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Reticulon and the REEP family of proteins stabilize the high curvature of endoplasmic
reticulum tubules. The REEP5 homolog in Plasmodium, Plasmodium berghei YOP1
(PbYOP1), plays an important role in the erythrocytic cycle of the P. berghei ANKA and
the pathogenesis of experimental cerebral malaria (ECM), but the mechanisms are largely
unknown. Here, we show that protection from ECM in Pbyop1D-infected mice is
associated with reduced intracerebral Th1 accumulation, decreased expression of pro-
inflammatory cytokines and chemokines, and attenuated pathologies in the brainstem,
though the total number of CD4+ and CD8+ T cells sequestered in the brain are not
reduced. Expression of adhesive molecules on brain endothelial cells, including ICAM-1,
VCAM-1, and CD36, are decreased, particularly in the brainstem, where fatal pathology is
always induced during ECM. Subsequently, CD8+ T cell-mediated cell apoptosis in the
brain is compromised. These findings suggest that Pbyop1D parasites can be a useful tool
for mechanistic investigation of cerebral malaria pathogenesis.

Keywords: YOP1, Plasmodium berghei, cerebral malaria, T cell, immune response
INTRODUCTION

Malaria is caused by protozoan parasites of the genus Plasmodium and remains a leading cause of
death and disease across many tropical and subtropical countries. An estimated 229 million cases of
malaria and 409,000 deaths per year have been reported, mostly children under 5 years of age in
sub-Saharan Africa (1). Cerebral malaria (CM) is the most severe complication of Plasmodium
falciparum infection and a major cause of death in severe malaria. Mechanistic investigations of CM
in humans are difficult for ethical reasons (2). Alternatively, an experimental cerebral malaria
(ECM) model with Plasmodium berghei ANKA infection in C57BL/6 mice has been widely used (3).
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Hai et al. PbYOP1-Regulated ECM Pathogenesis
The pathological features of ECM include increased pro-
inflammatory cytokines, vascular pathology, disruption of the
blood-brain barrier (BBB), and cerebral edema, in a similar
fashion to that reported in human CM (3–5). Therefore, the
ECM model is a valuable tool to elucidate the mechanisms
of CM.

The endoplasmic reticulum (ER) likely plays an important role
in Plasmodium infection. The organelle is involved in vital cellular
processes, such as protein translation and secretion, lipid
biosynthesis, and calcium homeostasis (6, 7), and as such is
directly linked to surface remodeling of infected red blood cells
(iRBCs), which in turn regulate sequestration and host immune
responses. In all eukaryotic cells, the ER forms a continuous
membrane system of tubules and sheets, the shape of which is
tightly associated with its physiological functions (8, 9). An initial
analysis of the plasmodial ER identified three homologs of proteins
that stabilize membrane curvature and generate ER tubules in P.
bergheiANKA, termed PbYOP1, PbYOP1L, and PbRTN1 (10). To
investigate the importance of ER morphogenesis in Plasmodium,
we generated YOP1-deficient P. berghei parasites (Pbyop1D) and
found that the growth rate and virulence in ECM are severely
attenuated during blood-stage infection (11). The decreased growth
rate in Pbyop1D parasites is caused by the disordered digestive
vacuole biogenesis associated with abnormal hemoglobin
degradation. However, the mechanism of protection against ECM
in Pbyop1D parasite-infected mice is unclear. In this study, we
investigated the immune response and pathologies in the brain
induced by Pbyop1D parasite infection during ECM induction.We
found that T cells were efficiently trapped in the mouse brain, but
Th1 cells were reduced compared to wild-type (WT) parasite-
infected mice and the secretion of pro-inflammatory cytokines
and chemokines largely decreased. In addition, reduced expression
of necessary adhesive molecules on the endothelial cell and
decreased expression of perforin and granzyme B leads to
insufficient killing of intracerebral cells by CD8+ T cells.
MATERIAL AND METHODS

Ethics Statement
All animal work in this study was approved by the Institutional
Animal Care and Use Committee (IACUC) of Tianjin Medical
University (TMU), and was performed in accordance with
ethical standards in the Laboratory Animal Guideline for
Ethical Review of Animal Welfare (The National Standard of
the People’s Republic of China GB/T 35892-2018).
Animals and Parasites
Female C57BL/6 mice aged 6-8 weeks were purchased from SPF
(Beijing) Biotechnology Co., Ltd (Beijing, China) and maintained
at the Animal Care Facilities of Tianjin Medical University.

P. berghei ANKA lines (clone 15Cy1) were kindly gifted from
Dr. Purnima Bhanot, Rutgers New Jersey Medical School,
Newark, USA. Blood-staged P. berghei ANKA parasites were
stored in liquid nitrogen and thawed for using in all experiments.
Parasitemia was monitored by counting the number of iRBCs per
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2000 total RBCs under light microscopy examination of Giemsa-
stained thin smears of tail blood.

Experimental Cerebral Malaria
Construction and Assessment
Cryopreserved P. berghei ANKA parasite was thawed and
passaged once in vivo before being used to infect experimental
animals. C57BL/6 mice were infected via intravenous injection of
1×104 WT parasites-infected RBCs or 1×104 or 1×106 Pbyop1D
parasites-infected RBCs. The parasitemia of each mouse was
recorded from 5 to 7 days post-infection (dpi). Mice were
monitored daily for survival and neurological signs of ECM,
such as ataxia, paralysis, and coma. According to Ana Villegas-
Mendez et al. (12), signs of disease could be classified into five
stages using the following clinical scale: 1 = no signs; 2 = ruffled
fur and/or abnormal posture; 3 = lethargy; 4 = reduced
responsiveness to stimulation and/or ataxia and/or respiratory
distress/hyperventilation; and 5 = prostration and/or paralysis
and/or convulsions. All animals were immediately euthanized
when observed at stage 4 or 5.

Mononuclear Cell Isolation
To determine the migration of CD4+ and CD8+ T cells to the
brain, brain mononuclear cells were isolated from the brain of
mice 7 dpi following a previously reported procedure (13).
Briefly, anesthetized mice received an intracardiac perfusion
with 1×PBS to remove all blood leukocytes and other non-
adhered cells. Brains were dissected and chopped into small
pieces and incubated in 1×HBSS with collagenase/dispase (1 mg/
ml; Roche, Germany) for 30 min at 37°C. The suspension was
filtered through a 70-mm cell strainer (Falcon, USA) and the
volume of the cell suspension brought up to 7 ml with HBSS. We
added 3 ml of 100% Percoll (GE Healthcare, Sweden) gradient to
the cell suspension to achieve a final 30% gradient. The total
10 ml cell suspension was slowly overlaid on 2 ml of a 70%
Percoll gradient and centrifuged at 500g for 30 min at 18°C with
no brake. The 70%-30% interphase was gently removed to a clean
tube containing 8 ml 1×HBSS, mixed a few times by interversion,
and centrifuged at 500g for 7 min at 18°C. The pellet was
collected and treated with ACK lysing buffer to remove RBCs,
washed, and resuspended in flow cytometry buffer (1×PBS
containing 1% FBS).

To determine the CD4+ and CD8+ T cell dynamic in peripheral
blood, peripheral blood was collected by cardiac puncture and
mixed with sodium heparin for anticoagulation. Peripheral blood
mononuclear cells were isolated using the Mouse Peripheral Blood
Mononuclear Cell Isolation Kit (Solarbio, China) according to the
manufacturer’s protocol. The absolute number of mononuclear
cells from the brain and peripheral blood were determined using a
hemocytometer, and live cells were distinguished from dead cells
using trypan blue staining.

Flow Cytometry
The following antibodies and reagents from eBioscience or BD
were used: CD3e-FITC (145-2C11), CD4-PE (RM4-5), CD4-
PerCP (RM4-5), CD8-APC (53-6.7), CXCR3-PE (CXCR3-173),
T-bet-PE (eBio4B10), Foxp3-PE (MF23), CD25-APC (PC61),
May 2021 | Volume 12 | Article 642585
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and CD16/32 (93). Before staining, all cell preparations were
incubated with anti-mouse CD16/32 (Fc receptor block) for
15 min on ice to reduce nonspecific antibody binding. For
surface staining, cells were incubated with cocktails of mAbs in
flow cytometry buffer. For intracellular staining, live cells were
incubated with PMA (200 ng/ml; Solarbio, China) and
ionomycin (1 mg/ml; Cayman Chemical, USA) in the presence
of brefeldin A (1:1000; eBioscience, USA) for 5 h at 37°C in 5%
CO2. Cell suspensions were first stained with surface antibodies,
then treated with Foxp3/Transcription Factor Staining Buffer Set
(eBioscience, USA) according to the manufacturer’s instructions
before staining intracellularly with anti-mouse T-bet or Foxp3.
The single-color controls and isotype-control Abs were used to
validate the flow cytometry results. Samples were acquired using
a Canto II flow cytometer (BD) and the data were analyzed using
FlowJo software version 7.6.1.

Real-Time PCR
Total RNAwas extractedwithTRIzol reagent (Invitrogen, CA,USA)
and cDNA synthesis was performed using a reverse transcription kit
(CWBIO, China) according to the manufacturer’s instructions. The
mRNA level of each gene wasmeasured using the SYBRGreen PCR
Master Mix (CWBIO, China) and performed on a LightCycler® 96
System (Roche, Basel, Switzerland). The relative mRNA expression
levels were evaluated using the 2−DDCtmethod and normalized to the
housekeeping gene mouse b-actin. The level of parasites sequestered
in thebrainwasdeterminedas theexpressionofP.bergheiANKA18S
rRNA. The primer sequences are shown in Supplementary Table 1.

ELISA
Blood was collected by retro-orbital bleeding 7 dpi. Blood
samples were allowed to clot for 30 min at room temperature,
and spun at 2700g for 10 min at 4°C. The serum was collected
and analyzed for IFN-g and TNF-a levels via ELISA (Lianke,
China). The minimum limits of detection for IFN-g and TNF-a
are 3.9 pg/ml and 1.63 pg/ml, respectively.

Immunohistochemistry
Mice were anesthetized with chloral hydrate and transcardially
perfused with 20 ml of ice-cold 1×PBS. Brains were dissected and
fixed in 4% paraformaldehyde for 24 h and processed for paraffin
embedding. Sagittal brain sections (4 mm) were prepared for
immunohistochemistry (IHC). After dewaxing and rehydration,
brain sections were subjected to heat-mediated antigen retrieval
in pre-heated sodium citrate buffer (pH 6.0) at 95°C for 30
minutes, and then allowed to cool at room temperature for at
least 2 h. Slides were washed with 1× PBS, blocked with 5% goat
serum in 1×PBST (with 0.1% Tween-20) for 1 h, and then
incubated with anti-ICAM-1 (1:200; Santa Cruz Biotechnology,
G-5), anti-VCAM-1 (1:200; Cell Signaling Technology, D2T4N),
or anti-CD36 antibody (1:200; Cell Signaling Technology,
D8L9T) in primary antibody dilution buffer overnight at 4°C.
Next, the sections were washed three times with 1×PBST,
incubated with HRP-labeled secondary antibody (ZSGB-BIO,
China) for 1 h, washed three additional times, and then DAB
(ZSGB-BIO, China) dropped onto the section as the substrate.
Finally, the sections were counterstained with hematoxylin,
Frontiers in Immunology | www.frontiersin.org 3
washed, dehydrated, and sealed by coverslip with neutral
balsam. Each field was chosen at random within one of four
regions: olfactory bulb, cerebrum, brain stem, or cerebellum. The
sections were visualized and the images acquired by a Nikon
ECLIPSE 90i microscope using NIS-Elements BR (version 3.1)
software. Positive vessels were counted in 6 (olfactory bulb), 20
(cerebrum), 15 (brain stem), or 5 fields (cerebellum) for each
brain section per mouse at ×10 objective. Images are shown
at ×40 objective.

Western Blotting
Brain tissues were homogenized and lysed in RIPA buffer
supplemented with protease inhibitor cocktail (Roche, Germany).
After extraction, the protein concentration was determined using
the BCA Protein Assay Kit (ThermoFisher, USA). Approximately
50mg ofproteinwas used for SDS-PAGEand transferred to aPVDF
membrane (Roche, Basel, Switzerland). Proteins were probed with
anti-Caspase3 (1:1000; 9662S, Cell Signaling Technology, USA) or
anti-b-tubulin antibody (1:1000; 2146S, Cell Signaling Technology,
USA). Antibody binding was revealed using an HRP-conjugated
goat anti-rabbit IgG (H+L) (1:3000; Sungene Biotech, China).
Antibody complexes were detected using Immobilon Western
HRP Substrate (Millipore, Germany) and exposed on a Tanon-
5200 machine.

Apoptosis Detection In Situ
The sagittal brain sections were prepared as described above for
IHC. Apoptotic cells were detected in situ by TUNEL staining
according to the manufacturer’s instructions (In Situ Cell Death
Detection Kit, POD, Roche, Germany). TUNEL-positive cells
were analyzed and counted using ImageJ software. Apoptotic
cells were counted in 2 (olfactory bulb), 10 (cerebrum), 3 (brain
stem), or 2 fields (cerebellum) for each brain section per mouse
at ×4 objective. Images are shown at ×10 objective.

Statistical Analysis
Data are presented as means ± SD. The survival rates of the mice
in different groups were analyzed using the Kaplan-Meier
method and compared using the log-rank (Mantel-Cox) test.
For comparisons between two groups, significance was analyzed
by a t-test or Mann–Whitney U test depending on the normality
of the data. For comparisons among three or more groups,
significance was determined using a one-way ANOVA or
Kruskal-Wallis ANOVA test depending on the normality of
the data. All data were analyzed by GraphPad Prism software
(version 6.01). P < 0.05 was considered significant.
RESULTS

PbYOP1 Deficiency Attenuates the
Virulence of Parasites in ECM
To compare CM development by WT or Pbyop1D parasites and
to eliminate the parasitemia-associated difference, C57BL/6 mice
were intravenously inoculated with 1×104 or a high infectious
dose of 1×106 Pbyop1D parasites, or with 1×104 of WT parasites.
May 2021 | Volume 12 | Article 642585
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As shown previously, all WT parasites-infected mice developed
neurological symptoms classified to stage 4 or 5 (stage 4: reduced
responsiveness to stimulation and/or ataxia and/or respiratory
distress/hyperventilation; stage 5: prostration and/or paralysis
and/or convulsions), thus counted as ECM-positive, and died
within 6-8 dpi (11). In contrast, more than 90% of 1×106

Pbyop1D parasites-infected mice did not display any stage 4/5
signs, thus considered ECM-negative, during 6-14 dpi
(Figure 1A). Although the parasitemia was much lower in
1×104 Pbyop1D parasites-infected mice, the ECM incidence
was similar to that of 1×106 Pbyop1D parasites-infected mice
(Figure 1B). Therefore, in this study, the samples were acquired
from Pbyop1D parasites-infected mice that did not suffer from
CM and WT parasites-infected mice that developed CM.

Sequestration of iRBCs in microvasculature is responsible for
disease severity in malaria (14). Parasite sequestration in the
brain was determined based on quantification of PbANKA
parasite-specific 18S rRNA by real-time PCR (12). At 7 dpi,
the levels of parasite 18S rRNA in 1×106 Pbyop1D-infected mice
were at the same level as in WT-infected mice, both of which
were significantly higher than in 1×104 Pbyop1D-infected mice,
consistent with their corresponding parasitemia (Figure 1C).
These results indicate that PbYOP1 plays a role in CM
development but is dispensable for iRBC sequestration.

PbYOP1 Deficiency Does Not Affect T Cell
Migration and Sequestration in Brain
As ECM is an immunopathological disease, the attenuated
virulence of Pbyop1D parasites may be related to changes in
immune response during Plasmodium infection. Numerous
studies have demonstrated that CD8+ and CD4+ T cells
respond to blood-stage Plasmodium parasite infection and are
the principal effector cells involved in the pathogenesis of ECM
(15–17). To investigate whether PbYOP1 deficiency affects the T
cell responses during ECM development, peripheral blood and
brain mononuclear cells were isolated and quantified for the
CD8+ and CD4+ T cell population by flow cytometry 7 dpi.

Circulating T cells are associated with the host systemic
immune response to control the parasite burden and eradicate
Plasmodium infection (18). As expected, CD8+ T cells in
peripheral blood were significantly increased after infection,
Frontiers in Immunology | www.frontiersin.org 4
while no difference was detected among 1×104 WT, 1×104

Pbyop1D or 1×106 Pbyop1D-infected mice (Figures 2A, B).
Similarly, both the frequency and cell number of CD4+ T cell
in peripheral blood did not change among the three infection
schemes (Figures 2A, C). These results suggest that Pbyop1D
parasite primes similar number of activated T cells as the WT
parasite does.

In the central nervous system, CD8+ and CD4+ T cells are
sequestered in the microvasculature by adhering to the endothelial
cells. Consistent with sequestration of iRBCs, CD8+ and CD4+ T
cells were equivalently sequestered in the brain according to the
levels of parasitemia in the three infection schemes. The proportion
and number of CD8+ and CD4+ T cells were similar between WT
and 1×106 Pbyop1D-infected mice, and were both significantly
higher than in 1×104 Pbyop1D-infected mice (Figure 3). These
results suggest that T cell sequestration in the brain was not affected
by deletion of PbYOP1.

CXCR3 is an important chemokine receptor associated with the
migration of T cells into the brain and subsequent development of
ECM (19, 20). To determine whether migration of T cell to brain
was insufficient in Pbyop1D-infected mice, CXCR3 expression on
CD8+ and CD4+ T cells in the peripheral blood and brain 7 dpi was
measured by flow cytometry, and analyzed by the mean
fluorescence intensity (MFI) and the frequency of CXCR3-
positive T cells (Supplementary Figures 1A–F). In both the
blood and brain, CXCR3 expression on CD8+ and CD4+ T cells
was up-regulated upon infection, but no detectable difference was
found between WT and Pbyop1D parasite-infected mice. Next, we
examined the expression of CXCL9 and CXCL10 in brain, the
CXCR3 ligands that facilitated peripheral CXCR3-positive T cells
migrating up the chemokine gradient to the brain (20). Levels of
CXCL9 and CXCL10 in brains were significantly reduced in 1×104

Pbyop1D-infected mice, but no difference was observed between
WT and 1×106 Pbyop1D-infected mice (Supplementary Figure
1G). These results suggest that deletionofPbYOP1doesnot affectT
cell migration.

Th1 Cells Are Decreased in the Brains of
Pbyop1D-Infected Mice
CD4+ T cells have the capacity to differentiate into one of several
functionally distinct subsets. Th1 cells mediate the pro-
A B C

FIGURE 1 | PbYOP1 deficiency attenuates the virulence of parasites in inducing ECM. (A) Survival curve of C57BL/6 mice infected with WT (1×104, n = 22) or
Pbyop1D parasites (1×104, n = 21; 1×106, n = 20). Data are combined from three independent experiments. ****P < 0.0001 as determined by log-rank (Mantel-
Cox) test. (B) 7 days post-infection, 1×106 Pbyop1D-infected mice (n = 10) developed peripheral blood parasitemia similar to mice infected with 1×104 WT
parasites (n = 10). (C) Real-time PCR analysis of P. berghei 18S rRNA expression in the brain. Mouse b-actin was used as the internal control (n = 5/group). Data
are presented as mean ± SD. *P < 0.05; ns, not significant as determined by Kruskal-Wallis ANOVA followed by Dunn’s multiple comparisons test.
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inflammatory response and contribute to the development of
ECM (21, 22). Because the total CD4+ T cell number in blood
and brain was not different between WT and 1×106 Pbyop1D-
infected mice, we examined the levels of Th1 cells, defined as
CD4+ T-bet+, in the induction of ECM. At 7 dpi, the percentage
of Th1 cell in CD4+ T lymphocytes and the number of Th1 cells
in peripheral blood were increased compared to the uninfected
group, while there were no remarkable differences among the
three infected groups (Figures 4A, B). The frequency of Th1 cells
in the CD4+ T cell population was also increased in brains upon
infection. However, the Th1 cell proportion in CD4+ T cell
population of brain was significantly lower in Pbyop1D-infected
group than in WT-infected group, and no changes were detected
between 1×104 and 1×106 Pbyop1D-infected mice (Figures
4D, E). The absolute number of Th1 cells in brains was also
lower in Pbyop1D-infected mice, particularly in the 1×104

infected group (Figure 4E). Because T-bet is important for not
only the differentiation of Th1 cells during induction of ECM,
but also the generation of pathogenic CD8+ T cells (22), we
calculated the frequencies and numbers of CD4- T-bet+ T cells,
most of which were likely CD8+ T-bet+ T cells, in peripheral
blood and in brain (Figures 4C, F ), and observed no significant
difference between WT and 1×106 Pbyop1D-infected groups.

We also tested regulatory T cell (Treg), another CD4+ T cell
subset that may play a regulatory role in preventing the induction
of ECM and in controlling fatal pathogenesis (23, 24). No
significant difference was detected between WT- and Pbyop1D-
infected mice (Supplementary Figure 2). Taken together, these
data suggest that PbYOP1 deficiency in parasites downregulates
Th1 cell sequestration in the brain while has no effect on Tregs.

PbYOP1 Deficiency Causes Reduced
Secretion of IFN-g and TNF-a
Th1 cell is responsible for the secretion of pro-inflammatory
cytokines (25, 26), which are important in activating other
immune cells to respond to infection and in the pathogenesis
of ECM (27). Since Th1 cells were reduced in the brains of
Pbyop1D-infected mice during ECM construction, we examined
Frontiers in Immunology | www.frontiersin.org 5
whether deletion of Pbyop1 would influence the production of
pro-inflammatory cytokines IFN-g and TNF-a, two crucial Th1-
type cytokines. IFN-g is required to activate brain endothelial
cells and participate in brain endothelial cells cross-presentation
of parasite antigen (28). Although TNF-a plays a dispensable
role in ECM development, it exacerbates cerebral pathology (29,
30). At 7 dpi, the mRNA expression of IFN-g and TNF-a were
significantly decreased in the brains of Pbyop1D-infected mice
compared to WT-infected mice (Figure 5A). The levels of IFN-g
and TNF-a in serum displayed similar results (Figure 5B). These
results suggest that reduction of brain-trapped Th1 cells and
subsequent reduction of IFN-g and TNF-a may attribute to the
blockage of CM development in Pbyop1D-infected mice.
PbYOP1 Deficiency Causes Reduced Cell
Adhesion in the Brainstem
Under inflammatory conditionsduringPlasmodium infection, pro-
inflammatory cytokines such as IFN-g induce brain endothelial
activation and local inflammation (31). Activation of brain
endothelial cells is associated with leukocyte adhesion, parasite
sequestration, and function of antigen cross-presentation (28, 32).
Ahallmarkof endothelial activation is theupregulated expressionof
adhesionmolecules, such as ICAM-1, VCAM-1, and CD36, on the
endothelium of cerebral microvessels (33, 34). At 7 dpi, the mRNA
expressions of ICAM-1 and VCAM-1 were upregulated in the
brain, but no prominent differences were detected among the three
infected schemes. CD36 transcripts were more abundant in brains
of 1×106 Pbyop1D-infected mice (Supplementary Figure 3). The
elevation of CD36 is likely mostly contributed by the induced
expression in innate immune cells in brain, because CD36 is also
a scavenger receptor employed by phagocytes like monocytes,
macrophages and microglia. Higher initial infection dose of
parasites would trigger a more intensive innate immune response
for phagocytic clearance of iRBCs (35). It is also reasonable to
speculate that sustained CD36 expression in brains of 1×106

Pbyop1D-infected mice reflects a continuous demand on innate
immunity due to attenuation in adaptive immune response.
A B

C

FIGURE 2 | Pbyop1D parasites infection does not influence T cell response in peripheral blood. (A) Representative flow cytometry dot plots showing the CD8+ T
cells and CD4+ T cells in peripheral blood mononuclear cells from uninfected, WT parasite-infected (104), and Pbyop1D parasite-infected (104 or 106) mice 7 dpi. The
frequency and cell number of CD8+ T cells (B) and CD4+ T cells (C) was quantified. Data are presented as mean ± SD (n = 6/group) and are representative of three
independent experiments. Analyses were carried out by one-way ANOVA followed by Tukey’s multiple comparison test.
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Fatal ECM is frequently linked to severe brainstem pathology
(36).To testwhether the extentof endothelial activationwasdistinct
in specific brain regions of infected mice, we examined the protein
levels of ICAM-1, VCAM-1, and CD36 by IHC staining and
counting stain-positive vessels in multiple brain regions,
including olfactory bulb, cerebrum, brainstem and cerebellum. At
7 dpi, the numbers of ICAM-1+,VCAM-1+ andCD36+ vesselswere
significantly lower in the brainstems of Pbyop1D-infected mice
compared toWT-infectedmice (Figure 6). Variation in ICAM-1+,
VCAM-1+, and CD36+ vessels in other brain regions were also
compared among the three infected schemes, but the differences
were not as significant as detected in the brainstem. These results
indicate insufficient endothelial activation in the brainstem in
Pbyop1D-infected mice, which may influence the subsequent
immune pathologies mediated by CD8+ T cells.

Cell Apoptosis Is Attenuated in the Brain
of Pbyop1D-Infected Mice
During ECM pathogenesis, the activated endothelial cells adhere
CD8+ T cells and present parasite-specific antigens to T cells. The
effector CD8+ T cells secrete granzyme B and perforin to induce
damage of intercellular tight junctions of the endothelium, trigger
apoptosis of endothelial cells and neuronal cells, which disrupting
the BBB and finally impairing central nervous system function (36–
38). Thus, we measured the expression of granzyme B and perforin
in the brain 7 dpi. The granzyme B and perforinmRNA levels were
significantly decreased in the brains of Pbyop1D-infected mice
compared to WT-infected mice (Supplementary Figure 4).

Caspase-3 is the main executioner of apoptosis and activated
during ECM (39). Granzyme B can directly cleave pro-caspase-3,
resulting in an active caspase-3. Activated caspase-3 induces DNA
fragmentation and cell death, leading to the lethal pathogenesis of
ECM (40, 41). To further examine the brain cell damage, we tested
the activation of caspase-3 and cell apoptosis in ECM. At 7 dpi,
active caspase-3 was significantly decreased in the brains of
Pbyop1D-infected mice compared to WT-infected mice.
Consistent with ECM incidence, no significant difference was
Frontiers in Immunology | www.frontiersin.org 6
detected between 1×104 and 1×106 Pbyop1D-infected mice
(Figures 7A, B). In addition, the pro-caspase-3 protein levels did
not change after infection (Figures 7A, C).

Cell apoptosis was also detected in situ by TUNEL staining.
Apoptotic cells were counted in the four brain regions. Pbyop1D
parasite infection induced cell death was significantly reduced in the
brainstem versus WT parasite infection (Figures 7D, E). Cell death
was also decreased in the olfactory bulb, cerebrum, and cerebellum,
where it was mild in Pbyop1D-infected mice. Cell apoptosis was
consistent with endothelial activation in different brain regions.
These results suggest that CD8+ T cell-mediated intracerebral cell
apoptosis is attenuated in Pbyop1D parasite infection.

Inflammation Is Further Alleviated in the
Brains of Pbyop1D Parasite-Infected Mice
Because the mice infected with Pbyop1D parasites died of severe
anemia without distinct manifestations of ECM more than 3
weeks post-infection, we tested the expression of cytokines and
cytolytic molecules after the time frame for the onset of ECM, 11
dpi (42). The expression of IFN-g, TNF-a, granzyme B, and
perforin (Figure 8A), and the activation of apoptosis molecule
caspase-3 (Figure 8B) were down-regulated in the brains of
Pbyop1D parasite-infected mice 11 dpi compared to 7 dpi,
particularly in 1×106 Pbyop1D-infected mice. However, the cell
death in the brain neither expanded nor recovered for the
irreversibility of apoptosis 11 dpi (data not shown). These data
imply that Pbyop1D parasites not only give rise to mild pro-
inflammatory responses and cytotoxic effects of brain infiltrating T
cells that were not sufficient to lead to lethal pathogenesis of brain
during ECM induction, but also that these immunopathological
changes decreased gradually.
DISCUSSION

YOP1 in P. berghei ANKA is the homolog of DP1/REEP5 in
humans or Yop1p in Saccharomyces cerevisiae. It is one of the
A B

C

FIGURE 3 | Pbyop1D parasites infection does not influence T cell infiltration in the brain. (A) Representative flow cytometry dot plots showing the frequency of CD8+

and CD4+ T cells sequestered in the brains of uninfected, WT parasites (104)-infected, and Pbyop1D parasites (104 and 106)-infected mice 7 dpi. The frequency and
number of CD8+ T cells (B) and CD4+ T cells (C) were quantified. Data are shown as mean ± SD (n = 5/group) and are representative of three independent
experiments. **P < 0.01, ***P < 0.001; ns, not significant as determined by one-way ANOVA followed by Tukey’s multiple comparison test.
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integral membrane proteins that generate ER tubules by inducing
high curvature in the membrane (8). PbYOP1-deleted P. berghei
parasites were generated to explore the function of this important
ER tubule-shaping protein in the Plasmodium parasite and
malaria. We found that PbYOP1 had a profound effect on the
parasite growth rate and the pathogenesis of ECM in blood-stage
infection. As described recently, the slow growth rate of parasites
in erythrocytic stage is associated with a dysfunction of
hemoglobin degradation in the digestive vacuole and disordered
parasite metabolism (11). However, the mechanism of susceptible
mice infected with Pbyop1D parasites surviving from ECM
induction is unclear. It is reported that the T cell response to
malaria may contribute to ECM (43, 44). In this study, we
Frontiers in Immunology | www.frontiersin.org 7
analyzed the effect of PbYOP1 on parasite virulence by detecting
the T cell response associated with the pathogenesis of ECM.

ECM is a complex neurological syndrome. In previous studies,
iRBC sequestration in the brain microvasculature was associated
with the development of ECM (45, 46). Although the growth rate
of Pbyop1D parasites is significantly decreased in the asexual
phase, parasite sequestration in the brains of 106 Pbyop1D
parasites-infected mice is comparable to that of 104 WT
parasites-infected mice and fails to induce ECM. Sequestration
of iRBCs only is inadequate to induce the brain injury leading to
the fatal syndrome during infection.

Both CD4+ and CD8+ T cells have been shown to contribute to
ECMdevelopment (47, 48). Themechanisms bywhich CD4+ T cells
A

B

D

E F

C

FIGURE 4 | Th1 cells are decreased in the brains of Pbyop1D parasite-infected mice. (A) Representative flow cytometry dot plots showing Th1 cells in the
peripheral blood of uninfected, WT parasites-infected (104), and Pbyop1D parasites-infected (104 or 106) mice 7 dpi gated on CD3+ cells. (B) The frequency of Th1
cells in CD4+ T cells and the cell number of Th1 cells in peripheral blood were quantified. (C) The frequency of CD4- T-bet+ cells in T cells and cell number of CD4-

T-bet+ T cells in peripheral blood were quantified. (D) Representative flow cytometry dot plots of Th1 cells in the brains of mice. (E) The frequency of Th1 cells in
CD4+ T cells and the cell number of Th1 cells in brain were quantified. (F) The frequency of CD4- T-bet+ cells in T cells and cell number of CD4- T-bet+ T cells in
brain were quantified. Data are displayed as mean ± SD (n = 6/group) and are representative of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001;
ns, not significant as determined by one-way ANOVA followed by Tukey’s multiple comparison test.
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mediatecerebral complicationshavenotbeen fullyelucidated,but it is
thought to involve the production of Th1-type cytokines, such as
IFN-g, that exacerbate the inflammatory cascade responsible for local
and systemic inflammation in cerebral malaria (23). CD8+ T cell
depletion or ablation of effective functions completely abrogates the
development of ECM (27, 49). Brain infiltrating CD8+ T cells induce
opening of endothelium tight junction, endothelial cell apoptosis and
other intracerebral cell apoptosis in a granzyme B and perforin-
dependentmanner (50, 51). In addition, perforin secreted by CD8+

T cells is sufficient to cause cell death, disruptedBBB, and fatal brain
edema in the specific regions of the brain, including brainstem and
olfactory bulb, during ECM (52), indicating that the killing effect
mediated by CD8+ T cells plays a vital and precise role in ECM
pathology. Upon examination of sequestered T cells during
infection, the PbYOP1-deficient parasites had attenuated
virulence without influencing sequestration of the total CD4+ and
CD8+ T cells in the brain, and the frequency and cell number were
comparable between WT and 106 Pbyop1D-infected mice.
Additionally, expression of CXCR3, which is associated with T
cell migration, did not change in the three infection schemes
including 104 Pbyop1D-infected mice.
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Some studies have demonstrated that the pro-inflammatory
Th1 response is involved in the pathogenesis of ECM (22, 42).
Consistent with the morbidity of ECM, the sequestration of Th1
cells in the brain was significantly decreased in Pbyop1D
parasite-infected mice. Stimulation of T cell receptor and other
extrinsic factors, particularly cytokines, which are associated
with STAT activation, are crucial for the appropriate
differentiation of CD4+ T cell subsets (53, 54). Although the
number of Th1 cells in peripheral blood did not change in
Pbyop1D-infected mice compared to WT-infected mice, Th1
cells sequestered in brain decreased remarkably. This may due to
the attenuated virulence of Pbyop1D parasites, which may
influence parasites and leukocytes sequestrations in brain
microvasculature, the process of parasite-derived antigen cross-
presentation in endothelial cells, and the pro-inflammatory
response inducing differentiation of CD4+ T cells (55).

>The cytokines associated with the pathogenesis of ECM were
also detected in this study. The expression of pro-inflammatory
cytokines IFN-g and TNF-a (56, 57) and cytotoxic molecules
granzyme B and perforin (51, 58), and the activation of the main
executioner of apoptosis caspase-3 (59) were significantly reduced
A

B

FIGURE 5 | IFN-g and TNF-a expression are decreased in Pbyop1D-infected mice. (A) IFN-g and TNF-a mRNA expressions relative to b-actin in brain samples of
uninfected and infected mice were evaluated by real-time PCR 7 dpi. (B) Serum IFN-g and TNF-a levels were quantified by ELISA 7 dpi. Data are presented as
mean ± SD (n = 5/group) and are representative of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant as
determined by one-way ANOVA followed by Tukey’s multiple comparison test.
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FIGURE 6 | ICAM-1, VCAM-1, and CD36 expression are downregulated in the brainstem of Pbyop1D parasites-infected mice. (A, C, E) Representative images of
IHC staining of ICAM-1, VCAM-1, or CD36 in different brain regions of mice infected with 104 WT parasites (n = 11), 104 Pbyop1D parasites (n = 5), or 106 Pbyop1D
parasites (n = 5) and uninfected mice (n = 4). (B, D, F) The bar graphs show quantification of the data in (A, C, E). ICAM-1, VCAM-1, or CD36-positive vessels
(black arrows) were quantified for each sagittal brain section in 6 fields (olfactory bulb), 20 fields (cerebrum), 15 fields (brainstem), and 5 fields (cerebellum); one brain
section per mouse. Data are presented as mean ± SD. Differences among the three groups were analyzed using Kruskal-Wallis ANOVA followed by Dunn’s multiple
comparisons test: *P < 0.05, **P < 0.01; ns, not significant.
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in Pbyop1D parasites-infected mice; all of these reductions directly
protect the Pbyop1D parasite-infected mice from ECM. Moreover,
ECM occurs 6-10 dpi (42), and these pro-inflammatory factors
were further decreased 11 dpi in Pbyop1D-infected mice; thus, the
inflammation induced by the Pbyop1D parasite is not only
attenuated, but also down-regulated gradually.
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The brainstem regulates many vital functions, such as the
cardiovascular and respiratory systems, and it is likely that mice
succumb to ECM due to the widespread inflammation and
neuron death observed in this brain region (36, 60). The
pathogenesis in the brainstem was significantly alleviated in
Pbyop1D parasites infection. We detected that the adhesion
A B

D E

C

FIGURE 7 | Cell apoptosis is attenuated in the brains of Pbyop1D parasite-infected mice. (A) Representative image of caspase-3 expression in the brains of
uninfected (n = 4), WT parasites-infected (104, n = 11), and Pbyop1D parasites-infected (104 or 106, n = 5) mice 7 dpi. The bar graphs show the quantification of the
data in (A). The gray value of active caspase-3 (B) and pro-caspase-3 (C) is normalized to b-tubulin. (D) Representative images of TUNEL staining of apoptotic cells
in different brain regions 7 dpi. (E) Apoptotic cells shown in (D) were quantified for each sagittal brain section in 2 fields (olfactory bulb), 10 fields (cerebrum), 3 fields
(brainstem), and 2 fields (cerebellum); one brain section per mouse. Data are presented as the mean ± SD. Differences among the three groups were analyzed using
Kruskal-Wallis ANOVA followed by Dunn’s multiple comparisons test: *P < 0.05, **P < 0.01; ns, not significant.
A

B

FIGURE 8 | Inflammation is further alleviated in the brains of Pbyop1D parasite-infected mice. (A) IFN-g, TNF-a, granzyme B, and perforin mRNA expression relative
to b-actin in brains from mice infected with 104 or 106 Pbyop1D parasites was evaluated by real-time PCR 7 and 11 dpi. (B) Representative image and quantification
of caspase-3 expression in the brain 7 and 11 dpi. Data are presented as mean ± SD (n = 5/group) and are representative of three independent experiments.
*P < 0.05, **P < 0.01; ns, not significant as determined by the Mann-Whitney U test.
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molecules expressed on microvessels were decreased in the
brainstem, as measured by IHC staining of ICAM-1, VCAM-I,
and CD36. Pbyop1D parasite infection induced cell apoptosis
detected by in situ TUNEL staining was also reduced in the four
brain regions (olfactory bulb, cerebrum, brainstem, and
cerebellum), particularly in the brainstem, consistent with the
IHC results. While the connection of ICAM-1 and VCAM-1 to
CM development is straightforward, the case for CD36 is
complicated. CD36 plays a dual role in malaria: its expression
in phagocytes induced at early stage of infection has an
important effect on parasites clearance (61); whereas that in
endothelial cells mediates parasite sequestration in
microvasculature of organs (62). Notably, murine CD36-
mediated sequestration is not essential for CM pathology (62).
However, it has been reported that ICAM-1 and CD36 synergize
to mediate cytoadherence of Plasmodium falciparum-infected
RBCs to human endothelial cells (63), suggesting that CD36
might contribute to CM pathogenesis in a collaborative manner.

After invading the erythrocyte, hundreds of proteins are
exported out of the parasite and beyond the parasitophorous
vacuole membrane to numerous locations within the parasite-
infected erythrocyte (64). PbYOP1 deficiency may affect the ER
function and tubule formation, resulting in disordered parasite
metabolism and a defect in protein secretion. The pathologies in
ECM are initially induced by the parasite antigen presented on
the activated endothelial cell MHC I molecule and recognized by
the specific T cell receptor on CD8+ T cells (16, 65). Comparative
analysis between the secretome of WT and PbYOP1-deleted
parasites would reveal vital clues for understanding the
development of CM.

The PbYOP1-deleted parasites offer a unique and important
opportunity for further understanding of ECM. Specifically,
previous studies showed that in non-ECM Pb NK65-infected
C57BL/6 mice, iRBCs were not efficiently accumulated in brain
microvessels (4). These differences between known non-ECM
parasites and the PbYOP1-deleted parasites suggest that the
Pbyop1D parasites could move at least one step further in
ECM pathogenesis when compared to existing non-ECM
Plasmodium strains, and thus become more useful materials
for pinpointing the key elements during ECM development.
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Supplementary Figure 1 | PbYOP1 deficiency in parasites does not affect T cell
migration to brain. (A) Representative histograms showing CXCR3 expression on
CD8+ and CD4+ T cells in peripheral blood from uninfected, WT parasites (104)
-infected, and Pbyop1D parasites (104 and 106) -infected mice 7 dpi. (B) The
frequency of CXCR3+ CD8+ T cells and CXCR3+ CD4+ T cells in blood. (C) The MFI
of CXCR3 in CD8+ and CD4+ T cells. (D–F) Representative histograms (D) and
quantification of CXCR3 expression in CD8+ and CD4+ T cells in the brain (E, F).
(G)mRNA expressions of CXCL9 and CXCL10 in the brain were measured by real-
time PCR. Data are presented as mean ± SD (n = 6/group) and are representative of
three independent experiments. *P < 0.05, **P < 0.01; ns, not significant as
determined by one-way ANOVA followed by Tukey’s multiple comparison test.

Supplementary Figure 2 | Pbyop1D parasite has no effect on regulatory T cell
accumulation in the blood and brain. (A, B) Representative flow cytometry dot plots
showing regulatory T cells in the blood (A) and brain (B) of uninfected, WT
parasites-infected (104), and Pbyop1D parasites-infected (104 or 106) mice 7 dpi
gated on CD4+ T cells. (C, D) The frequency and cell number of Tregs in total CD4+

T cells in the blood (C) or brains (D). Data are presented as mean ± SD (n = 6/group)
and are representative of three independent experiments. *P < 0.05, **P < 0.01; ns,
not significant as determined by one-way ANOVA followed by Tukey’s multiple
comparison test.

Supplementary Figure 3 | mRNA expression of adhesion molecule ICAM-1,
VCAM-1 and CD36 in the brain. mRNA expressions of ICAM-1, VCAM-1, and CD36
relative to b-actin in brain samples from uninfected and infected mice were
evaluated by real-time PCR 7 dpi. Data are presented as mean ± SD (n = 5/group)
and are representative of three independent experiments. ***P < 0.001; ns, not
significant as determined by one-way ANOVA followed by Tukey’s multiple
comparison test.

Supplementary Figure 4 | Expression of granzyme B and perforin is decreased
in the brains of Pbyop1D parasites-infected mice. Granzyme B and perforin mRNA
expressions relative to b-actin in brain samples from uninfected and infected mice
were evaluated by real-time PCR 7 dpi. Data are presented as mean ± SD (n = 5/
group) and are representative of three independent experiments. *P < 0.05, **P <
0.01, ***P < 0.001; ns, not significant as determined by one-way ANOVA followed
by Tukey’s multiple comparison test.
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