structures.

Performance improvement in neural tracking

Here, we evaluate the denoising process for its usefulness in
pre-processing for post-analyses of neural images. As a typical
example of such post-analyses, we chose structure reconstruction
problems of neurons and neural networks that were both evaluated
by the performance of neural tracking. We applied a popular neural
tracking algorithm [25], which is actually the same algorithm used
in the preparation of ground-truth images to noisy two-photon
microscopy images and the pre-processed images obtained by the
denoising methods. Here, the performance was examined based

on the similarity between the tracking result and the ground-truth,
which was obtained by visual inspection refereeing to the software-
based tracking result. As for the similarity measure between two
topographic maps, we used the performance classification that
classified if each pixel belonged to foreground or background; here,
the ground-truth topography was the target. More importantly,
tracking topography obtained from noisy or denoised images was
first projected onto the ground-truth image, and then, the region
growing algorithm [26] (the same method used in the production of
ground-truth image) was run to fill the topographic gaps. Note that
two tracking results obtained from the noisy and denoised images
were used as seed points in this segmentation, and all factors other
than the sets of seed points were common, which enabled the sole
comparison between noisy and denoised images. The overall flow of
the experiment is graphically presented in Figure 5.

Tracking performance was evaluated by the foreground/back-
ground segmentation accuracy in terms of the precision:

#correct foreground pixels
#estimated foreground pixels

and the recall:

#correct foreground pixels
#GT foreground pixels

.

We introduced this test procedure to N2-B2 and N3-B3 image
datasets, which were so noisy that many topographic structures
were not easily identified by the tracking algorithm. Table 3 presents
the precision and recall. As shown in Table 3, the recall rate was
greatly improved by the image denoising process, especially in
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Fig. 3. (a) Baseline CNN and (b) U-net used in our image denoising test. Unlike to baseline CNN, Unet has additional skip connections between encoders and

decoders to bypass deeper convolutional layers. Except for these connections, the remaining parts were identical. The numbers located at below of convolutional

layers mean the resolution of features where bold numbers indicate the number of filters used in each layer.

Fig. 4. The first three rows illustrate the input 3D images and two sliced XY plane images, respectively. Moving from the leftmost to the rightmost column, the

input images, ground-truth (GT) images, denoised images by TV-regularized deconvolution, baseline CNN and U-net are presented.
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Fig. 5. The flowchart of neural tracking. Green, yellow and red points in the tracking results mean branch, terminal and bridge nodes, respectively. White and

black regions in the results denote the foreground and background, which are classified by the seed growing segmentation.

Table 3. The precision and recall rate of tracking results

N2-B2 N3-B3

Noisy Deconv CNN U-net Noisy Deconv CNN U-net

Precision 0.9832 0.9844 0.9836 0.9860 0.9757 0.9847 0.9825 0.9838
Recall 0.4862 0.4927 0.4945 0.6008 0.1198 0.3349 0.4484 0.5088

N3-B3. When we applied Neutube tracking algorithm to each image,
we found that it was normally stuck and failed to track at some
branches and bridges that were seemingly ambiguous because of
severe noises. It was also observed that, whereas many neurites on
the noisy images were separated into small fractions by the tracking
algorithm (tracking software + region growing), these neurites were
appropriately concatenated by the same tracking algorithm after

applying the denoising process. We consider that better denoising
process improved the neural tacking performance by removing such
ambiguity. As presented in Tables 2 and 3, the tracking performance
in terms of recall and precision was improved if a noisy image
was replaced by a denoised image by U-net. This is evidence that
the denoising method is useful for pre-processing in biological
applications such as neural tracking.
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EM image segmentation

In this section, we summarize the architecture and performance of
supervised ML technologies applied to the segmentation problem
from volumetric EM images. CNNs became popular for this problem
since a 2D CNN outperformed other methods in an EM segmentation
challenge [27]. Two-dimensional CNNs were soon extended into 3D
CNNs because of the target dimension, and currently, two state-
of-the-art 3D CNNs are widely used for large-scale segmentation
[28,29]. We discuss such technologies with a particular focus on
2D/3D CNNs and their variants. We also introduce our software
package to easily conduct CNN-based segmentation [30].

Optical/fluorescent microscopy can provide extensive informa-
tion on the localization and molecular activities of neurons. However,
this tool has two fundamental limitations. First, there is an upper
bound in the spatial resolution (∼200 nm) of microscopes, which is
determined by the diffraction limit [31]. A majority of the fluorescent
microscopes available these days have this limitation. However, ‘opti-
cal’ super-resolution technologies can be used to further decrease this
upper bound to ∼60 nm in certain cases [32]. Second, only sparsely
labeled targets can be observed in dense brain tissues, because the
contrasts disappear if all the densely distributed targets are fluores-
cently labeled. One typical class of targets that are dense in nature is
the neuronal fibers of the brain. EM is the best modality for observing
such densely distributed neuronal fibers. With EM, all the membrane
structures of a target tissue can be observed with a spatial resolution
of < 1 nm (Fig. 6A) [35]. Based on the observed neuronal boundaries,
researchers can extract neuronal fibers by utilizing the analyzed
informatics and image processing technologies. Such reconstruction
of neuronal objects is now known as EM connectomics, which is,
however, challenging one faced during image segmentation.

In the field of EM connectomics, 3D reconstruction of all neu-
ronal objects from a volumetric EM image has attracted attention
[36], because such reconstruction can provide information of the
entire neural circuit where all the brain functions are embedded.
The deep learning-based ML techniques such as CNNs play an
indispensable role in this type of 3D reconstruction, especially in the
process of neuronal boundary detection, which is an important step
in image segmentation, from EM images (Fig. 6A and B). This is not
a trivial task that can be solved by conventional filters (e.g. edge
detection filter), because EM images contain numerous boundary-
like structures such as mitochondria and endoplasmic reticulums
(ER), which must be excluded based on contextual information
(Fig. 6A and B). Obtained probability maps of neuronal boundaries
are further processed by an object-detection method, typically a com-
bination of a 3D watershed and fragmental-segment agglomeration,
leading to the segmentation of neuronal objects (Fig. 6C) from other
background objects.

In early days, data-driven CNNs were considered as one of the
options for neuronal boundary detection in EM images, because other
methods showed similar accuracies in this type of segmentation (e.g.
random forest classifier) [37,38]. CNNs have become accepted as
a standard since the ISBI2012 EM image segmentation challenge
[27,39], because a 2D CNN proposed by the team IDSIA achieved
a state-of-the-art performance in this competition [40]. Another 2D
CNN, called U-net, showed further improvement in this performance,
thereby becoming a standard of biomedical image segmentation
[23]. U-net has a U-shaped encoder–decoder network organization
comprising a contracting path to capture context and a symmetric
expanding path (Fig. 6D). It also has the same-scale skip connections
to provide fine spatial information during upsampling. This unique

architecture enables the simultaneously capturing of the global shapes
of large objects as well as detailed edge information. Additionally,
several other 2D CNNs have been proposed for neuronal boundary
detection, such as FusionNet [41], fully convolutional networks
(FCNs) with skip connections [42], and M2FCN [43].

All the CNNs introduced thus far are 2D in nature. The 2D CNNs
have two advantages: computationally inexpensive training process
and the requirement of only 2D ground-truth. However, a 2D EM
image has many ambiguous structures that can only be identified
by referring to adjacent Z-slice images. Thus, to further improve the
accuracy of image segmentation, 3D CNNs are applied naturally to
the volumetric EM images. We here introduce two representative 3D
CNNs for image segmentation used for neuronal EM images.

The first one is a variant of the 3D U-net that was developed
by a research group of Princeton University [28]. The network
architecture is similar to the original U-net (Fig. 6D) [23]; however,
each fully connected module also has a residual skip connection.
Because their target EM images have lower Z resolution, the con-
volution in Z-direction is sparser than those in X- and Y-directions.
The residual 3D U-net combined with a two-step object identifica-
tion method (watershed plus the fragmented-segment agglomeration
based on long-range affinity prediction) achieved the state-of-the-
art performance in the ISBI 2013 challenge on the 3D segmentation
of neurites in EM images (SNEMI3D, 11/10/2019; Table 4) [33,48],
and its accuracy was even beyond human performance. Recently,
another 3D U-net having ‘isotropic’ 3D connections with an object
identification method also achieves good performance when applied
to isotropic volumetric EM images (FIB-25, 6 nm per XYZ-pixel)
[49,50].

Another famous 3D CNN architecture is the flood-filling network
(FFN), which was developed by a Google research team [29]. FFNs
exhibited the best performance in the segmentation of isotropic
volumetric EM images (FIB-25) [50] and also showed the second-
best in the case of anisotropic volumetric images (SNEMI3D, Table 4)
[33]. FFNs do not produce a probability map of neuronal boundaries
but directly infer the shapes of the neuronal objects. FFNs have
two types of inputs: a patch of a target volumetric image (typically
33 × 33 × 33 voxels) and a predicted shape at the precedent step,
and therefore, FFNs predict the shape of the centered object of
the target patch. The targeted neuronal objects are spatially and
iteratively tracked to determine their overall shapes. The FFN itself
has a cascaded architecture of CNN modules, each of which is a
3D CNN with a skip connection. FFNs have been adopted for the
fly brain project in Janelia Research Campus [51], aiming to obtain
neuronal circuitry from the volumetric EM image of a complete adult
Drosophila brain [52].

Notably, 3D image segmentation does rely not only on deep
learning such as CNNs for neuronal boundary detection but also
on other object identification methods. For example, predicted neu-
ronal boundaries are processed using a seeded watershed algorithm,
and the subsequently produced over-segmented objects are con-
nected by means of an agglomeration method, such as the graph-
based active learning of agglomeration [53] and the globally optimal
objectives (MULTICUT) [54]. Recently, a multi-object tracking tech-
nique [45] and agglomeration introducing biological constraints [47]
also achieve high performance in neuronal EM image segmentation
(Table 4) [33].

The primary advantage of such 3D CNNs is the level of accuracy
in their predictions. The current leaders’ board of the SNEMI3D is
occupied by the combinations of novel 3D CNNs and watershed/ag-
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Fig. 6. Three-dimensional reconstruction of neuronal objects from a volumetric EM image. (A) A volumetric EM image from the SNEMI3D [33,34]. In addition

to neuronal boundaries, it contains several objects such as mitochondria (red) and ERs (blue). (B) Neuronal boundary map. Two-D/3D CNN should only detect

neuronal boundaries while ignoring the other objects. (C) Derived neuronal objects (top) and 3D reconstruction (bottom). (D) Architecture of U-net that predicts

a patch of neuronal boundary map (left, red rectangular area) from an EM image patch (left, red rectangular area). Multi-step contracting (down-sampling) path

is followed by the expanding (upsampling) path (black arrows). It also has the same-scale skip connections (gray arrows). Each of the three blue lines denotes a

fully connected module.

Table 4. SNEMI 3D leaders showing performance beyond human segmnentation (11/10/2019) [33]

Rank CNN/Agglomeration Rand error Group Reference

1 Residual 3D U-net/long-range affinity prediction 0.0249 PNI [28]
2 FFNs/FFN-based agglomeration 0.0291 GAIP [29]
3 Rhoana pipeline 0.0350 S&T [44]
4 LSTM-U-net/3C 0.0410 CCG [45]
5 Unopen 0.0461 LZL-USTC
6 Residual 3D U-net/entropy policy 0.0468 CS17 [46]
7 3D U-net/biologically-constrained graphs 0.0584 VCG [47]
8 Human values 0.0600

The RAND score is a measure of segmentation accuracy, and the smaller value denotes the higher accuracy in the segmentation of neuronal objects [27].

glomeration algorithms (Table 4) [33]. However, 3D CNNs have
two disadvantages: large computational costs and the requirement
of 3D ground-truth. Even when a latest GPU computing card is
used, the aforementioned models take more than 1 week for training
both 3D residual U-net and FFN. Additionally, 1 week is required
for drawing 3D ground-truth for FFNs, and the requirement of 3D
ground-truth may be a bottleneck if test trials are being performed
by general experimentalists. Even worse, the ground-truth needs to
be re-drawn if the image acquisition condition is altered. To address
this, researchers are now developing domain adaptation technologies,
i.e. the improvements of the applicability of a trained CNN to
the EM images that were obtained under an unknown condition
[55–57]. Such a technology will drastically decrease the efforts to

prepare the ground truths for specific EM images obtained by end
users.

ML technologies have therefore enormously contributed to EM
connectomics. The spatial scale of the 3D reconstruction from EM
images grows rapidly over 1 mm3 [58], and research to widen the
scale is also ongoing [34,52,58,59]. Notably, CNNs are a key technol-
ogy for neuronal boundary detection, but the methods for EM con-
nectomics are not limited to this and includes: the alignments of 2D
EM image stack to generate a volumetric EM image, imperfect EM
image handing, fragmental segment agglomeration, synapse detection
and neuronal circuit reconstruction [38,60], and each of the steps
involves challenges in the fields of informatics and image processing.
It is also important to develop software environment to manage these
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processes. The amount of EM imaging data being generated should
not be underestimated as the rate at which these data are increasing
is beyond the scale of peta-byte [61], and advanced research teams
have developed their in-house software pipelines to execute various
software on their huge EM imaging data [44,58]. On the contrary,
software environments available for the general experimentalists are
inferior in terms of their effectiveness. Because the best CNN for 3D
neuronal image segmentation depends on image acquisition condi-
tions, end-user should be able to test multiple CNNs for their own
EM images. EM segmentation has been targeted by many standalone
software packages, such as Reconstruct [62], Ilastik [63], Knossos
[64], Microscopy Image Browser [65] and VAST lite [66]. They are
useful for manual segmentation, but they currently do not support
CNN-based segmentation. Very recently, plug-ins for the widely used
ImageJ software were developed to handle CNN-based segmentation
[67,68]. The use of these plug-ins is advantageous, but users still need
to launch a Linux server to train target CNNs. We also developed
standalone software to test CNN-based segmentation, called UNI-
EM [30]. This software is designed for researchers who have limited
programming skills, so users can easily follow the procedure of
CNN-based segmentation, such as ground-truth generation, training,
inference, proof reading and visualization, without the knowledge
of computer languages or CNN frameworks. This software has
developed based on Python and a CNN framework Tensorflow, and
thus, developers can easily incorporate new CNN models into UNI-
EM. The developed source code with an online manual is available
at the public repository GitHub (https://github.com/urakubo/UNI-
EM). Such efforts for connecting users and developers will further
activate the field of CNN-based EM connectomics as well as the field
of image feature extraction.

Concluding remarks

Image processing methodologies for microscopy have shown
great advancements in the last two or three decades, thank
to the developments in various ML technologies. Generative
model-based approaches, typically seen in the multi-frame super-
resolution discussed in section ‘Generative-model based approaches
to multi-frame super-resolution’, was developed in parallel with the
improvements of statistical ML techniques such as (approximated)
Bayesian inference. These approaches are suitable especially when
the knowledge of optics and/or target characteristics is available.
When such knowledge is not available, one possible idea is to
rely on the data themselves. With the accumulations of data,
especially annotated data, supervised learning-based approaches
have become realistic. Deep learning methods enable the non-
linear filters to be trained based on the set of given input and
output images. These approaches require someone to prepare the
transformed/annotated images. Although such preparation is not
easy in realistic applications, the deep learning-based methods like
U-net can identify the non-linear filters even without the knowledge
of optics and/or target characteristics. As a typical application of
such an approach, we discussed image restoration from optical
microscopic images in section ‘Deep learning-based image super-
resolution and restoration’. Because deep learning-based methods
have generality in terms of optics and/or targets, they can be
applied to other image transformation problems. As a typical
problem, we discussed EM image segmentation in section ‘EM
image segmentation’. Not surprisingly, deep learning-based methods,
CNNs and their variants, have become the state of the art even in
this problem.

Toward the next generation, the combination of different
approaches seems important. Low-level features can be extracted, in
terms of non-linear filters, from unannotated images. After estimating
such low-level features, image transformation can be trained based
on relatively small amount of data. In the field of ML, this kind
of technique is called semi-supervised learning. Otherwise, one
deep learning-based image processing tool might be transferred by
calibrating it with a relatively small amount of calibration data,
which is called transfer learning. Such combination of different
approaches will be applicable to more difficult situations like when
the amount of annotated images is completely lacking or very
much lacking. Another idea is to combine generative model-based
and discriminative model-based approaches. Such a combination is
especially fruitful when there is some knowledge of the optics/target,
but it is not very much reliable. One example can be seen in the image
segmentation from MRI images [69].

Funding

This work was supported by CREST (JPMJCR1652 to all the
authors) from Japan Science and Technology Agency, Japan, Grants-
in-Aid for Scientific Research (17H06310 to SI) from Japan Society
for Promotion of Science (JSPS), Japan, Exploratory Challenge
on Post-K computer (to SI and UK) from Ministry of Education,
Culture, Sports, Science and Technology, Japan, and World Premier
International Research Center Initiative (WPI) from JSPS, Japan (to
SI, SL, H.Kume and H.Kasai).

Conflict of interest

There are no conflicts of interest.

References

1. Bishop C M (2006) Pattern Recognition and Machine Learning (Springer,
New York, USA).

2. Elad M, and Feuer A (1997) Restoration of a single superresolution image
from several blurred, noisy, and undersampled measured images. IEEE
Trans. Image Process. 6 (12): 1646–1658.

3. Hell S W, and Wichmann J (1994) Breaking the diffraction resolution
limit by stimulated emission: Stimulated-emission-depletion fluorescence
microscopy. Optics Lett. 19 (11): 780–782.

4. Neice A (2010) Methods and limitations of subwavelength imaging. Adv.
Imag. Elect. Phys. 163: 117–140.

5. Freeman W T, Jones T R, and Pasztor E C (2002) Example-based
superresolution. IEEE Comput. Graph. 2: 56–65.

6. Fukushima K (1980) Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biol. Cybern. 36: 193–202.

7. LeCun Y (1986) Learning processes in an asymmetric threshold net-
work. In: Disordered Systems and Biological Organization, pp. 233–240
(Springer, Berlin-Heidelberg, Germany).

8. Kanemura A, Maeda S, and Ishii S (2009) Superresolution with compound
Markov random fields via the variational EM algorithm. Neural Netw. 22
(7): 1025–1034.

9. Dempster A P, Laird N M, and Rubin D B (1977) Maximum likelihood
from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39 (1):
1–22.

10. Geman S, and Geman D (1984) Stochastic relaxation, Gibbs distribution,
and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach.
Intel. 6: 721–741.

11. Hardie R C, Barnard K J, and Armstrong E E (1997) Joint MAP
registration and high-resolution image estimation using a sequence of
undersampled images. IEEE Trans. Image Process. 6 (12): 1621–1633.

https://github.com/urakubo/UNI-EM
https://github.com/urakubo/UNI-EM


90 Microscopy , 2020, Vol. 69, No. 2

12. Dertinger T, Colyer R, Iyer G, Weiss S, and Enderlein J (2009) Fast,
backgroundfree, 3D super-resolution optical fluctuation imaging (SOFI).
Proc. Natl. Acad. Sci. USA. 106 (52): 22287–22292.

13. Fish D, Brinicombe A, Pike E, and Walker J (1995) Blind deconvolution
by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A 12 (1):
58–65.

14. Farsiu S, Robinson M D, Elad M, and Milanfar P (2004) Fast and
robust multiframe super resolution. IEEE Trans. Image Process. 13 (10):
1327–1344.

15. Tipping M E, and Bishop C M (2003) Bayesian image superresolution. In:
Adv. Neural Inf. Process. Syst: Vol. 15 pp. 1279–1286.

16. Pickup L C, Capel D P, Roberts S J, and Zisserman A (2007) Overcoming
registration uncertainty in image super-resolution: Maximize or marginal-
ize? EURASIP J. Adv. Sig. Process. 2007 (2): 23565.

17. Kanemura A, Maeda S, Fukuda W, and Ishii S (2010) Bayesian image
superresolution and hidden variable modeling. J. Syst. Sci. Complex. 23(1):
116–136.

18. Coupé P, Munz M, Manjón J V, Ruthazer E S, and Collins D L (2012) A
CANDLE for a deeper in vivo insight. Med. Image Anal. 16 (4): 849–864.

19. Danielyan A, Wu Y W, Shih P Y, Dembitskaya Y, and Semyanov A (2014)
Denoising of two-photon fluorescence images with block-matching 3D
filtering. Methods 68 (2): 308–316.

20. Boulanger J, Kervrann C, Bouthemy P, Elbau P, Sibarita J B, and Salamero
J (2010) Patch-based nonlocal functional for denoising fluorescence
microscopy image sequences. IEEE Trans. Med. Imaging 29 (2): 442–454.

21. Weigert M, Schmidt U, Boothe T, Muller A, Dibrov A, Jain A, Wilhelm
B, Schmidt D, Broaddus C, Culley S, Rocha Martins M, Segovia-Miranda
F, Norden C, Henriques R, Zerial M, Solimena M, Rink J, Tomancak P,
Royer L, Jug F, and Myers E W. (2018) Content-aware image restoration:
Pushing the limits of fluorescence microscopy. Nat Methods 15 (12):
1090–1097.

22. Lee S, Negishi M, Urakubo H, Kasai H, and Ishii S (2020) Mu-net: Multi-
scale u-net for two-photon microscopy image denoising and restoration.
Neural Networks. 125: 92–103.

23. Ronneberger O, Fischer P, and Brox T (2015) U-net: Convolutional
networks for biomedical image segmentation. In: Int. Conf. Med. Image
Comput. Comput.Assist. Interv.: pp. 234–241.

24. Wang Z, Bovik A C, Sheikh H R, and Simoncelli E P (2004) Image quality
assessment: From error visibility to structural similarity. IEEE Trans.
Image Process. 13 (4): 600–612.

25. Feng L, Zhao T, and Kim J (2015) neuTube 1.0: A new design for efficient
neuron reconstruction software based on the SWC format. eNeuro 2 (1):
e0049–14.2014.

26. Sethian J A (1999) Level Set Methods and Fast Marching Methods:
Evolving Interfaces in Computational Geometry, Fluid Mechanics, Com-
puter Vision, and Materials Science, 3rd ed (Cambridge University Press,
Cambridge, UK).

27. Arganda-Carreras I, Turaga S C, Berger D R, Cires,an D, Giusti A,
Gambardella L M, Schmidhuber J, Laptev D, Dwivedi S, Buhmann J M,
Liu T, Seyedhosseini M, Tasdizen T, Kamentsky L, Burget R, Uher V, Tan
X, Sun C, Pham T D, Bas E, Uzunbas M G, Cardona A, Schindelin J,
and Seung H S (2015) Crowdsourcing the creation of image segmentation
algorithms for connectomics. Front. Neuroanat. 9: 142.

28. Lee K, Zung J, Li P, Jain V, and Seung H S (2017) Superhuman accuracy
on the SNEMI3D connectomics challenge arXiv. 1706–00120.

29. Januszewski M, Kornfeld J, Li P H, Pope A, Blakely T, Lindsey L,
MaitinShepard J, Tyka M, Denk W, and Jain V (2018) High-precision
automated reconstruction of neurons with flood-filling networks. Nat.
Methods 15 (8): 605–610.

30. Urakubo H, Bullmann T, Kubota Y, Oba S, and Ishii S (2019) UNI-EM:
An environment for deep neural network-based automated segmentation
of neuronal electron microscopic images. Sci. Rep. 9: 19413.

31. Vangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, and
Janssen K (2018) An introduction to optical super-resolution microscopy
for the adventurous biologist. Methods Appl. Fluoresc. 6 (2): 022003.

32. Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O,
and Drummen G P (2019) Super-resolution microscopy demystified. Nat.
Cell Biol. 21 (1): 72–84.

33. SNEMI3D. http://brainiac2.mit.edu/SNEMI3D/ accessed: 2019-11-10.
34. Kasthuri N, Hayworth K J, Berger D R, Schalek R L, Conchello J A,

KnowlesBarley S, Lee D, Vazquez-Reina A, Kaynig V, Jones T R, Roberts
M, Morgan J L, Tapia J C, Seung H S, Roncal W G, Vogelstein J
T, Burns R, Sussman D L, Priebe C E, Pfister H, and Lichtman J W
(2015) Saturated´ reconstruction of a volume of neocortex. Cell 162 (3):
648–661.

35. Kourkoutis L F, Plitzko J M, and Baumeister W (2012) Electron
microscopy of biological materials at the nanometer scale. Annu. Rev.
Mater. Res. 42: 33–58.

36. Blow N (2007) Following the wires. Nat. Methods 4 (11): 975–981.
37. Jain V, Murray J F, Roth F, Turaga S, Zhigulin V, Briggman K L,

Helmstaedter M N, Denk W, and Seung H S (2007) Supervised learning of
image restoration with convolutional networks. In: 2007 IEEE 11th Int.
Conf. Comput. Vis.: pp. 1–8.

38. Kaynig V, Vazquez-Reina A, Knowles-Barley S, Roberts M, Jones T
R, Kasthuri N, Miller E, Lichtman J, and Pfister H (2015) Large-scale
automatic reconstruction of neuronal processes from electron microscopy
images. Med. Image Anal. 22 (1): 77–88.

39. ISBI2012. http://brainiac2.mit.edu/isbi.challenge/ accessed: 2019-11-10.
40. Ciresan D, Giusti A, Gambardella L M, and Schmidhuber J (2012) Deep

neural networks segment neuronal membranes in electron microscopy
images. In: Adv. Neural Inf. Process. Syst.: pp. 2843–2851.

41. Quan T M, Hildebrand D G, and Jeong W K (2016) FusionNet: A deep
fully residual convolutional neural network for image segmentation in
connectomics arXiv. 1612.05360.

42. Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, and Pal C (2016)
The importance of skip connections in biomedical image segmentation. In:
Deep Learning and Data Labeling for Medical Applications: pp. 179–187
(Springer International Publishing).

43. Shen W, Wang B, Jiang Y, Wang Y, and Yuille A (2017) Multi-stage
multirecursive-input fully convolutional networks for neuronal boundary
detection. In: Proc. IEEE Int. Conf. Comput. Vis.: pp. 2391–2400.

44. Haehn D, Hoffer J, Matejek B, Suissa-Peleg A, Al-Awami A, Kamentsky
L, Gonda F, Meng E, Zhang W, Schalek R, Wilson A, Parag T, Beyer J,
Kaynig V, Jones T R, Tompkin J, Hadwiger M, Lichtman J W and Pfister
H. (2017) Scalable interactive visualization for connectomics. Informatics
4 (3): 29.

45. Meirovitch Y, Mi L, Saribekyan H, Matveev A, Rolnick D, and Shavit N
(2019) Cross-classification clustering: An efficient multi-object tracking
technique for 3-D instance segmentation in connectomics. In: Proc. IEEE
Conf. Comput. Vis. Patt. Recog.: pp. 8425–8435.

46. Hascoet T, Metge B, Takiguchi T, and Ariki Y (2019) Entropy policy
for supervoxel agglomeration of neurite segmentation. In: Int. Workshop
Front. Comput. Vis.: O3–4.

47. Matejek B, Haehn D, Zhu H, Wei D, Parag T, and Pfister H (2019)
Biologicallyconstrained graphs for global connectomics reconstruction. In:
Proc. IEEE Conf. Comput. Vis. Patt. Recog.: pp. 2089–2098.

48. Nunez-Iglesias J, Kennedy R, Plaza S M, Chakraborty A, and Katz W T
(2014) Graph-based active learning of agglomeration (GALA): A python
library to segment 2D and 3D neuroimages. Front. Neuroinform. 8: 34.

49. Funke J, Tschopp F, Grisaitis W, Sheridan A, Singh C, Saalfeld S, and
Turaga S C (2018) Large scale image segmentation with structured loss
based deep learning for connectome reconstruction. IEEE Trans. Pattern
Anal. Mach. Intel. 41 (7): 1669–1680.

50. Takemura S, Xu C S, Lu Z, Rivlin P K, Parag T, Olbris D J, Plaza
S, Zhao T, Katz W T, Umayam L, Weaver C, Hess H F, Horne J A,
Nunez-Iglesias J, Aniceto R, Chang L A, Lauchie S, Nasca A, Ogundeyi
O, Sigmund C, Takemura S, Tran J, Langille C, Le Lacheur K, McLin
S, Shinomiya A, Chklovskii D B, Meinertzhagen I A, and Scheffer L K
(2015) Synaptic circuits and their variations within different columns in
the visual system of drosophila. Proc. Natl. Acad. Sci. USA. 112 (44):
13711–13716.

51. Li P H, Lindsey L F, Januszewski M, Zheng Z, Bates A S, Taisz I, Tyka
M, Nichols M, Li F, Perlman E, Maitin-Shepard J, Blakely T, Leavitt L,
Jefferis G S X E, Bock D, and Jain V (2019) Automated reconstruction of
a serialsection EM drosophila brain with flood-filling networks and local
realignment bioRxiv. 605634.

http://brainiac2.mit.edu/SNEMI3D/
http://brainiac2.mit.edu/isbi.challenge/


S. Ishii et al. Generative and discriminative model-based approaches to microscopic image restoration 91

52. Zheng Z, Lauritzen J S, Perlman E, Robinson C G, Nichols M, Milkie D,
Torrens O, Price J, Fisher C B, Sharifi N, Calle-Schuler S A, Kmecova L,
Ali I J, Karsh B, Trautman E T, Bogovic J A, Hanslovsky P, Jefferis G S
X E, Kazhdan M, Khairy K, Saalfeld S, Fetter R D, and Bock D D (2018)
A complete electron microscopy volume of the brain of adult Drosophila
melanogaster. Cell 174 (3): 730–743.

53. Nunez-Iglesias J, Kennedy R, Parag T, Shi J, and Chklovskii D B (2013)
Machine learning of hierarchical clustering to segment 2D and 3D images.
PLoS One 8 (8): e71715.

54. Andres B, Kroeger T, Briggman K L, Denk W, Korogod N, Knott
G, Koethe U, and Hamprecht F A (2012) Globally optimal closed-
surface segmentation for connectomics. In: Eur. Conf. Comput. Vis.:
pp. 778–791.

55. Januszewski M, and Jain V (2019) Segmentation-enhanced CycleGAN
bioRxiv. 548081.

56. Roels J, Hennies J, Saeys Y, Philips W, and Kreshuk A (2019) Domain
adaptive segmentation in volume electron microscopy imaging. In: 2019
IEEE 16th Int. Symp. Biomed. Image: pp. 1519–1522.

57. Bermúdez-Chacón R, Márquez-Neila P, Salzmann M, and Fua P
(2018) A´ domain-adaptive two-stream U-net for electron microscopy
image segmentation. In: 2018 IEEE 15th Int. Symp. Biomed. Image:
pp. 400–404.

58. Bae J A, Mu S, Kim J S, Turner N L, Tartavull I, Kemnitz N, Jordan C
S, Norton A D, Silversmith W M, Prentki R, Sorek M, David C, Jones D
L, Bland D, Sterling A L R, Park J, Briggman K L, Seung H S;Eyewirers
(2018) Digital museum of retinal ganglion cells with dense anatomy and
physiology. Cell 173 (5): 1293–1306.

59. Motta A, Berning M, Boergens K M, Staffler B, Beining M, Loomba S,
Schramm C, Hennig P, Wissler H, and Helmstaedter M (2018) Dense con-
nectomic reconstruction in layer 4 of the somatosensory cortex bioRxiv.
460618.

60. Lee K, Turner N, Macrina T, Wu J, Lu R, and Seung H S (2019)
Convolutional nets for reconstructing neural circuits from brain images
acquired by serial section electron microscopy. Curr. Opin. Neurobiol. 55:
188–198.

61. Motta A, Schurr M, Staffler B, and Helmstaedter M (2019) Big data in
nanoscale connectomics, and the greed for training labels. Curr. Opin.
Neurobiol. 55: 180–187.

62. Fiala J C (2005) Reconstruct: A free editor for serial section microscopy.
J. Microsc. 218 (1): 52–61.

63. Sommer C, Straehle C, Koethe U, and Hamprecht F A (2011) Ilastik:
Interactive learning and segmentation toolkit. In: 2011 IEEE Int. Symp.
Biomed. Image: pp. 230–233.

64. Helmstaedter M, Briggman K L, and Denk W (2011) High-accuracy
neurite reconstruction for high-throughput neuroanatomy. Nat. Neurosci.
14 (8): 1081–1088.

65. Belevich I, Joensuu M, Kumar D, Vihinen H, and Jokitalo E (2016)
Microscopy image browser: A platform for segmentation and analysis of
multidimensional datasets. PLoS Biol. 14 (1): e1002340.

66. Berger D R, Seung H S, and Lichtman J W (2018) VAST (volume
annotation and segmentation tool): Efficient manual and semi-automatic
labeling of large 3D image stacks. Front. Neural Circuits 12: 88.

67. Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, Böhm
A, Deubner J, Jackel Z, Seiwald K, Dovzhenko A, Tietz O, Dal Bosco C,
Walsh S, Saltukoglu D, Tay T L, Prinz M, Palme K, Simons M, Diester I,
Brox T, and Ronneberger O (2019) U-net: Deep learning for cell counting,
detection, and morphometry. Nat. Methods 16 (1): 67–70.

68. Gómez-de-Mariscal E, García-López-de-Haro C, Donati L, Unser M,
Muñoz-Barrutia A, and Sage D (2019) DeepImageJ: A user-friendly plugin
to run deep learning models in ImageJ bioRxiv. 799270.

69. Ito R, Nakae K, Hata J, Okano H, and Ishii S (2019) Semi-supervised deep
learning of brain tissue segmentation. Neural Netw. 116: 25–34.


	Generative and discriminative model-based approaches to microscopic image restoration and segmentation
	Introduction 
	Generative model-based approaches to multi-frame super-resolution
	Preliminaries
	Maximum likelihood and MAP estimation
	Bayesian super-resolution

	Deep learning-based image super-resolution and restoration
	EM image segmentation 
	Concluding remarks
	Funding
	Conflict of interest


