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ABSTRACT

Epithelial ovarian cancer (EOC) is one of the most lethal gynecological 
malignancies around the world, and patients with ovarian cancer always have an 
extremely poor chance of survival. Therefore, it is meaningful to develop a highly 
efficient model that can predict the overall survival for EOC. In order to investigate 
whether metabolites could be used to predict the survival of EOC, we performed a 
metabolic analysis of 98 plasma samples with follow-up information, based on the 
ultra-performance liquid chromatography mass spectrometry (UPLC/MS) systems 
in both positive (ESI+) and negative (ESI-) modes. Four metabolites: Kynurenine, 
Acetylcarnitine, PC (42:11), and LPE(22:0/0:0) were selected as potential predictive 
biomarkers. The AUC value of metabolite-based risk score, together with pathological 
stages in predicting three-year survival rate was 0.80. The discrimination performance 
of these four biomarkers between short-term mortality and long-term survival was 
excellent, with an AUC value of 0.82. In conclusion, our plasma metabolomics study 
presented the dysregulated metabolism related to the survival of EOC, and plasma 
metabolites could be utilized to predict the overall survival and discriminate the 
short-term mortality and long-term survival for EOC patients. These results could 
provide supplementary information for further study about EOC survival mechanism 
and guiding the appropriate clinical treatment.

INTRODUCTION

Epithelial ovarian cancer (EOC) is one of the most 
life-threatening gynecological malignancies worldwide. 
Upon diagnosis, patients with ovarian cancer are initially 
treated with a combination of surgical resection and 
chemotherapy [1]. Despite initial aggressive treatment, 
patients are always associated with an extremely poor 
overall survival (OS); and the average 5-year OS rate 
for all stages is 45.6% [2]. Currently, several researches 
have utilized clinical information to predict the prognosis 

of EOC [3–5]. For example, Barlin et al. developed a 
nomogram to predict the 5-year disease-specific mortality 
based on residual disease, stage, tumor histology, age, 
albumin level, family history of hereditary breast and 
ovarian cancer syndrome, and physical status [3]. 
However, due to the heterogeneity of ovarian cancer, 
it is difficult to predict the clinical outcomes of EOC 
with simple demographic and clinical characteristics. 
Therefore, in recent years, with the development of 
microarray and protein arrays technologies, several 
studies have been performed to identify the biomarkers 
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from genomics and proteomics to establish prognostic 
models for ovarian cancer. Yoshihara et al. identified a 
126-gene expression signature for predicting OS in high-
grade serous ovarian cancer based on primary tumor 
tissues [6], and Konstantinopoulos et al. performed the 
gene expression profile of BRCAness and concluded that 
BRCAness profile was associated with survival in EOC 
patients [7]. Yang et al. utilized proteins as markers to 
predict survival based on the reverse-phase protein arrays 
platform [8]. Although, these studies focus on predicting 
the survival or progression in EOC patients or high-risk 
serous ovarian cancer patients, almost all of these studies 
have been performed on tissues, which were not ideal 
for survival prediction in clinical practice. Besides, these 
studies are based on genomics and proteomics techniques. 
As we know, most genomics and proteomics methods have 
certain disadvantages, such as low detection efficiency, 
complex sample preparation procedures, and high cost 
[9–11]. Therefore, a rapid, high efficiency and economical 
method for predicting survival of EOC is quite urgent.

Metabolomics is dedicated to the global semi-
qualitative assessment of endogenous small molecule 
metabolites within cells, tissues, and bio-fluids, which 
is sensitive to reflect the degree of disease progression 
[12–15]. Compared with genomics or proteomics, 
metabolomics reflects changes in phenotype and function, 
which is complementary as “upstream” changes in genes 
and “downstream” changes in proteins [16]. Metabolomics 
aims to identify metabolites which are screened and 
monitored in the urine, feces and tissue samples [17–19]. 
In light of escalating health care costs and risky invasive 
procedures, metabolomics can be chosen as a safe yet 
precise method for monitoring disease prognosis [20, 21]. 
Some studies demonstrate that dysregulated metabolism 
is associated with the survival of cancers in humans, 
highlighting the potential of metabolomic analyses of 
biological samples for the prognosis of cancers including 
pancreatic adenocarcinoma, bladder cancer, and colorectal 
cancer [20, 22, 23]. Besides, it may provide therapeutic 
avenues to improve patient outcomes. Unfortunately, only 
Hilvo et al. performed a metabolomics profiling analysis 
on 158 serum and 112 tissue samples for EOC patients 
and found that deregulation of 4-Hydroxyphenyllactic acid 
and 3-Hydroxyisovaleric acid are associated with OS in 
serum metabolomics study, while high concentration of 
3,4-dihydroxybutyric, 2,4-dihydroxybutyric, and adipic 
acids in tissue are associated with poor OS in tissue [24]. 
However, this study has not evaluated the predictive 
performance of these metabolites for EOC survival.

In this study, we mainly aim to explore whether 
plasma metabolomics profiling could be used for 
predicting EOC survival and further identifying the 
potential predictive biomarker/s. Besides, we would 
like to build up a risk score with demographic and 
clinicopathological predictors, plus potential biomarkers, 
and further validate the predictive performance for EOC 

three-year survival. Finally, we also describe the temporal 
patterns in relative intensity for the potential predictive 
biomarkers and further distinguish short-term mortality 
from long-term survival.

RESULTS

Demographic and clinical characteristics of EOC 
patients

Median follow-up time of 98 EOC patients was 
37.5 months (range, 1-79 months) in this study. Fifty-four 
EOC patients died and were with the death time, and forty-
four EOC patients were still alive by the end of the last 
follow-up. The patient-and tumor-related characteristics 
were listed in Supplementary Table 1. Among the 
patients, forty-six EOC patients were dead in 3 years 
after diagnosis, and fifty-two patients still survived after 
3 years. The 3-year OS rate was 46.94% in this current 
study. The specific workflow was displayed in Figure 1.

EOC survival related metabolites

Using UPLC/MS system, we generated 
metabolomic profiles for 98 EOC patients and obtained 
2106 ions derived from ESI+ and 1827 ions from ESI-, 
respectively. The PCA plot revealed that the QC samples 
were tightly clustered in PCA score plots (Supplementary 
Figure 1), indicating the robustness of our metabolic 
profiling platform. Univariate Cox proportional hazards 
regression analysis was used to identify the association 
between each ion and OS with the local false discovery 
rate (lfdr) < 0.05. The selected ions then underwent 
metabolite identification and were similar to our previous 
studies [25]. In total, we identified 28 metabolites, related 
to the OS for EOC in ESI+ mode and 12 metabolites in 
ESI- mode, and listed these biomarkers in Supplementary 
Table 2. In addition, Multiple Random Survival Forest 
(RSF) analysis was used to rank the relative variable 
importance of survival related metabolites, and top ten 
metabolites were chosen for further study. We selected 
four metabolites as the potential predictive biomarkers 
for survival, based on CC<0.5 between each selected 
metabolite, which were Kynurenine, Acetylcarnitine, PC 
(42:11), and LPE(22:0/0:0) (Table 1). In order to clearly 
visualize the relationship between different scaled relative 
intensity of each metabolite and survival time, we divided 
them into low, medium, and high relative intensity groups, 
based on their corresponding 25th and the 75th percentiles 
of scaled relative intensity as cutoffs. Kaplan-Meier 
survival curves and log-rank tests were performed, and 
the P values were 0.0011, 0.0012, 0.0050, <0.0001 for 
Kynurenine, Acetylcarnitine, PC(42:11), LPE(22:0/0:0), 
respectively (Figure 2) and suggested poor survival with 
the increase of Kynurenine, Acetylcarnitine and PC(42:11) 
and with the decrease of LPE(22:0/0:0).



Oncotarget32136www.impactjournals.com/oncotarget

Figure 1: The workflow of this study.

Table 1: Scaled relative intensity of four predictive metabolites significantly associated with overall survival

Metabolite m/z RT(min) Vimp Coefficient P value HR 95%CI

Kynurenine 209.0916 3.66 0.012115 0.820 0.0440 3.580 1.833-6.992

Acetylcarnitine 204.1221 1.88 0.010745 0.798 0.0069 3.596 2.195-5.891

PC(42:11) 852.553 13.33 0.00991 0.560 0.0008 1.501 1.154-1.954

LPE(22:0/0:0) 538.3865 12.81 0.00705 -1.185 0.0050 0.262 0.134-0.510

Abbreviations: Measured mass to charge ratio (m/z); Retention time (min, RT); Hazard ratio (HR), Confidence interval 
(CI); Relative variable importance (Vimp).
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Risk score and establishment

A risk score, defined as a linear combination of 
the four predictive metabolites, was used to dichotomize 
the patients into low-risk and high-risk groups using the 
median risk score as the cut-off. It was established by cox 
regression coefficients with the scaled relative intensity of 
these four predictive metabolites (Table 1). The risk scores 
were as follows:

Risk score=(0.820×Kynurenine)+(0.798×Acetylcar
nitine)+(0.560×PC(42:11))-(1.185×LPE(22:0/0:0)). Each 
metabolite was calculated by their scaled relative intensity.

According to the risk score and the threshold 
criteria, all the patients were divided into low-risk (n=49) 

and high-risk (n=49) groups. Figure 3A showed the 
distribution of patient risk scores ranking from the lowest 
risk score to the highest risk score, and the discrimination 
potential of these four metabolites for the EOC survival, 
based on the risk scores, was presented in Figure 3B. 32/49 
(65.31%) patients who died in three years were correctly 
classified as low risk patients, and 37/49 (75.51%) alive 
patients were correctly classified as high risk patients. 
Heatmap plot of the scaled relative intensity of these four 
predictors clearly demonstrated that each metabolite could 
discriminate patients with low risk scores from those with 
high risk scores (Figure 3C). The statistical difference 
exists between the low and high-risk subgroups in the OS 
(P<0.0001) (Figure 3D).

Figure 2: Kaplan-Meier curve and log-rank test comparing the relative intensity of four potential predictive metabolites.
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Evaluation of predictive performance of three-
year survival

Demographic and clinical information were 
always used to predict the survival in EOC patients, 
and we explored whether our metabolite-based risk 
score, together with those factors, could improve the 

prediction performance. Univariate Cox hazard analysis 
showed that metabolite-based risk score (HR: 2.661, 
95%CI: 1.955-3.623, P=8.2×10-11), pathological stage 
(HR: 3.185, 95%CI: 1.774-5.721, P=1.1×10-5), and 
cycles of chemotherapy (HR: 0.416, 95%CI: 0.186-
0.930, P=3.2×10-2) presented the statistically significant 
association with OS. A multivariate analysis on risk 

Figure 3: Metabolite-based risk score analysis of EOC patients. (A) Distribution of the metabolite-based risk scores; (B) follow-
up time and the status of EOC patients; (C) heatmap of predictive metabolites. Rows represent each predictive metabolite and columns 
represent patients. The dotted line divided patients into low-risk and high-risk groups based on the median risk sore. (D) Kaplan-Meier 
estimates of the survival of the metabolite-based risk score.
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score, pathological stage, and cycles of chemotherapy 
were further conducted. Both risk score and pathological 
stage still remained statistically associated with OS (Table 
2). After that, in order to explore how much predictive 
performance would be increased with these four 
metabolites together with pathological stage in comparison 
to the pathological stage alone, we constructed risk scores 
that consisted of four metabolites and pathological stage. 
Time-dependent ROC analysis was used to evaluate 
the predictive accuracy of three-year survival with 
pathological stage alone and risk scores (Figure 4). From 
this result, we could see that the AUC of pathological stage 
alone and risk scores were 0.67 and 0.80, respectively. 
The sensitivity and specificity of risk scores were equal to 
0.70 and 0.79 based on Youden index [26]. These results 
indicated that the utility of combination of our biomarkers 
and clinical factors improved prediction accuracy.

Temporal patterns of predictive metabolites in 
the EOC progression

Further investigation of the temporal patterns 
of four predictive biomarkers and their discriminating 
ability in EOC progression, i.e. the short-term mortality 
and long-term survival, has shown that the four potential 
predictive biomarkers were significantly altered in 
short-term mortality compared to long-term survival 
patients (P<0.05). Ninety-eight EOC patients were 
divided into three groups by survival time: short-term 
mortality (n=13), medium survival (n=33), and long-
term survival (n=52). Histograms presented in Figure 5 
indicated that Acetylcarnitine had significant alterations 
in any two groups, while PC (42:11) and LPE(22:0/0:0) 
were significantly altered in short-term mortality and 

medium survival. Patients with long-term survival 
showed increased plasma relative intensity of LPE 
(20:0/0:0) and decreased relative intensity of Kynurenine, 
Acetylcarnitine, and PC(42:11). In addition, AUC value 
was calculated to evaluate the predictive performance 
of short-term mortality and long-term survival by these 
biomarkers. The combination of the four metabolites 
could discriminate the short-term mortality and long-
term survival in EOC patients with the AUC value of 0.82 
(Figure 6), and the clinical characteristics were listed in 
Supplementary Table 3.

DISCUSSION

Metabolites could be regarded as the ultimate 
response to the process of diseases occurring in living 
organisms. Recent studies revealed that dysregulated 
metabolism was associated with the prognosis of 
human cancers and utilized metabolites, as markers to 
predict survival. To our knowledge, this is the first study 
specifically designed to evaluate the predictive performance 
of survival for EOC patients, based on the pretreatment 
plasma metabolomics. It would be considerably meaningful 
to develop a metabolite-based prognostic model to predict 
the OS for ovarian cancer. A study has been reported that 
the peak mortality occurred approximately between 2 years 
and 3.5 years after diagnosis for EOC patients, who carried 
BRCA1 or BRCA2 mutations and noncarriers, respectively 
[27]. In ovarian cancer patients, 3 years were chosen as the 
peak mortality. In the present study, a non-targeted UPLC/
MS plasma metabolism method was used to explore the 
metabolic characteristics related to the survival of EOC 
patients and to screen for meaningful and vital survival 

Table 2: Univariate and multivariate Cox regression analysis of risk score and clinical factors associated with overall 
survival

Factors P value HR 95% CI

Univariate analysis

 Risk score 8.2×10-11 2.661 1.955-3.623

 Age (<50 vs. ≥50 y) 0.48 1.224 0.689-2.176

 Menopause (pre vs. post) 0.14 0.657 0.372-1.161

 CA125 (≤500 vs. >500) 0.57 0.857 0.502-1.465

 Stage(I vs. II vs. III vs. IV) 1.1×10-5 3.185 1.774-5.721

 Cycles of chemotherapy (<6 vs. ≥6) 3.2×10-2 0.416 0.186-0.930

Multivariate analysis

 Risk score 4.2×10-4 3.504 1.746-7.029

 Stage(I vs. II vs. III vs. IV) 2.0×10-3 9.622 2.292-40.390

 Cycles of chemotherapy (<6 vs.≥6) 0.7 0.830 0.325-2.123

Abbreviations: versus (vs); Hazard ratio (HR); Confidence interval (CI).
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predictors for the projection of 3-year mortality. We 
identified 28 metabolites in ESI+ mode and 12 metabolites 
in ESI- mode related to the OS for EOC. Kynurenine, 
Acetylcarnitine, PC (42:11), and LPE (20:0/0:0) 
were selected as the vital survival potential predictive 
biomarkers. In addition, we constructed a risk score: four 
potential biomarkers together with pathological stage, and 
also evaluated the predictive accuracy of 3-year survival 
with the time-dependent AUC value of 0.80. Meanwhile, 
we described the temporal patterns of those four predictive 
metabolites in the disease progress and evaluated the 
discrimination ability of short-term mortality and long-
term survival with the AUC of 0.82. It is meaningful to 
distinguish the short-term mortality from the long-term 
survival, because patients with short-term mortality are in 
need of intensive care and are facing significant economic 
costs.

Currently, several researches have utilized the 
clinical information to predict the prognosis of ovarian 
cancer. However, due to the heterogeneity of ovarian 
cancer, it is difficult to predict the clinical outcomes 
of patients with simple demographic and clinical 
characteristics. In terms of CA125, Gupta et al. had 
reviewed the role of CA125 in predicting ovarian cancer 
survival and concluded that the results from different 
studies were sometimes contradictory, and the cut off 
values were always different [28]. A study demonstrated 
that patients with preoperative values below 65 U/ml had 
significantly longer survival compared to those above 65 
U/ml in stage I ovarian cancer [29]. However, Osman 

et al. concluded that CA125 level did not correlate with 
survival [30], which is consistent with our study. Whether 
the preoperative CA125 has the utility as a prognostic 
indicator of survival, as well as of diagnosis, still needs 
further study. In addition, primary cytoreductive surgery, 
followed by chemotherapy, is the international standard 
of care for women with advanced ovarian cancer. 
However, after controlling the important metabolic 
prognostic factors, there was no significant correlation 
between chemotherapy and OS in our study. It is likely 
that our predictive biomarkers were not associated with 
chemotherapy sensitivity, which still requires further 
research.

Our team previously reported that L-tryptophan 
metabolism, including L-tryptophan, 3-indolepropionic 
acid, kynurenine, and 5-hydroxyindoleacetaldehyde, was 
disturbed in EOC patients [31]. The other study from our 
research group demonstrated that lower L-tryptophan and 
higher kynurenine were associated with recurrence of EOC 
[32]. We observed a similar result for association between 
metabolites and cancer mortality in this study, i.e. poor OS 
associated with the increased plasma kynurenine. It has been 
reported that tryptophan is catabolized through Kynurenine 
Pathway (KP) to vital energy cofactor, nicotinamide adenine 
dinucleotide (HAD+), which could promote cellular growth 
[33]. Kynurenine is the first catabolite produced from 
tryptophan by IDO1/2 and TDO2, which is biologically 
active in various physiological mechanisms, and it has been 
identified as an endogenous ligand for the aryl hydrocarbon 
receptor (AhR) involved in diverse cellular functions such 

Figure 4: Time-dependent ROC curves evaluating predictive accuracy of three-year survival. (A) time-dependent ROC 
curve for pathological stage in the predictive of three-year survival of EOC patients. (B) time-dependent ROC curve for risk scores 
combined the predictive metabolites and pathological stage in the prediction of three-year survival of EOC patients.
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Figure 5: Histogram displaying the temproal patterns of each predictive metabolite among three different survival 
times.

as cellular differentiation and proliferation [34]. Moreover, 
evidence has emerged to suggest that upregulated IDO1 
and TDO2 expression within the tumor was correlated 
with decreased OS of patients with glioma [35, 36]. IDO 
has been known for its role in tumor-induced immune 
escape [37]. Several studies have previously shown that 
kynurenine/tryptophan index is a useful prognostic indicator 
for patients with human cancers, such as lung cancer [38], 
breast cancer [39], and acute myeloid leukemia [40]. de 
Jong et al. has revealed that kynurenine and kynurenine/
tryptophan ratios were higher in the pretreatment serum 
samples from patients with endometrial, ovarian, and vulvar 
cancers, than that of controls [41]. Therefore, kynurenine 
would be a predictive biomarker in predicting the OS in 
pretreatment ovarian cancer.

Acetylcarnitine is an amino acid derived from 
the body itself and certain food. It is synthesized in the 
brain, liver, and kidney by the enzyme Acetylcarnitine 
transferase. Acetylcarnitine could influence the cholinergic 
system as a cholinergic receptor agonist, promoting 
synthesis and release of acetylcholine [42], and it has 
been reported that Acetylcarnitine dysregulation usually 
occurs in neurological disorders [43–45], Zhao et al. have 
demonstrated that low Acetylcholinesterase expression 
was discovered in hepatocellular carcinoma tissue and had 
significantly associated with high risk of cancer recurrence 
and poor survival [46]. As we know, Acetylcholinesterase 
was used to decompose acetylcholine, and low 
Acetylcholinesterase may lead to the accumulation 
of acetylcholine in the hepatocellular carcinoma, and 
our current study suggested that high intensity of 
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Acetylcarnitine was associated with poor survival, which 
indicated that high Acetylcarnitine might promote the 
release of acetylcholine in ovarian cancer. More generally, 
Acetylcarnitine participates in the oxidation of fatty acids 
by the means of facilitating the uptakes of acetyl-CoA 
into the mitochondria and produces energy to maintain 
the process of cancer.

Recent accumulating evidence suggests that lipid 
metabolism is disturbed in a variety of cancers [47, 48], 
because lipids play important roles in constructing cell 
membranes, cell signaling, and producing energy to sustain 
the tumor cell proliferation. Zhang et al. has revealed plasma 
lipidomic alterations in ovarian cancer in Asian women 
[48], while Park et al. has validated that LPE, a metabolite 
of phosphatidylethanolamine (PE), not only increases 
intracellular Ca2+ via LPA1 and CD97 but also correlates 
with cell proliferation and migration in breast cancer cells 
[49]. In the present study, we provided evidence that there 
exists a relationship between lipids and OS in ovarian 
cancer, especially PC, LPC, LPE, and ceramides, and we 
chose the PC(42:11) and LPE(22:0/0:0) as the important 
potential biomarkers to predict the OS of ovarian cancer. 

We concluded that poor survival was due to the increase of 
PC(42:11) and with the decrease of LPE(22:0/0:0).

To our knowledge, this is the first study to 
prospectively assessed the mortality risks of ovarian cancer 
patients after diagnosis, based on the pretreatment plasma 
metabolomics. However, our study had several limitations. 
We have only considered cycles of chemotherapy as the 
predictive factor for treatment, i.e. initial treatment of 
cytoreductive resection, which turns out to be one of the 
limitations. Another limitation is lack of clinical information 
for some patients, which would influence the stability of the 
predictive model to some extent.

In summary, we demonstrate that the intensities of 
the plasma metabolites are closely related with the OS 
in EOC patients and identify a panel of four metabolites 
as potential biomarkers to predict the three-year survival 
of EOC patients. Further analysis reveal that metabolite-
based predictive risk scores are independent of clinical 
predictors for EOC survival. Finally, the temporal 
patterns of each potential predictive biomarker and their 
predictive performance were observed. Our study would 
provide information for further study about EOC survival 

Figure 6: ROC curve to evaluate the predictive accuracy between short-term mortality and long-term survival.
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mechanism, and the accurate prognosis prediction could 
guide the appropriate treatment clinically.

MATERIALS AND METHODS

Study population

This study was approved by the Ethics Committee of 
the Tumor Hospital of Harbin Medical University, and all 
patients signed informed consents before the study began. 
Participants who were suffering from metabolic diseases, 
liver diseases, kidney diseases, or any other cancers 
were excluded. We enrolled 120 EOC patients who were 
diagnosed and received surgery between August, 2009 and 
April, 2013 and obtained the follow-up information from 
the hospital follow-up center during April 1st-5th, 2016. 
Patients lost to follow-up or without definite endpoint 
information, e.g. unclear death time, were excluded 
from this study. In total, nighty-eight EOC patients with 
survival and death information were enrolled in this study. 
For patients who received surgery and died in three years, 
we are still gathering the information of the survival time 
after surgery/treatment and the cause of death.

Sample collection

Plasma samples were collected from pretreatment 
primary ovarian cancer patients at the Department 
of Gynecology of Harbin Medical University Tumor 
Hospital (Harbin, China). Fasting venous blood samples 
were collected using vacuum blood collection tube that 
contained anticoagulant dipotassium EDTA. Plasma was 
separated by centrifugation at 1,323g for 10min and the 
supernatant was stored at -80°C until further analysis.

Sample preparation

To ensure the stability and repeatability of ultra-
performance liquid chromatography mass spectrometry 
(UPLC/MS) systems, a total of 10 blank samples and 10 
quality control (QC) samples were used in this study. All 
the plasma samples were thawed at 4°C and a volume of 
200 μl of plasma was mixed with 600 μl of acetonitrile 
at 4°C. Mixed samples were centrifuged at 1,323g for 10 
min. The supernatant was transferred into a clear vial and 
dried in a vacuum rotary dryer. The residue was dissolved 
in 100 μl acetonitrile/water (1:3, v/v), vortex-mixed for 
5 min, then centrifuged at 1,323g for 15 min, and the 
supernatant was held for further analysis.

Chromatography

A 10 μl aliquot of the pre-treated sample was 
injected into a 2.1 × 100 mm ACQUITY UPLC BEH 
C18 column using a UPLC system. This UPLC system 
was performed using acetonitrile containing 0.1% formic 
acid (solvent A) and water containing 0.1% formic acid 

(solvent B) as the mobile phase at a flow rate of 0.3 ml/
min at 40°C. A linear mobile phase gradient was used as 
follows: 1% A, held for 0.5 min; 0.5-4.0 min, increased to 
15% A; 4.0-4.5 min, increased to 55% A; 4.5-11.5 min, 
increased to 90% A; 11.5-12.0 min, increased to 99% A; 
and 12.0-15.0 min, held at 99% A. After the analytical run, 
the mobile phase was returned to 1% A in 0.1 min and 
equilibrated at 1% A for 1 min.

Mass spectrometry

Mass spectrometry was performed with an Agilent 
6520-QTOF, equipped with electrospray ionization (ESI) 
source operating at positive-ion (ESI+) and negative-ion 
(ESI-) electrospray ionization mode. The capillary voltage 
was 4.0 kV at ESI+ mode and 3.5 kV at ESI- mode. 
Nitrogen was used as the dry gas, and the desolvation gas 
flow was set at 10 l/min. The desolvation temperature was 
set at 330°C. Centroid data were collected in the full scan 
mode from 50 to 1000 m/z.

Data preprocessing and annotation

Raw data were converted into mzdata-format files 
by MassHunter Qualitative Analysis Software and then 
imported to the XCMS packages in R for preprocessing. 
The parameters were the same as previous studies 
[31]. CAMERA in R was used for annotation of the 
preprocessing results. Isotopic peaks were excluded prior 
to statistical analysis.

Metabolites related to survival

The primary outcome was assessed using three-
year OS, which was defined as time from diagnosis 
to death due to any causes or last follow-up of patients 
that were still alive [50]. The preliminary association 
between the metabolites and survival time was assessed 
by univariate Cox proportional hazards regression, and 
the corresponding lfdr value was estimated in order to 
correct the multiple comparisons. Metabolites with lfdr < 
0.05 were considered to be significantly associated with 
survival. RSF: a multivariate survival analysis method was 
performed to calculate the relative variable importance 
(vimp) value for the significance of metabolites in survival 
analysis, which can effectively deal with the co-linearity 
and the interaction among variables. We ranked the vimp 
values in descending order, and top ten metabolites were 
chosen for further study. For the purpose of prediction, the 
predictive metabolites were as far as possible to provide 
complementary information between each other, and 
we selected four metabolites as the potential predictive 
biomarkers, based on the spearman correlation coefficient 
(CC) lower than 0.5 between each pair of metabolites. The 
relative intensity of these four metabolites was categorized 
into low, medium, and high relative intensity groups, 
based on their corresponding 25th and 75th percentiles as 
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cutoffs, respectively. Survival curves were calculated by 
the Kaplan-Meier method and compared using the log-
rank test for the difference among low, medium, and high 
relative intensity groups for each metabolite.

Risk score and its predictive performance

In order to facilitate the application in clinical 
practice, a risk score was defined as a linear combination 
of four metabolites together with clinical information. 
The scaled intensity of those four metabolites alone was 
calculated, and coefficient for each metabolite in the risk 
score was weighted by their respective Cox regression 
coefficients, based on this scaled relative intensity. Time-
dependent area under the receiver operating characteristic 
(ROC) curve, allowing characterization of diagnostic 
accuracy for censored survival outcomes, was explored to 
evaluate the predictive accuracy [51].

Discrimination performance of potential 
biomarkers between short-term mortality and 
long-term survival groups

Ninety-eight EOC patients were divided into three 
groups by survival time: less than 6 months, between 
6 months and 3 years, and longer than 3 years. Each 
category was defined as short-term mortality, medium 
survival, and long-term survival, separately. After that, 
in order to explore if four metabolites were different 
across the groups, we utilized Student’s t test to compare 
the alteration of the four metabolites between each two 
groups. In addition, further study was performed to 
explore whether those four metabolites had the potential 
discrimination ability between short-term mortality and 
long-term survival. We performed 5-fold cross validation 
to assess the predictive accuracy of the combination of 
four predictive biomarkers between short-term mortality 
and long-term survival fitting with Random Forest model. 
The statistical analysis was performed in the statistical 
program R (http://www.r-project.org).
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