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Key Points

• Oncogenic mutation
subtype appears an
important driver of
heterogeneity in clinical
presentation of
pediatric LCH.

• Lesional BRAFV600E

status is not a
significant prognostic
factor for event-free
survival independent
from disease extent.
Langerhans cell histiocytosis (LCH) is a rare neoplastic disorder caused by somatic genetic

alterations in hematopoietic precursor cells differentiating into CD1a+/CD207+ histiocytes.

LCH clinical manifestation is highly heterogeneous. BRAF and MAP2K1 mutations account

for ~80% of genetic driver alterations in neoplastic LCH cells. However, their clinical

associations remain incompletely understood. Here, we present an international

clinicogenomic study of childhood LCH, investigating 377 patients genotyped for at least

BRAFV600E. MAPK pathway gene alterations were detected in 300 (79.6%) patients, including

191 (50.7%) with BRAFV600E, 54 with MAP2K1 mutations, 39 with BRAF exon 12 mutations,

13 with rare BRAF alterations, and 3 with ARAF or KRASmutations. Our results confirm that

BRAFV600E associates with lower age at diagnosis and higher prevalence of multisystem

LCH, high-risk disease, and skin involvement. Furthermore, BRAFV600E appeared to

correlate with a higher prevalence of central nervous system (CNS)–risk bone lesions. In

contrast, MAP2K1 mutations associated with a higher prevalence of single-system (SS)-bone

LCH, and BRAF exon 12 deletions seemed to correlate with more lung involvement.

Although BRAFV600E correlated with reduced event-free survival in the overall cohort,

neither BRAF nor MAP2K1 mutations associated with event-free survival when patients

were stratified by disease extent. Thus, the correlation of BRAFV600E with inferior clinical

outcome is (primarily) driven by its association with disease extents known for high rates of

progression or relapse, including multisystem LCH. These findings advance our

understanding of factors underlying the remarkable clinical heterogeneity of LCH but also

question the independent prognostic value of lesional BRAFV600E status.
ust 2022; prepublished online on Blood
ber 2022. https://doi.org/10.1182/

orresponding authors, Astrid G.S. van
Cor van den Bos (c.vandenbos-5@

The full-text version of this article contains a data supplement.

© 2023 by The American Society of Hematology. Licensed under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0),
permitting only noncommercial, nonderivative use with attribution. All other rights
reserved.

28 FEBRUARY 2023 • VOLUME 7, NUMBER 4

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
https://doi.org/10.1182/bloodadvances.2022007947
https://doi.org/10.1182/bloodadvances.2022007947
mailto:a.vanhalteren@erasmusmc.nl
mailto:c.vandenbos-5@prinsesmaximacentrum.nl
mailto:c.vandenbos-5@prinsesmaximacentrum.nl
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Introduction

Langerhans cell histiocytosis (LCH) is a rare hematologic
neoplasm characterized by the accumulation of myeloid-
differentiated cells with characteristic CD1a and CD207 expres-
sion in various tissues and organs.1-3 This disease primarily affects
children, with an incidence similar to pediatric Hodgkin lymphoma.4

The clinical manifestation of LCH is highly heterogeneous, ranging
from self-healing skin lesions or a solitary bone lesion to a life-
threatening disease involving multiple organ systems
(supplemental Figure 1).5 Disease extent is an established prog-
nostic factor in pediatric LCH.6-8 The most severe clinical form of
the disease tends to affect young children (aged <2 years) and
typically involves risk organs (ROs), including the hematopoietic
system, liver, and spleen.9,10 LCH with RO involvement is often
refractory to chemotherapy and associated with an increased risk
of death; therefore, it is called “high-risk LCH.”11-13 Although
overall mortality of patients with LCH is low, a significant proportion
of them experiences disease relapses14 and/or develops perma-
nent consequences, such as diabetes insipidus (DI) or neurode-
generative (ND)-LCH. Currently, the biological mechanisms
underlying the heterogeneous clinical presentation and outcome of
LCH remain incompletely understood.

In 2010, Rollins and colleagues discovered recurrent somatic
BRAFV600E mutations in LCH.15 Subsequently, other groups
confirmed the presence of BRAFV600E mutations in ~50% to 60%
of patients with LCH,10,16-20 and identified alternative MAPK
pathway–activating genetic alterations in patients without
BRAFV600E (supplemental Figure 2).17,21-28 Most notably, somatic
mutations in MAP2K1 exon 2 or 3 and small insertions and/or
deletions (indels) in BRAF exon 12 were recurrently detec-
ted.17,22-25 Together, BRAF and MAP2K1 mutations seem to
account for ~80% of genetic driver alterations in pediatric LCH.29

BRAFV600E, MAP2K1, and BRAF exon 12 mutations are essen-
tially mutually exclusive,22 with only very rare cases having co-
occurring mutations.30,31

In 2016, Héritier et al reported that BRAFV600E associated with
high-risk disease and increased rates of first-line therapy resistance
and relapse in 315 patients with pediatric LCH,10 including 173
children (54.6%) with BRAFV600E. Since then, no study has been
published with similar or more patients with LCH genotyped for
BRAFV600E. Hence, their observations still need to be duly
confirmed. Moreover, large cohort studies with molecular data
beyond BRAFV600E are needed to determine the clinical impact of
recurrent mutations in MAP2K1 or BRAF exon 12, which remain
largely unknown.29 Accordingly, here we describe an international
clinicogenomic study of childhood LCH, investigating 377 patients
genotyped for at least BRAFV600E, including 300 (79.6%) patients
with a detected MAPK pathway gene alteration.

Materials and methods

Study design

We performed an international observational cohort study of clinical
associations of somatic genetic alterations in pediatric LCH.
Patients were included between 2014 and 2021 in a retrospective
cohort study of patients with LCH in 4 academic children’s hospitals
in The Netherlands and Canada, or they were enrolled between
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
2013 and 2021 in the prospective LCH-IV clinical study
(#NCT02205762/EudraCT 2011-001699-20) in The Netherlands,
Italy, Austria, Czech Republic, Sweden, or Denmark. The study was
performed in accordance with the Declaration of Helsinki, and
ethical approval or a waiver of consent for retrospective research
was obtained from the institutional review boards at participating
institutions. Written informed consent was obtained from patients
and/or their legal representatives when required. Inclusion of
patients from the LCH-IV studywas approved by theData andSafety
Monitoring Committee (DSMC). Inclusion stopped April 30 2021.

Patient selection and data collection

Patients were identified through registries of involved institutions.
Eligibility criteria were (i) a definitive diagnosis of LCH, (ii) age at
LCH diagnosis below 18 years, and (iiia) available LCH-lesional
BRAFV600E status by polymerase chain reaction (PCR) or
sequencing through routine molecular diagnostics or (iiib) avail-
ability of formalin-fixed paraffin-embedded (FFPE) LCH tissue for
molecular analysis in the specific context of this study. Diagnosis of
LCH was confirmed by a combination of clinical findings and the
presence of CD1a+ histiocytes in the lesional tissue sample(s). For
patients with isolated skin disease, LCH diagnosis also required
confirmation of CD207 coexpression by CD1a+ histiocytes, to rule
out indeterminate cell histiocytosis, a diagnostic pitfall.32 Patients
enrolled in the prospective LCH-IV study were staged, treated, and
followed up according to study protocol; other patients were
managed according to standard-of-care. Importantly, first-line
treatment and follow-up of patients were irrespective of muta-
tional status; no patient received first-line therapy with BRAF and/
or MEK inhibitors. Details of data collection are provided in the
supplemental Methods.

Disease extent was categorized according to the classification of
the LCH Study Group of the Histiocyte Society,9 differentiating
between single-system (SS) and multisystem (MS) disease. Within
these categories, detailed subtypes were distinguished based on
the type of organ(s) involved and/or the manifestation as unifocal or
multifocal disease. The hematopoietic system, liver, and spleen
were considered ROs,9,33 and bone lesions affecting the orbital,
temporal/mastoid, sphenoidal, zygomatic, ethmoidal bones, the
maxilla, paranasal sinuses, or anterior or middle cranial fossa were
considered central nervous system (CNS)–risk lesions.9,34-36 LCH
with RO involvement was termed “high-risk LCH.” Event was
defined as disease progression, LCH relapse, or death from any
cause. Disease progression was defined as (1) insufficient
response and/or progression of existing LCH manifestations
requiring the start or a second- or further-line of chemotherapy,
targeted therapy, and/or radiotherapy or (2) the development of
new lesions in the presence of active disease. Disease relapse was
defined as the development of new lesions after complete remis-
sion of prior LCH manifestations.

Molecular pathologic analysis

Molecular analysis was performed as part of routine diagnostics and/
or in the specific context of this study. Importantly, none of the tissue
samples were analyzed by BRAF VE1 immunohistochemistry alone.
For (additional) molecular analysis performed in the context of this
study, manual microdissection of LCH-lesional FFPE tissue sections
was performed based on a CD1a-stained reference slide to obtain
representative tissue parts enriched for neoplastic LCH cells,37
CLINICOGENOMIC ASSOCIATIONS IN CHILDHOOD LCH 665



thereby increasing the success rate of mutation detection.38 Auto-
mated DNA isolation from the microdissected tissue fragments and
BRAFV600E allele–specific real-time PCR and/or droplet digital PCR
were performed as previously described.39-41 When possible, cases
without BRAFV600E were further analyzed using Sanger sequencing
and/or a custom-designed AmpliSeq next-generation sequencing
(NGS) panel containing primers to detect mutations in MAP2K1
(NM_002755.3) exon 2 to 3 and BRAF (NM_004333.6) exon 12
and 15, as well as in ARAF, MAP3K1, N/KRAS, and many other
cancer-associated genes (supplemental Methods).42 Finally, a small
proportion of patients without BRAFV600E was analyzed for alter-
native BRAF alterations by FFPE-targeted locus capture (FFPE-
TLC) NGS,43,44 a DNA-based technique able to identify both small
variants (eg, single nucleotide variants or small indels) and structural
variants (eg, gene rearrangements). Details are available in the
supplemental Methods.

Statistical analysis

Comparisons of (sub)groups were performed using the 2-sided
Mann-Whitney U or Kruskal-Wallis test for continuous data and
2-sided Fisher or Fisher-Freeman-Halton exact test for categorical
data. In general, threshold for significance was P < .05; however, in
univariable analysis of LCH presentation according to mutational
status P < .00125 was considered statistically significant
(Bonferroni correction for multiple testing).10 In addition to signifi-
cant results, findings insignificant after Bonferroni correction but
with P < .05 were highlighted. These represent potential associa-
tions but with insufficient statistical evidence in this study and will
require further careful evaluation to determine their potential clinical
relevance. Variables significant after correction were included in a
multivariable binary logistic regression analysis to identify the fac-
tor(s) most associated with BRAFV600E after adjustment for the
other variables. For hierarchical categorical variables (eg, bone-to-
bone subtypes), the primary variable was considered for inclusion
(eg, bone). Because RO involvement was restricted to MS LCH,
liver and hematopoietic system involvement, both significant in
univariable analysis, were not included as independent variables
but instead MS-RO+ LCH was added as disease extent category
to the regression model. Univariable survival analyses were per-
formed using the Kaplan-Meier method, and survival curves were
compared using the log-rank test. Event-free survival (EFS) was
defined as the time from diagnosis until the first event or, for cases
without an event, the date of last follow-up. To investigate how
much of the effect of BRAFV600E on EFS was mediated by disease
extent, univariable survival analyses were stratified by disease
extent and multivariable survival analysis was performed using Cox
regression. Median follow-up was estimated using the reverse
Kaplan-Meier method.45 Incidences of DI, ND-LCH, specific sites
of disease, chemotherapy, and second-line systemic therapy were
indicated by proportions10 because of incomplete time-to-event
data for cumulative incidence calculations. Statistical analyses
were performed using GraphPad Prism version 9.0.1 or IBM SPSS
Statistics version 25.

Results

A total of 377 patients with childhood LCH and available
BRAFV600E status were included. This cohort comprised 198
(52.5%) patients from the prospective LCH-IV study and 179
(47.5%) patients from a Dutch/Canadian retrospective study, with
666 KEMPS et al
comparable clinical characteristics (supplemental Table 1). The
combined cohort comprised 222 (58.9%) males and 155 (41.1%)
females. Median age at diagnosis was 3.6 years (range, 0.0-17.9
years). Patients could be classified into 288 (76.4%) patients with
SS LCH and 89 (23.6%) patients with MS LCH. Patients with SS
LCH could be categorized into 184 patients with unifocal bone
disease (SS-UFB), 64 patients with multifocal bone disease (SS-
MFB), 32 patients with isolated skin disease (SS-skin), and 8
patients with isolated involvement of another organ system,
including the lungs (n = 3), lymph nodes (n = 3), CNS (n = 1), or
soft tissue (n = 1). Patients with MS LCH could be divided into 55
patients without RO involvement (MS-RO−) and 34 patients with
RO involvement (MS-RO+ or high-risk LCH).

MAPK pathway gene alterations were detected in 300 out of 377
(79.6%) patients, including 191 (50.7%)withBRAFV600E (Table 1). In
the subgroup without BRAFV600E, MAP2K1 mutations were identi-
fied in 54 patients and BRAF exon 12 indels were detected in 39
children (Table 2).MAP2K1mutations occurred in exon 2 in 36 out of
54 (66.7%) patients and in exon 3 in 18 out of 54 (33.3%) patients.
BRAF exon 12 indels included small in-frame deletions at the
beginning of exon 12 affecting the β3-αC loop in 27 out of 39 (69.2%)
patients and in-frame insertions of 9 nucleotides at the end of exon
12 affecting the αC-β4 loop in 12 out of 39 (30.8%) patients.25,46-48

In the remaining patients in the BRAFV600E− group, BRAF exon 15
mutations other than BRAFV600E (n = 10), BRAF fusions (n = 3),
ARAFmutations (n = 2), and a KRASmutation (n = 1) were detected
(supplemental Table 2).

BRAFV600E status in relation to clinical presentation

BRAFV600E correlated with demographic characteristics, disease
extent, and specific sites of disease at diagnosis (Figure 1; Table 1;
supplemental Table 3). Patients with BRAFV600E were significantly
younger than patients without BRAFV600E (median age, 2.6 years
vs 5.7 years; P < .001). In addition, patients with BRAFV600E more
often had MS LCH (33.5% vs 13.4%; P < .001; Figure 1A) and
high-risk disease (14.1% vs 3.8%; P < .001). Regarding sites of
disease, BRAFV600E significantly associated with more involvement
of the skin (P < .001), liver (P < .001), and hematopoietic system
(P = .001), and with less involvement of the upper extremity bones
(P = .001; Figure 1B). Within SS-skin LCH, BRAFV600E was
significantly associated with multifocal skin involvement (P = .001;
Figure 1C).

Concerning potential associations, BRAFV600E seemed associated
with less SS-MFB disease (P = .006; Figure 1A). Furthermore,
BRAFV600E appeared to correlate with a higher prevalence of
spleen involvement (P = .017), gastrointestinal involvement (P =
.015; Table 1), and CNS-risk bone lesions (P = .011; Figure 1B).
When analyzing sites of disease during entire follow-up, including
at LCH progression and/or relapse, these potential associations
remained apparent (supplemental Figure 3; supplemental Table 4).

In multivariable analysis with age, disease extent (categorized as
SS/MS-RO−/MS-RO+ LCH), and skin involvement as independent
variables (supplemental Table 5A), BRAFV600E was significantly
associated with skin involvement (odds ratio [OR], 2.23; 95%
confidence interval [CI], 1.16-4.29; P = .017). However, OR was
highest for MS-RO+ disease extent (OR, 2.54; 95% CI, 0.99-6.54;
P = .05). In a regression model with age, MS disease (irrespective
of RO status), and skin involvement as independent variables,
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4



Table 1. Clinical characteristics according to BRAFV600E status

BRAFV600E+ BRAFV600E− Odds ratio (95% confidence interval) P value

Patients, n 191 186

Age at diagnosis, y, median (range) 2.6 (0.0-17.6) 5.7 (0.0-17.9) N/A <.001††

Age <3 y, n (%) 105 (55.0) 66 (35.5) 2.22 (1.47-3.36) <.001††

Age ≥3 y, n (%) 86 (45.0) 120 (64.5)

Sex, n (%)

Male 113 (59.2) 109 (58.6) 1.02 (0.68-1.54) .92

Female 78 (40.8) 77 (41.4)

Disease extent at diagnosis, n (%)

MS 64 (33.5) 25 (13.4) 3.25 (1.93-5.45) <.001††

SS 127 (66.5) 161 (86.6)

Detailed subtype, n (%)*

MS-RO+ 27 (14.1) 7 (3.8) 4.21 (1.79-9.93) <.001††

MS-RO− 37 (19.4) 18 (9.7) 2.24 (1.23-4.10) .009**

SS-bone 109 (57.1) 139 (74.7) 0.45 (0.29-0.70) <.001††

• SS-UFB 87 (45.5) 97 (52.2) 0.77 (0.51-1.15) .22

• SS-UFB, CNS-risk† 16 (8.4) 19 (10.2) 0.80 (0.40-1.62) .60

• SS-MFB 22 (11.5) 42 (22.6) 0.45 (0.26-0.78) .006**

SS-skin 18 (9.4) 14 (7.5) 1.28 (0.62-2.65) .58

SS-other 0 (0.0) 8 (4.3)¶ N/A .003**

Disease site(s) at diagnosis, n (%)

Bone 157 (82.2) 159 (85.5) 0.78 (0.45-1.36) .41

• MFB lesions 56 (29.3) 55 (29.6) 0.99 (0.63-1.54) 1

• CNS-risk bone lesion(s)† 64 (33.5) 40 (21.5) 1.84 (1.16-2.92) .011**

• Spinal column lesion(s) 18 (9.4) 28 (15.1) 0.59 (0.31-1.10) .12

Skin 69 (36.1) 24 (12.9) 3.82 (2.27-6.43) <.001††

Liver‡ 24 (12.6) 5 (2.7) 5.20 (1.94-13.95) <.001††

Hematopoietic system‡ 19 (9.9) 3 (1.6) 6.74 (1.96-23.18) .001††

Spleen‡ 15 (7.9) 4 (2.2) 3.88 (1.26-11.91) .017**

Lymph node 17 (8.9) 17 (9.1) 0.97 (0.48-1.97) 1

Lung 10 (5.2) 14 (7.5) 0.68 (0.29-1.57) .40

CNS§ 8 (4.2) 4 (2.2) 1.99 (0.59-6.72) .38

Gastrointestinal tract 7 (3.7) 0 (0.0) N/A .015**

Follow-up, y, median (range) 4.0 (0.0-38.8) 3.8 (0.0-36.0) N/A .61#

Permanent consequences developed during

follow-up, n (%)

DI 23 (12.0) 14 (7.5) 1.68 (0.84-3.38) .17

ND-LCH‖ 5 (2.6) 0 (0.0) N/A .06

Death, n 4 4 N/A .97#

N/A, not available.
*Fisher exact tests comparing patients with vs without a disease extent subtype are shown. Fisher-Freeman-Halton exact test comparing proportions in all different subgroups (a contingency

table larger than 2 × 2) is not shown but was significant (P < .001).
†Bone lesions affecting the orbital, temporal/mastoid, sphenoidal, zygomatic, or ethmoidal bones, the maxilla, paranasal sinuses, or anterior or middle cranial fossa.
‡These organs are considered ROs.
§Given that the posterior pituitary and pituitary stalk are direct extensions of the hypothalamus, pituitary tumors are classified as CNS involvement. All 12 patients with CNS involvement at

diagnosis had tumorous lesions, for example, pituitary stalk lesions.
‖Only patients with both clinical and radiologic ND-LCH are reported.
¶These 8 patients comprised 3 patients with SS-lung LCH, 3 patients with SS-lymph node LCH, and single cases with SS-soft tissue or (tumorous) SS-CNS disease.
#Obtained with the log-rank test.
**P < .05.
††P < .00125 (Bonferroni correction for multiple testing; tests are shown in this table and supplemental Table 3).
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Table 2. Clinical characteristics of patients with MAP2K1 or BRAF exon 12 mutations

MAP2K1 mutated BRAF exon 12 mutated

MAP2K1 exon 2 MAP2K1 exon 3 All patients In-frame deletions In-frame insertions All patients

Patients, n 36 18 54 27 12 39

Age at diagnosis, y, median (range) 2.7 (0.0-15.1) 8.3 (1.7-17.1) 4.8 (0.0-17.1) 3.4 (0.2-17.9) 6.2 (0.5-14.4) 5.9 (0.2-17.9)

Age <3 y, n (%) 19 (52.8) 1 (5.6) 20 (37.0) 12 (44.4) 3 (25.0) 15 (38.5)

Age ≥3 y, n (%) 17 (47.2) 17 (94.4) 34 (63.0) 15 (55.6) 9 (75.0) 24 (61.5)

Sex, n (%)

Male 23 (63.9) 10 (55.6) 33 (61.1) 16 (59.3) 5 (41.7) 21 (53.8)

Female 13 (36.1) 8 (44.4) 21 (38.9) 11 (40.7) 7 (58.3) 18 (46.2)

Disease extent at diagnosis, n (%)

MS 3 (8.3) 1 (5.6) 4 (7.4) 7 (25.9) 1 (8.3) 8 (20.5)

SS 33 (91.7) 17 (94.4) 50 (92.6) 20 (74.1) 11 (91.7) 31 (79.5)

Detailed subtype, n (%)

MS-RO+ 1 (2.8) 0 (0.0) 1 (1.9) 3 (11.1) 0 (0.0) 3 (7.7)

MS-RO− 2 (5.6) 1 (5.6) 3 (5.6) 4 (14.8) 1 (8.3) 5 (12.8)

SS-bone 30 (83.3) 16 (88.9) 46 (85.2) 15 (55.6) 11 (91.7) 26 (66.7)

• SS-UFB 22 (61.1) 13 (72.2) 35 (64.8) 11 (40.7) 8 (66.7) 19 (48.7)

• SS-UFB, CNS-risk 4 (11.1) 1 (5.6) 5 (9.3) 4 (14.8) 2 (16.7) 6 (15.4)

• SS-MFB 8 (22.2) 3 (16.7) 11 (20.4) 4 (14.8) 3 (25.0) 7 (17.9)

SS-skin 3 (8.3) 0 (0.0) 3 (5.6) 2 (7.4) 0 (0.0) 2 (5.1)

SS-other 0 (0.0) 1 (5.6) 1 (1.9) 3 (11.1) 0 (0.0) 3 (7.7)

Disease site(s) at diagnosis, n (%)

Bone 33 (91.7) 17 (94.4) 50 (92.6) 20 (74.1) 12 (100) 32 (82.1)

• MFB lesions 11 (30.6) 3 (16.7) 14 (25.9) 7 (25.9) 3 (25.0) 10 (25.6)

• CNS-risk bone lesion(s) 8 (22.2) 1 (5.6) 9 (16.7) 8 (29.6) 3 (25.0) 11 (28.2)

• Spinal column lesion(s) 6 (16.7) 2 (11.1) 8 (14.8) 5 (18.5) 2 (16.7) 7 (17.9)

Skin 5 (13.9) 0 (0.0) 5 (9.3) 6 (22.2) 0 (0.0) 6 (15.4)

Liver 0 (0.0) 0 (0.0) 0 (0.0) 3 (11.1) 0 (0.0) 3 (7.7)

Hematopoietic system 1 (2.8) 0 (0.0) 1 (1.9) 1 (3.7) 0 (0.0) 1 (2.6)

Spleen 0 (0.0) 0 (0) 0 (0.0) 2 (7.4) 0 (0.0) 2 (5.1)

Lymph node 2 (5.6) 2 (11.1) 4 (7.4) 4 (14.8) 1 (8.3) 5 (12.8)

Lung 1 (2.8) 0 (0.0) 1 (1.9) 6 (22.2) 0 (0.0) 6 (15.4)

CNS 1 (2.8) 0 (0.0) 1 (1.9) 1 (3.7) 0 (0.0) 1 (2.6)

Follow-up, y, median (range) 2.7 (0.2-15.2) 4.3 (1.4-30.4) 3.7 (0.2-30.4) 6.3 (0.4-27.0) 3.5 (0.7-9.4) 5.3 (0.4-27.0)

Permanent consequences developed during

follow-up, n (%)

DI 1 (2.8) 1 (5.6) 2 (3.7) 5 (18.5) 0 (0.0) 5 (12.8)

Death, n 2 0 2 2 0 2
BRAFV600E was significantly associated with both MS disease and
skin involvement (supplemental Table 5B).

MAP2K1 and BRAF exon 12 mutations in relation to

clinical presentation

MAP2K1 mutations also correlated with clinical features at diag-
nosis (Figure 2; supplemental Table 6). Compared with children
with BRAFV600E, patients with MAP2K1 mutations had significantly
more SS-bone LCH (85.2% vs 57.1%; P < .001; Figure 2D) and
less MS LCH (7.4% vs 33.5%; P < .001; Figure 2E) and skin
involvement (9.3% vs 36.1%; P < .001; Figure 2G). MAP2K1
668 KEMPS et al
mutations also appeared to correlate with more SS-bone disease
when compared with BRAF exon 12 mutations (P = .045;
Figure 2D), particularly compared with BRAF exon 12 deletions
affecting the β3-αC loop (P = .006; supplemental Figure 4B).
Regarding subtypes of bone involvement, patients with MAP2K1
mutations had the lowest prevalence of CNS-risk bone lesions,
despite having the most bone involvement (Figure 2F). Children
with MAP2K1 mutations did have the highest prevalence of bone
lesions in the upper extremities and/or shoulder girdle
(supplemental Figure 5). Regarding demographic characteristics,
MAP2K1 mutations appeared to correlate with older age at diag-
nosis when compared with BRAFV600E (P = .011; Figure 2B).
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Figure 1. Clinical features at LCH diagnosis according to BRAFV600E
status. (A) Prevalence of BRAFV600E in patients with specific clinical characteristics at LCH

diagnosis. (B) Prevalence of BRAFV600E in patients with specific types of bone involvement at diagnosis. This figure depicts all patients with osseous lesions, irrespective of

single-systemic or multisystemic disease extent. Bones are grouped according to the classification used by the National Cancer Institute. Upper extremity: humerus, radius, ulna,

carpals, metacarpals, and phalanges. Shoulder girdle: clavicle and scapula. Pelvic girdle: coxal, innominate, and hip bones (including ilium, ischium, acetabulum, and pubis).

Lower extremity: femur, tibia, fibula, patella, tarsals, metatarsals, and phalanges. Spinal column: cervical, thoracic and lumbar vertebrae, sacrum, and coccyx. Thoracic cage: ribs

and sternum. CNS-risk lesions are bone lesions affecting the orbital, temporal/mastoid, sphenoidal, zygomatic, or ethmoidal bones, the maxilla, paranasal sinuses, or anterior or

middle cranial fossa, according to LCH Study Group definitions.9,34-36 (C) Prevalence of BRAFV600E in patients with specific presentations of SS-skin LCH at diagnosis.

Numbers of patients are provided in Table 1 and supplemental Table 3. Dashed lines indicate the prevalence of BRAFV600E in all cases (51%). Statistical tests with P < .05 are
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Figure 2. Clinical features at LCH diagnosis of children with BRAFV600E, BRAF exon 12, or MAP2K1 mutations. (A) Pie chart showing the mutational status of the

377 patients from our cohort. (B) Dot plot showing age at diagnosis of patients with BRAFV600E, BRAF exon 12, or MAP2K1 mutations. Error bars depict medians with

interquartile ranges. (C-E) Bar charts depicting the percentage of patients with BRAFV600E, BRAF exon 12, or MAP2K1 mutations having specific disease extents at LCH

diagnosis. Statistical comparisons were performed for SS-bone disease in panel D and MS disease in panel E. (F-H) Bar charts depicting the percentage of patients with

BRAFV600E, BRAF exon 12, or MAP2K1 mutations having specific disease sites at LCH diagnosis. Statistical tests with P < .05 are depicted. Numbers of patients are provided
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Similar to what was observed for MAP2K1 mutations, BRAF exon
12 indels seemed associated with older age at diagnosis
(P = .049; Figure 2B) and less skin involvement (P = .014;
Figure 2G) when compared with BRAFV600E. Furthermore, BRAF
exon 12 mutations appeared to correlate with a higher prevalence
of lung involvement when compared with BRAFV600E (P = .035) or
670 KEMPS et al
MAP2K1 mutations (P = .020; Figure 2H). Pulmonary involvement
was particularly frequent in patients with BRAF exon 12 deletions
affecting the β3-αC loop (6/27 [22.2%]; supplemental Figure 4F).
Notably, BRAF exon 12 deletions were also detected in 3 out of
7 patients (43%) with thymic involvement49-51; the other 4 patients
had alternative BRAF alterations (supplemental Figure 6).
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4



BRAFV600E status in relation to clinical outcome

Follow-up was similar for patients with BRAFV600E and patients
without BRAFV600E (median, 4.0 years vs 3.8 years; P = .61). In the
overall cohort, children with BRAFV600E had significantly reduced EFS
(5-year EFS, 54.1%; standard error ± 4.4% vs 59.9%; standard
error ± 4.4%; P = .038; Figure 3A) but not reduced overall survival
(supplemental Figure 7). Patients with BRAFV600E mutations also
more frequently received second-line systemic therapy (29.1% vs
15.8%; supplemental Table 7). When patients were stratified by
disease extent, however, BRAFV600E no longer associated with
outcome parameters like EFS (Figure 3B-D). Children with
BRAFV600E mutations particularly had noninferior EFS in the sub-
groups of patients with SS-UFB disease (Figure 3D) or SS-MFB LCH
(supplemental Figure 8), representing almost two-thirds of all patients
(66%) in our cohort. In addition, disease extent but not lesional
BRAFV600E status was associated with EFS in multivariable survival
analysis of the overall cohort (BRAFV600E, hazard ratio, 1.08; 95% CI,
0.75-1.55; P = .67; supplemental Table 8).

MAP2K1 and BRAF exon 12 mutations in relation to

clinical outcome

Follow-up was similar for patients with BRAFV600E, MAP2K1, and
BRAF exon 12 mutations (median, 4.0 years vs 3.7 years vs 5.3 years,
respectively; P = .87). No significant differences in EFS were
observed between the 3 molecular subgroups, particularly after
patient stratification by disease extent (Figure 3E-F; supplemental
Figure 8). Incidence of DI was similar among children with
BRAFV600E or BRAF exon 12 mutations (12.0% vs 12.8%) and
higher than among children withMAP2K1mutations (3.7%), although
not statistically significant (Tables 1 and 2; supplemental Table 6).

Clinical features of patients with LCH with alternative

MAPK pathway gene alterations

Rare MAPK pathway gene alterations were identified in 16 patients
without BRAFV600E (supplemental Tables 2 and 11). Ten children had
a BRAF exon 15 mutation other than BRAFV600E, including
6 with a BRAFV600D mutation,52 and single cases with a
BRAF p.T599_V600insEAT, BRAF p.T599_V600insEKST, BRAF
p.V600_R603delinsEKSQ, or BRAF p.V600_W604delinsESRG
mutation. All 6 patients with BRAFV600D had SS-bone LCH (either
UFB or MFB); none of them developed disease in another organ
system during follow-up (median, 4.7 years; range, 0.6-12.6 years).
However, several patients with BRAFV600D mutations had uncommon
abscess-like soft tissue extension through the skin (Figure 4E;
supplemental Table 2).53 The patient with the BRAF
p.V600_R603delinsEKSQ mutation had MS-RO+ disease and
required second- and third-line chemotherapy. BRAF fusions were
identified in 3 patients using FFPE-TLC NGS (Figure 4A-D;
supplemental Figure 10).44 All 3 cases had different BRAF fusion
partners, including TMEM106B, DOCK8, and BICD2. Two of 3
patients with BRAF rearrangements had SS-bone LCH without pro-
gression or relapse during their follow-up (5.4 or 27.5 years); the
remaining patient with a BICD2::BRAF fusion had MS-RO− disease
with uncommon large tumors in both lungs (Figure 4G) instead of
small nodules and cysts typical for pulmonary LCH.54-56 This patient
had progressive disease despite 2 lines of chemotherapy and recently
received MEK inhibition (trametinib) with a complete metabolic
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
response after 6 months of treatment. The ARAF and KRAS muta-
tions were confined to patients with SS-bone LCH.

Additional MAPK pathway gene alterations were identified in
3 BRAFV600E+ cases, including 1 previously reported patient with a
MAP3K1 mutation.24 The other 2 cases had an additional BRAF
p.R603Q mutation, previously also reported in another child with
BRAFV600E-mutated LCH.17 One of our patients had SS-UFB LCH
with multiple bone relapses during follow-up, requiring multiple
lines of chemotherapy. The other patient had MS-RO+ disease and
required second-line chemotherapy with cladribine because of
progression of lung lesions. Eventually, all patients reached com-
plete remission (supplemental Table 2).

Discussion

Through an international collaborative effort, we present here a
large clinicogenomic study of childhood LCH. We confirm findings
of previous research, most notably by Héritier et al,10 but also
reveal new associations of BRAF and MAP2K1 mutations with
clinical features at presentation (Table 3). In addition, we highlight
that lesional BRAFV600E status did not correlate with inferior clinical
outcome after patient stratification by disease extent, a prognostic
factor known for decades.6-8

Regarding BRAFV600E, our study points at a potential association
with a higher prevalence of gastrointestinal involvement (Table 1).
Interestingly, gastrointestinal involvement was recently shown to
provide additive unfavorable prognostic impact in patients with
high-risk LCH.61 Together, these data further support that
BRAFV600E associates with the most severe clinical presentations
of pediatric LCH. BRAFV600E also seemed more prevalent in
patients with CNS-risk bone lesions; thus, BRAFV600E now
appears to associate with all disease characteristics known to
correlate with clinical ND-LCH, including MS disease, skin and
pituitary involvement, and CNS-risk bone lesions.10,34,35,62

Accordingly, all 5 patients with clinical ND-LCH in our cohort
harbored BRAFV600E (Table 1) and had at least one of these dis-
ease characteristics. Although we confirm that BRAFV600E corre-
lates with reduced EFS in the overall cohort,10 we show that this is
(primarily) driven by the association of BRAFV600E with disease
extents known for high rates of progression or relapse
(supplemental Figure 11), including MS LCH and SS-multifocal
skin disease (supplemental Figure 9). This insight did not emerge
from the study by Héritier et al10 because the univariable survival
analyses presented in their study were only stratified by RO
involvement, with MS-RO− and SS-multifocal skin disease still
overrepresented in patients with BRAFV600E in the low-risk disease
subgroup (Figure 3B). Interestingly, lesional BRAFV600E status also
did not correlate with inferior clinical outcome in recent molecular
studies of adult LCH.31,63-65 Thus, the quest for independent
prognostic factors in LCH continues.

Our study confirms that MAP2K1 mutations in pediatric LCH
predominantly occur in exon 2, affecting the αA-helix of MEK1
(Figure 5; supplemental Figure 12),66,67 with p.Q58_E62del as
the most detected mutation (supplemental Table 9).19 The
distinction between MAP2K1 exon 2 or 3 mutations is important
because the mutations in exon 2 are RAF-regulated, whereas the
deletions in exon 3 are RAF and phosphorylation independent.68

Consequently, these MAP2K1 exon 3 deletions are less sensitive
CLINICOGENOMIC ASSOCIATIONS IN CHILDHOOD LCH 671
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Figure 3. Clinical outcome of patients with pediatric LCH according to mutational status and disease extent. Kaplan-Meier curves showing EFS according to lesional
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to allosteric MEK inhibitors, such as trametinib or cobimeti-
nib.67,68 In addition, these so-called “class 3 MAP2K1 mutants”
result in higher activation of downstream extracellular signal-
regulated kinase (ERK) in vitro when compared with MAP2K1
exon 2 mutations.68 Therefore, one could hypothesize that
MAP2K1 exon 3 deletions might associate with a more severe
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
clinical phenotype; however, only 1 out of 17 children in our
cohort with these mutations had MS LCH (Table 2). In addition,
their EFS was not significantly worse than of children with
MAP2K1 exon 2 mutations (supplemental Figure 13). In general,
our study points out that MAP2K1 mutations typically correlate
with a less-severe clinical presentation of pediatric LCH, with
CLINICOGENOMIC ASSOCIATIONS IN CHILDHOOD LCH 673



Table 3. Summary of key findings

For associations of BRAFV600E, BRAFV600E+ (n = 191) vs BRAFV600E− (n = 186) patients were compared. For associations of MAP2K1 or BRAF exon 12 mutations, assignment is based on
the statistical comparison of patients with MAP2K1 mutations (n = 54) or BRAF exon 12 mutations (n = 39) with patients with BRAFV600E, respectively. Associations of MAP2K1 or BRAF exon
12 mutations required (1) a difference with patients with BRAFV600E resulting in a Fisher exact test P < .05 (for potential associations) or P < 0.00125 (for significant associations) and
(2) a difference between patients with MAP2K1 and BRAF exon 12 mutations resulting in a Fisher exact test P < .05.
significantly more SS-bone LCH and less MS disease compared
with BRAFV600E (Figure 2).

BRAF exon 12 mutations predominantly comprised small in-frame
deletions affecting the β3-αC loop of the BRAF protein (Figure 5;
supplemental Figure 12).25 Like in adult LCH,63 BRAF
p.N486_P490del was the most detected mutation (supplemental
Table 10). In addition, insertions at the end of BRAF exon 12
affecting the αC-β4 loop (Figure 5) were detected in 12 patients.48

These patients comprised 11 children with the BRAF
p.R506_K507insLLR mutation, first described in 2 cases by
Héritier et al,28 and 1 child with a BRAF p.L505_R506insTLL muta-
tion. Importantly, both β3-αC and αC-β4 loop mutations are resistant
to first-generation BRAF inhibitors like vemurafenib.25,28,46,48 In
accordance with the 2 cases reported by Héritier et al,28 the αC-β4
loop insertions predominantly occurred in children with SS-UFB
LCH (Table 2). Yet, we also identified this mutation in 1 child with
MS LCH that had multiple bone relapses and required 4 lines of
chemotherapy, again demonstrating that (recurrent) mutations are not
completely specific to 1 clinical form of the disease. Interestingly,
BRAF exon 12 deletions affecting the β3-αC loop seemed to
associate with a high prevalence of lung involvement. This is in
accordance with molecular studies of adult LCH, which described the
frequent presence of these mutations in patients with adult LCH with
pulmonary involvement,31,63,64 often in the context of MS disease.
Thus, molecular analysis of BRAF exon 12 should be particularly
applied in patients with pulmonary lesions,54,56 which may inform LCH
diagnosis and enable rational, targeted therapy.

Finally, alternative MAPK pathway gene alterations seemed related
to some uncommon disease manifestations, since we observed
rare abscess-like soft tissue extension in several patients with
BRAFV600D mutations and atypical solid lung lesions in our case
with a BICD2::BRAF fusion. Notably, all 3 cases with a BRAF
fusion had different fusion partners, which stands in contrast to the
high prevalence of 1 specific ALK fusion partner (KIF5B) in
674 KEMPS et al
patients with ALK+ histiocytosis.69 Thus, comprehensive molecular
techniques are essential for detection of these rare genetic vari-
ants; their identification may have clinical consequences, as illus-
trated by our BICD2::BRAF+ case that received third-line systemic
therapy with trametinib and obtained a complete metabolic
response (supplemental Table 2).

Altogether, these data indicate that oncogenic mutation subtype
appears an important, but not the sole, driver of heterogeneity in
clinical presentation of pediatric LCH. With increasing access to
targeted therapies, identification of the precise somatic driver
alteration in patients that could benefit from these agents is
important, as mutation subtype influences responsiveness to BRAF
and MEK inhibitors. Factors other than mutation subtype seem
more involved in driving heterogeneous outcomes within clinical
subgroups. To this end, (longitudinal) assessment of mutant alleles
in cellular or cell-free DNA derived from peripheral blood and/or
bone marrow represents an interesting opportunity for prognostic
staging and monitoring response to therapy.70-79

Why specific mutations associate with distinct LCH clinical pre-
sentations remains an interesting and important issue for further
investigation.80 Notably, specific genetic alterations also associate
with distinct histiocytic entities,17,69,81 again demonstrating the inti-
mate relationship between molecular pathogenesis and clinical his-
tiocytosis phenotype. Differential ERK activation inflicted by the
different genetic alterations may play a role,5,68 although this was not
apparent forMAP2K1 exon 2 vs exon 3 mutations in our cohort. In
addition, the association of BRAFV600E with severe clinical forms
of LCH may rely on (thus far unknown) mediators or confounders,
such as additional (epi)genomic alterations, tissue- or context-
specific factors, and the mutated cell-of-origin (supplemental
Figure 11). Although previous whole-exome sequencing studies
have revealed infrequent additional genomic alterations in
LCH,17,22,25 several studies have indicated a distinct impact of
BRAFV600E on the LCH-lesional immune microenvironment.37,82,83
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Furthermore, several studies have suggested an important role for
the mutated cell-of-origin in governing LCH clinical phenotype, with
high-risk disease caused by mutations in multipotent hematopoietic
stem/progenitor cells and low-risk disease caused by the same
mutations in more committed myeloid precursors.16,84,85 However,
this simplified model also does not fully explain LCH clinical
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
phenotype, as recent studies have identified mutation-carrying
(myeloid and lymphoid) cells in the blood from patients with low-
risk or even SS LCH.41,84,86 Therefore, it remains important to
elucidate how somatic mutations in multipotent progenitors can
cause both SS and MS LCH and why progenitor cells active in
children with high-risk LCH often harbor BRAFV600E.
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Limitations of our study include the fact that not all patients without
BRAFV600E were analyzed beyond BRAFV600E (Figure 2A).
Consequently, our study does not provide exact incidence rates of
MAP2K1, BRAF exon 12, and rare MAPK pathway gene alter-
ations. However, these alterations were detected in 109 children
with LCH, allowing analysis of their clinical associations at
unprecedented scale. Furthermore, because of the retrospective
design, we cannot rule out some selection bias influencing the
clinical spectrum of our cohort. However, our cohort included 288
(76.4%) patients with SS LCH compared with <70% in the study
by Héritier et al,10 strongly arguing against overrepresentation of
patients with severe disease. Instead, we regard the relatively
unbiased composition of our cohort as one of the strengths of our
study. Nevertheless, our findings should be confirmed by suffi-
ciently powered cohort studies; particularly the potential associa-
tions require further investigation (Table 3).

Overall, we present an international clinicogenomic study of
childhood LCH, defining the clinical impact of recurrent BRAF and
MAP2K1 mutations. We demonstrate distinct associations of
these driver mutation subtypes with demographic characteristics,
disease extent, and specific sites of disease. Another key finding is
that mutational status did not associate with EFS when patients
were stratified by disease extent. These findings advance our
understanding of factors underlying the remarkable clinical het-
erogeneity of pediatric LCH, and may guide molecular diagnostics
beyond BRAFV600E, for example, in children with (severe) lung
involvement.56
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