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Automatic ganglion cell detection 
for improving the efficiency 
and accuracy of hirschprung 
disease diagnosis
Ariel Greenberg1, Asaf Aizic1, Asia Zubkov1, Sarah Borsekofsky1, Rami R. Hagege1,3 & 
Dov Hershkovitz1,2,3*

Histopathologic diagnosis of Hirschsprung’s disease (HSCR) is time consuming and requires expertise. 
The use of artificial intelligence (AI) in digital pathology is actively researched and may improve the 
diagnosis of HSCR. The purpose of this research was to develop an algorithm capable of identifying 
ganglion cells in digital pathology slides and implement it as an assisting tool for the pathologist in 
the diagnosis of HSCR. Ninety five digital pathology slides were used for the construction and training 
of the algorithm. Fifty cases suspected for HSCR (727 slides) were used as a validation cohort. Image 
sets suspected to contain ganglion cells were chosen by the algorithm and then reviewed and scored 
by five pathologists, one HSCR expert and 4 non-experts. The algorithm was able to identify ganglion 
cells with 96% sensitivity and 99% specificity (in normal colon) as well as to correctly identify a case 
previously misdiagnosed as non-HSCR. The expert was able to achieve perfectly accurate diagnoses 
based solely on the images suggested by the algorithm, with over 95% time saved. Non-experts 
would require expert consultation in 20–58% of the cases to achieve similar results. The use of AI in the 
diagnosis of HSCR can greatly reduce the time and effort required for diagnosis and improve accuracy.

Hirschsprung’s disease (HSCR) is the most common cause of functional bowel obstruction in children with a 
world-wide incidence ranging between 1:5000 and 1:10,000 live births1. The disease is characterized by a complete 
lack of normal ganglion cells within the Meissner and Auerbach plexuses of the colonic wall (aganglionosis), 
beginning at the internal anal sphincter and extending proximally. Involvement of the recto-sigma is most com-
mon (70–85%), yet the disease may also encompass the entire colon and rarely, even the distal small bowel2–4.

Treatment of HSCR involves resection of the affected segment. Histological assessment is used to determine 
the required length of resection both pre and intra-operatively via frozen sections. In addition, post-operative 
assessment is required to ensure that the affected segment had been excised in its entirety5–7.

In HSCR the pathologist has to detect an extremely rare event of a single ganglion cell within dozens of slides. 
This diagnostic process is time and resource consuming, requiring multiple sections and often also immunohis-
tochemical stains for acetylcholine esterase and calretinin8. Despite these measures, inconclusive biopsy results 
are not uncommon (range 11–38%) and inter-observer variability among pathologists may exceed 20%9. Errors 
in diagnosis have major implications. Failure to identify ganglion cells would result in a false-positive diagnosis 
and unwarranted surgery with loss of healthy bowel. On the other hand, a false-negative results would lead to 
insufficient surgery, possible persistence of symptoms and need for additional surgery10. Therefore, there is a 
need for more accurate and cost effective diagnostic tools.

Artificial intelligence (AI) and Machine learning are emerging technologies that can be used to create algo-
rithms capable of decision making. These technologies are based on statistical methods which mimic cognitive 
processes and therefore enable active and continuous "learning" and improvements in the performance of the 
algorithm, as more raw data is provided11. Clinical applications include digital image analysis in various modali-
ties in radiology12–14, in some instances even showing superiority over a human observer15.

Applications in pathology rely on recent developments and the shift to digital pathology. Machine learn-
ing tools have been used to address different clinical questions, such as histological grading11,16–18, determina-
tion of tumor cellularity19, tumor classification20, automated diagnosis21–23, as well as applications in molecular 
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pathology24. Superiority over a human observer has been demonstrated as well, for instance in the classification 
of melanoma25. However, one significant limitation to the generation of clinically useful diagnostic algorithms is 
that the process requires collection and annotation of very large datasets. One such notable example is the recent 
study by Campanella et al.26 which was based on a dataset from 15,187 patients and 44,732 whole slide images. 
In this study the authors further concluded that as a general rule, at least 10,000 whole slide images would be 
required to achieve satisfactory performance with similar deep learning algorithms.

Hirschsprung’s disease is relatively rare, posing a significant challenge for diagnostic algorithm development 
since a data set of 10,000 slides or more is simply not feasible for any given institute and would prove quite chal-
lenging even with several hospitals working in collaboration. As a demonstrative example, the total number 
of live births in the United States for 2018 was roughly 3.8 million27. Assuming an average HSCR incidence of 
roughly 1:8000, less than 500 cases would be expected per year. Meaning, achieving a dataset as large as the one 
used by Campanella et al. (over 15,000 cases) would require the gathering of all HSCR cases in the entire US for 
over 30 years. These inherent difficulties may also explain why the application of AI and machine learning in 
Hirschsprung’s disease remains a relatively unexplored territory.

Deep learning methodology is infeasible in terms of collecting and annotating sufficient amount of data as 
there are no sufficient cases of HSCR. In addition, each slide contains more than 107 candidates for ganglion 
cells, meaning each case may contain more than 0.5 ∗ 109 candidates. Therefore, a false alarm rate of 1% would 
create millions of false alarms for each case which will make the solution noisy and not effective at all. Therefore, 
in this study, we created and tested a tailored AI method that imitates the diagnostic procedure performed by 
a pathologist. Deep Learning mechanisms are used as part of the solution in a limited fashion. We called the 
method developed in this study Hierarchical Contextual Analysis (HCA). HCA is a method to overcome the 
challenge of limited datasets in HSCR in order to construct an algorithm capable of identifying ganglion cells in 
H&E stained slides and to assess its possible applications in the diagnosis of Hirschsprung’s disease.

The diagnosis of HSCR must be performed by a trained pathologist. Our goal is to detect the often rare occur-
rence of ganglion cells and to present them in a graded fashion, thus assisting the pathologist in reaching the 
correct diagnosis (positive or negative for ganglion cells) while reducing workload and saving time.

Results
In the normal colon validation cohort, the algorithm was able to identify ganglion cells with 96% sensitivity and 
99% specificity (calculated on a cell-by-cell basis, in multiple areas of interest containing thousands of ganglion 
cells, Fig. 1).

In the validation cohort of cases suspected for HSCR: the algorithm selected 12 areas suspected for containing 
ganglion cells, which represent less than 0.01% of the total tissue area. The averages of the three highest scores 
for each set of images viewed by each observer were plotted and compared (Supplementary Fig. S1).

The algorithm successfully included at least one ganglion cell in its chosen image set (up to 12 images), for all 
of the cases which indeed contained ganglion cells. Therefore, the system showed a sensitivity of 100% for detect-
ing ganglion cells with an estimated time requirement of less than 5% of that of a full analysis by a pathologist. 
Furthermore, for the experienced pathologist (an expert with experience with HSCR diagnosis and no previous 
experience with the proposed algorithm) using this algorithm yielded perfectly accurate diagnoses for all cases 
with an estimated time saved of at least 95% (rough estimation), when compared to conventional methods. With 
one exception, a "positive" diagnosis (non-HSCR) could be reached based solely on the first 3 image sets (highest 
AI score). Thus, the time for diagnosis per case, could potentially be reduced from around 30–60 min to mere 
seconds (based on the senior expert’s previous experience).

For non-experts, criteria were set to determine whether a particular case could be resolved by the pathologist 
with use of the AI alone, or if an expert consult was required. The criteria used are detailed under "Methods". 
Expert consultation (microscopic examination of AI images) was considered necessary for any case classified as in 
"Doubt". Under these criteria, non-expert pathologists could reach 100% accuracy using only the images selected 
by the algorithm while consulting an expert in 20–58% of cases. Importantly, for each consultation case the expert 
would only need to go through the first 3 images suggested by the algorithm to reach a full diagnosis (ganglion 
cells present or absent). Overall, we estimate a 95% time reduction in cases suspected for HSCR diagnosis (for 
an expert). The time reduction may be even greater for non-experts, who are in a greater need of assistance.

Inadequate sampling was found in five cases (anal location, superficial biopsy). All inadequate cases contained 
no ganglion cells and were properly classified as "negative" for ganglion cells under the set criteria.

In two cases, both the pathologists and AI were in agreement among themselves, yet in disagreement with 
the hospital records. In both cases, the pathologists and the algorithm identified ganglion cells, whereas the 
pathology reports in the hospital records were negative for ganglion cells. The cases were reviewed thoroughly 
by the clinical team. One case represented a technical error, due to the inclusion of the proximal margin (which 
contained ganglion cells) in the analysis by the algorithm and later the pathologists (Case 49). No ganglion cells 
were identified outside of the proximal surgical margin, by either the pathologists or the AI. The other discordant 
case, was found to indeed represent a non-HSCR case and therefore had previously been misdiagnosed (Case 
21). Analysis of the clinical records showed that the case had been revised and ganglion cells were identified in 
the revision. Furthermore, the patient did not undergo further surgery and his clinical follow-up was uneventful 
supporting the presence of ganglion cells in the tissue. Thus, the algorithm had successfully identified a previ-
ously (originally) misclassified case. Of note, one additional case (Case 50) was inconclusive due to insufficient 
biopsy. Cases 49 and 50, were therefore excluded from the following analysis.

Among the non-expert pathologists, pathologist 2 (senior) required consultation in 18 cases, pathologist 
3 (resident, participated in the algorithm’s training) required consultation in 10 cases, pathologist 4 (resident) 
required consultation in 29 cases and pathologist 5 (young senior) required consultation in 18 cases. When 
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examining consultations across all pathologists: in 9 cases (18.75%) all four of the non-expert pathologists 
required expert consultation to reach a diagnosis as opposed to three of the pathologists in 4 cases (10.42%), two 
in 9 cases (18.75%) and one in 6 cases (12.5%). Interestingly, analysis of the cases that required consultation by 
more non-expert pathologists showed that many of these cases contained immature ganglion cells (Fig. 2) that 
are indeed more challenging histologically.

Additionally, two of the pathologists have made errors in their diagnosis which were also not referred to an 
expert. Pathologist 5 had mistakenly diagnosed one "Negative" case as "Positive", while pathologist 3 had made 
one error of the same type and additionally mistakenly diagnosed a case a "Positive" case as negative.

Discussion
The focused nature of diagnosis or exclusion of HSCR (presence or absence of ganglion cells), supposedly ren-
ders it a good candidate for automatization through AI and deep learning methods. However, several challenges 
must be faced in order to do so. First, the relative rarity of the disease limits the amount of data available for 
training an algorithm. Conventional deep learning methods would have required thousands of slides to achieve 
satisfactory results26. For this reason, we opted for the use of HCA. HCA exploits various insights provided by 
expert pathologists regarding the immediate context in which the observations were found and work simultane-
ously in different hierarchical levels to imitate those insights. Imitating those insights boosts the performance of 
the system considerably despite the presence of a very small database and help the system generalize in a very 
efficient manner. As a demonstrative example, the input by a pathologist that "ganglion cells are not present in 
the intestinal epithelial layer" is equivalent to a significant amount of tagged data.

Figure 1.   A ROC curves depicting the improvement in the performance of the algorithm after a single 
iteration. The algorithm’s detection rate is presented in relation to the frequency of a "False alarm" (a false 
positive result). The blue curve predates the orange curve and is based on less data (one iteration apart). 
Improvement in performance (for the orange curve) is evident as a higher detection rate for each respective 
frequency of "False alarm" and is further stressed by the black arrow between the two curves.
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Secondly, identification of ganglion cells in cases suspected for HSCR is a diagnostic challenge, both for a 
pathologist and perhaps even more so for an AI.

A specimen may contain few if any ganglion cells. To properly search for them, the International workspace 
group of the London classification recommends the initial assessment of 50–75 H&E slides for each biopsy28. 
A single sample may yield as many as one million Full HD screens (in full resolution), each image contained 
100,000–200,000 pixels, while a ganglion cell is roughly 100 × 100 pixels in size. Meaning each image contained 
about 10,000 × 20,000 possible candidates, or 200 million candidates. Each case included a few dozen images 
with the total number of possible candidates reaching tens of billions. Furthermore, a single ganglion cell may 
be enough to rule out the diagnosis, and it may be found in any of the sections.

Consequently, few studies had attempted the use of AI in the diagnosis of HSCR.
Of note, is a study conducted by Schiling et al., which assessed the application of AI in the diagnosis of HSCR 

in histological slides stained for calretinin and MAP229. The study was performed using 93 tissue blocks from 31 
specimens of 27 patients. The reported sensitivity and specificity were 87.5% and 80% (respectively) in a training 
set and 95% and 90.4% in a development set.

Our study differs in aims, scope and methods. First, to the best of our knowledge, our study is the first attempt 
at identifying ganglion cells using AI on H&E stained slides, without the use of immunohistochemistry. Sec-
ond, though still modest, our dataset was larger comprising hundreds (over 800) of slides. Lastly, Schiling et al. 
used conventional machine learning methods, while our study employed alternative methods. The algorithm 
constructed in this study, was able to exclude HSCR in 100% of the cases which contained ganglion cells (in 
any number).

The algorithms true strength however, lies not in its individual performance, but in its application as an 
assisting tool for the pathologists in their evaluation of HSCR cases.

In the present study, an accurate diagnosis or exclusion of HSCR could be made by an expert patholo-
gist within minutes and in some cases even seconds, as opposed to hours, by traditional methods. Use of the 
algorithm may lessen the need for immunohistochemical stains and thus has the potential to save costs both 
direct and indirect (through greater efficiency in the pathologist’s time). More importantly, the algorithm’s high 
sensitivity may aid the pathologist in reaching the correct diagnosis, ensuring that no ganglion cells are missed 
(thus, incorrectly diagnosing HSCR).

Upon review of the literature regarding the diagnosis of HSCR, the reported specificity is almost uniformly 
high (closer to 100%) and therefore false-positive results are rare. However the rate of false-negative results var-
ies widely between 0 and 40%30.

Immunohistochemistry is often employed to improve the diagnostic accuracy. Commonly used stains include 
Acetylcholine esterase (AchE), Calretinin, S-100 and MAP-2 and more, used alone or in combination (pan-
els)31–35. Serafini et al. compared the diagnostic accuracy of H&E alone or Calretinin staining versus AchE stain-
ing as a gold standard. H&E alone had a 90% concordance with AchE staining and demonstrated a higher diag-
nostic accuracy (96%) and specificity (78%) yet a lower sensitivity (70%) when compared to Calretinin staining 
(84%, 70% and 96%, respectively)36. Other studies reported higher accuracy for Calretinin, as an example, Jeong 
et al., reported a sensitivity of 100%, 93.5% and 100%, a specificity of 34.4%, 100% and 85.2% and an accuracy 
of 57.9%, 97.8% and 90.5% for H&E, AchE and Calertinin, respectively37. Kapur et al. stained for the choline 
transporter as a substitute for AchE staining and demonstrated a total error rate of about 20%9. In our study, an 
experienced pathologist directed by the algorithm was able to achieve 100% detection rate (sensitivity) and 0% 
false alarms (100% specificity), without the need for any additional aids including the full slides or additional 
stains. Non-expert pathologists could still reach 100% while requiring expert consultation in 20–58% of cases. 
Therefore, use of the algorithm may simplify the diagnosis and allow even less experienced pathologists to per-
form adequately. This is especially important for smaller or secluded institutions which may not receive enough 
HSCR cases to allow building of expertise. Furthermore, most consultations could be concluded based solely 
on the 3 images with the highest scores, allowing for shorter, more accurate and less expensive consultations.

Figure 2.   Immature ganglion cells. Examples from non-HSCR cases without evidence of mature ganglion cells. 
Clusters of immature ganglion cells are marked by black arrows. Note the smaller nuclei, inconspicuous nucleoli 
and scant intensely stained cytoplasm.
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Inter-observer variability was significant (wide range of scores and need for consultation). However, the 
algorithms main goal is to aid the pathologists in reaching the correct diagnosis. This goal has been achieved in 
all cases, under the set criteria and despite any variability present.

Two cases, demonstrated discordance between the algorithm (and later the pathologists) and the pathological 
ground truth as stated in the hospital records. One of these two cases was classified as HSCR yet in fact harbored 
a few ganglion cells, which the algorithm was able to correctly identify. The implications of such a misdiagnosis 
may be additional surgery and loss of a greater length of bowel than clinically necessary. In this particular case, 
the patient was luckily managed without need for additional surgery. Even so, use of the algorithm might have 
been able to prevent this mistake and similar mistakes, potentially preventing unnecessary bowel resection, 
as well as additional, unindicated surgery with its associated risks and complications. In the second case, the 
proximal margin, likely representing the transition zone was included by mistake. As this margin contained true 
ganglion cells, which were identified by both the algorithm and the pathologists, the case was mistakenly marked 
as non-HSCR. As with the other cases, in this specific sample the algorithm had worked as intended, and was 
able to identify the few present ganglion cells in a single slide out of dozens.

An additional case proved inconclusive even for an expert, who commented that in a real time clinical setting, 
an additional biopsy would have been recommended. This approach is not uncommon in clinical practice. In 
this particular case, the patient’s follow-up is unavailable.

The relatively high amount of referrals (20–58%) recommended in this study should be inspected in the con-
text of the decision criteria set. The criteria were intentionally set in a way which would likely cause over-referral, 
yet would minimize diagnostic errors. Indeed, nearly all of the mistakes made by the non-expert pathologists 
were revealed and corrected.

Certain cases proved more challenging for the non-expert pathologists, resulting in most or all of them 
requiring expert consultation. When examined, cases which were positive for ganglion cells (non-HSCR) yet 
confusing for the non-experts contained immature ganglion cells. Immature ganglion cells are morphologically 
different from the more familiar mature ganglion cells, and are therefore more likely to be misclassified by a 
non-expert pathologist. They have smaller nuclei, inconspicuous nucleoli, as well as a scant, yet more intensely 
stained cytoplasm. Their appearance may mimic plasma cells or lymphocytes. Helpful clues are their tendency 
to appear in groups, proximity to blood vessels, as well as persistence in serial secions38.

Cases which were negative for ganglion cells (HSCR) yet had high referral rates, had mostly non-specific and 
out of context findings. The algorithm searches for the best ganglion cell candidates. However, in a slide devoid of 
ganglion cells, the "best" candidates are still "bad" candidates which are unlikely to represent true ganglion cells, 
yet are the closest entities to be found (Fig. 3). As mentioned, the pathologist is aware of the optional presence 
of immature ganglion cells yet lacks the experience to properly identify them, which may result in the interpre-
tation of non-specific findings as possible immature ganglion cells. Furthermore, in the original version of the 
algorithm, the images were presented to each pathologist without additional context (immediate surroundings 
aside). Ganglion cells are only found within the submucosa or muscularis propria. Any cell or finding within 
any other layer, no matter how superficially similar is highly unlikely to represent a true ganglion cell. However, 
without this context, some findings can mimic ganglion cells, particularly immature ones, enough to cause the 
non-expert great unease. Such cases are much more likely to be referred for an expert consultation. Of note, 
future applications of the algorithm will include the origin of each image within its respective slide in order to 
provide better context.

Using the decision algorithm, the pathologist might still make a false positive diagnosis which would not 
sent to consultation, if a score 5 is given inaccurately for 2 ganglion cell candidates. Further improvements to 
the algorithm as well as training of the pathologists in use of the algorithm will likely minimize future mistakes 
of this nature.

Figure 3.   Examples of non-specific findings, mistaken for ganglion cells by non-expert pathologists. Without 
proper context, these findings may mimic immature ganglion cells. However, many of these findings were in fact 
within the mucosa or serosa, bowel layers normally devoid of ganglion cells, thus ruling out any "ganglion cells" 
seen within them.
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This study had several limitations which merit mention. As stated, the available dataset was limited and 
significantly smaller than that of similar studies on the use of AI in pathology17,18,21,25,26,29. Large data sets are 
considered necessary in order to properly represent the wide variability present in clinical samples26. Smaller 
data-sets therefore suffer both from a statistical standpoint and from excessive uniformity. Our use of HCA some-
what circumvents this problem. Nevertheless, additional data, including data generated by other institutions and 
other slide scanning platforms would allow for further validation which could improve upon the algorithm39,40.

The main limitation of the HCA method itself lies in is its reliance on input and feedback from a pathologist. 
Meanwhile, conventional deep learning methods may operate mostly independently, at the cost of requiring 
far larger data sets. In the case of HSCR large datasets are not available making HCA the only real option for 
effective algorithmic solution.

In conclusion, the algorithm constructed in this study is an excellent addition to the ever growing "toolbox" 
of AI and digital solutions that are rapidly being made available to pathologists worldwide. Additionally, HCA, 
the algorithmic approach taken in this study, could be further applied to other diagnostic scenarios to achieve 
satisfactory performance even with a limited data set. The same process would also serve to better validate the 
HCA approach by providing additional data from additional experts, institutes, clinical settings and scanning 
modalities. This may aid the development of diagnostic and assisting tools using AI and deep learning.

Materials and methods
All methods were performed in accordance with the relevant guidelines and regulations.

Ethics statement.  All data used in this study was derived from digital pathology slides identified only by a 
sample number and no other identifying details. The study was approved and informed consent was waived by 
the local ethics committee at Tel-Aviv Sourasky medical center. Approval number: 0660-16-TLV.

Algorithmic approach.  Deep learning relies on extensive amounts of data which is not available in the case 
on HSCR. Additionally, the performance that can be achieved by applying these methods even given a sufficient 
amount of data would not lead to high enough performance. Therefore, the only research direction we could use, 
in order to create and test an AI method that can assist the pathologist in the diagnosis of Hirschsprung disease, 
was to develop an alternative method which we call the hierarchical contextual analysis (HCA).

HCA is based on two observations regarding the fundamental ways in which pathologists assess and deter-
mine whether what they see is indeed a ganglion cell. We identified two aspects to the pathologist’s diagnostic 
process, as follows:

Hierarchical analysis When observing a given region within a tissue slide the pathologist has very clear knowl-
edge about the tissue type, the location within the tissue and the geometrical location and orientation relative 
to other detected entities in the slide. For example, ganglion cells are not found in the surface epithelium, and 
any similar event found in this location, must be interpreted as "Negative". This method eliminates a massive 
amount of false alarms and makes the analysis much more efficient.

Contextual analysis In the moment a candidate region is detected as a potential ganglion cell, it is positioned 
and compared to its immediate surroundings, as well as to other, candidate ganglion cells. For example, a ganglion 
cell may appear in clusters accompanied by other types of cells, such as schwann cells. This context is crucial for 
differentiating between different cell types which may overlap or appear partially within a given slide.

The observations made about the way in which the pathologist reviews tissue slides in order to reach high 
performance in an effective way were imitated in HCA. While deep learning techniques can be thought of as 
feedforward techniques, namely a sequence of stages from the input to the output, without any type of feedback, 
HCA is heavily infused with feedback loops.

The analysis of the geometric relationships between different entities in the image, as well as, the implanta-
tion and integration of these relationships through statistical techniques such as deep learning, were previously 
explored by us, in past works41–43.

Data collection for the algorithm included both an analysis of the diagnostic routine performed by the 
pathologist and the actual annotation of ganglion cells in digital pathology images.

The data collected on the diagnostic routine of the pathologists was collected both through extensive discus-
sions and through direct active observation during work. Data from the images included direct annotation of 
ganglion cells, and suspected ganglion cells. Additionally, the part of the images surrounding candidate ganglion 
cells was also used for generating the algorithm (Negative labeled background).

Clinical samples.  The material used in this research was derived from formalin fixed paraffin embedded 
tissue. Hematoxylin and eosin stained slides were scanned using the Philips UFS scanner (Koninklijke Philips, 
Amsterdam, The Netherlands), at X40 magnification. The proprietary ISYNTHAX format was converted to 
TIFF format using the Philips IntelliSite pathology Solution program, version 3.2 and annotations were made 
manually (Supplementary Fig. S2), by use of the ASAP v.1.7.3 program (Geert Litjens, Nijmegen, The Neth-
erlands). The Pathological ground truth was based on hospital records. All cases were previously reviewed by 
senior pathologists, most of whom with experience and expertise in HSCR diagnosis. Multiple sections and 
immunohistochemical stains were available when necessary at the time of the original diagnosis.

The algorithms training involved the use of 95 digital pathology slides in total: 86 slides of specimen contain-
ing adult, normal colons (obtained from colectomy specimen), and 9 additional slides of cases with a clinical 
suspicion of HSCR. All slides were reviewed by a single pathologist. Ganglion cells (positive samples) were 
marked by encircling each of them, individually. Fine tuning of the algorithm involved marking by the algorithm 
and feedback by the pathologist. Feedback included a statement as to whether ganglion cells were seen or not 
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(true/false), as well as correction for false positive (excess markings) and false negative (unmarked ganglion cell) 
results. The initial training phase involved normal colonic biopsy slides. In 10 of these slides, manual analysis 
was complete and included marking all identifiable ganglion cells in the entire slide for a total of 2315 cells. The 
same process was performed in marked "areas of interest" in 64 additional slides. The sum of the surface of all 
areas of interest was less than one full slide yet contained 1476 ganglion cells in total. 10% of the database was 
not used in the procedure of building the algorithm and were instead used for measuring the performance of 
the algorithm and obtaining initial values of sensitivity and specificity in identifying ganglion cells in normal 
samples. Of note, the calculation of sensitivity and specificity was based on thousands of small "areas of interest" 
including ganglion rich areas and areas devoid of ganglion cells. The sensitivity and specificity values measure 
the algorithms capacity to correctly identify the individual ganglion cells in these areas on a cell-by-cell level.

The reminder of the slides as well as additional "areas of interest" in previously used slides were used for fine 
tuning of the algorithm (Supplementary Fig. S3). Of note, each event (ganglion cell) identified by the algorithm 
was identified and displayed in the context of its immediate surrounding. This was necessary, as pathologists 
generally work with a contextual approach in mind ("Contexual analysis") and would be justly uneasy in making 
a diagnosis on what appears to be a ganglion cell yet taken out of the context of its surroundings. The algorithm 
must therefore follow the same approach, both to imitate the diagnostic process of the pathologist, as well as to 
better fit the pathologist’s needs when used as an assisting tool. In addition, as part of the "Hierarchical analy-
sis" approach, "areas of interest" devoid of ganglion cells, were also marked and served as negative samples. An 
important and especially confounding example is the surface epithelium, which may include multiple false 
positive events. By providing a sufficient amount of areas of surface epithelium marked as negative, the system 
is able to "learn" which layers of the colonic wall are relevant and which should be ignored, in a similar fashion 
to a pathologist being taught where to look.

Validation on cases with clinical suspicion of HSCR.  Fifty cases (727 slides in total) with clinical sus-
picion HSCR were analyzed using the proposed algorithm. The specimens were obtained from suction biopsies 
(39, or 78%), full thickness biopsies (4, or 8%) and surgical specimen (7, or 14%). Three cases were obtained 
from young adults, with the remainder being pediatric patients. The age range was between 1 day and 28 years, 
with 39 cases being obtained from patients younger than 1  year and of them, 16 cases were obtained from 
patients younger than 1 month.

Adequacy of each biopsy slide (representation of the submucosa and/or muscularis propria) was not a criteria 
and determination of adequacy is not a feature of the algorithm. A total of five cases were considered inadequate 
upon review. One case included samples from the anal region, which is physiologically aganglionic. The other four 
were rectal biopsies which were too superficial. An inadequate sample should contain no ganglion cells. Therefore, 
a "negative" classification by the algorithm was considered the expected and correct function for inadequate cases.

The algorithm provided a score between 0 and 1.
Up to 36 images with the highest assigned scores had been chosen from each case and were then divided 

into sets of 3 images (up to 12 sets from each case). The image sets were ordered according to their AI score, 
from highest to lowest.

The sets were presented unmarked and unscored to be reviewed by three pathologists, one with expertise in 
HSCR diagnosis and two non-experts: one a senior, one a resident who provided the data for construction and 
training of the algorithm in the previous steps.

Each pathologist assigned a score to each set of images according to the following scale:

1.	 No ganglion cells seen (certain)
2.	 No ganglion cells (uncertain, low probability of ganglion cells)
3.	 Uncertain/cannot be determined
4.	 Ganglion cells seen (uncertain, high probability of ganglion cells)
5.	 Ganglion cells seen (certain)

The scores for all 3 pathologists as well as the algorithm (using its own score—probability between 0 and 
1) were compared to each other and to the known status of the sample (positive or negative for ganglion cells).

The data set collected in this manner was used for the formulation of classification criteria. For the purpose 
of classification, when applicable, the average of the three highest AI scores for each case was used. The criteria 
are as follows:

For an expert pathologist, the identification of a single ganglion cell (An attributed score of 5) was sufficient 
to classify a case as positive for ganglion cells (non-HSCR). Otherwise (all scores < 5), the case was classified as 
(Negative for ganglion cells (HSCR).

For non-experts, cases were either considered "Positive", "Negative" or in "Doubt".
Cases classified as in "Doubt" were considered to require expert consultation. The criteria are as follows:

1.	 Positive (non-HSCR)—If the pathologist attributed a score of 5 to any 2 (or more) sets of images,
2.	 Negative (HSCR)—The criteria for "Positive" is not met AND the average AI score is < 0.6.
3.	 Doubt—The criteria for "Positive" is not met AND the average AI score is ≥ 0.6.

Decision algorithm validation.  The process described in this section was repeated with two additional 
pathologists, one a young senior the other a resident. Both pathologists had no prior experience with either 
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HSCR diagnosis or the algorithm. Both received concise instructions and no prior training. No time limit was 
imposed. The same scoring and classification criteria were used.
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