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In this study, the 1H HRMAS-NMR (High-resolution Magic Angle Spinning-Nuclear Magnetic Resonance)
spectra of 52 cheese samples obtained from the South Korean dairy farms were evaluated for their meta-
bolic profiling and intensities associating with the sensory qualities. The NMR profiles displayed a broad
range of compounds comprising amino acids, carbohydrates, organic acids, and phospholipids.
Afterwards, the cheese samples were categorized into three groups (more likeness - G1, moderate like-
ness - G2, less likeness - G3), in relating to their sensory scores. The NMR data of the samples were later
investigated through multivariate statistical tools to define the variations in metabolic fingerprints of
every cheese sample and their intensities hailing in individual sensory groups. The unsupervised PCA
employing all cheese samples unveiled the uniqueness in metabolite profiles of the brown and cheddar
type cheeses (outliers). Moreover, Gouda and other types of cheeses displayed samples positioning in
respective of their metabolite profiles. The pairwise comparison of sensory groups in the supervised mod-
els perceived better separation in OPLS-DA than PLS-DA. The corresponding VIP (PLS-DA) and loading
(OPLS-DA) plots revealed amino acids and organic acids (lactate, citrate) as significant variables. The dis-
crimination of G 1 Gouda type of cheeses against G 2 and G 3 was highly associated with their citrate
levels. Further investigation using heatmaps displayed clear differentiation between each sensory group
in terms of the levels of amino acids, lactate, citrate, phospholipids, and glycerol, conveying these varia-
tions are likely due to proteolytic and metabolic processes in cheese ripening. This study concluded that
1H HRMAS-NMR metabolite profile of the Korean cheeses is consistence with their sensory qualities.
Further, the candidate metabolites identified in this study confers their potential application as biomark-
ers in cheese industries for faster and effective validation of sensory characteristics.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cheese is a highly popular fermented dairy product produced all
over the world in numerous types for its specific flavour, aroma,
and texture which are determined by the resources and production
technologies precise to each region (Fox et al., 2017). Ripening is
the most crucial step in cheese production, constituting a complex
set of biochemical and microbiological reactions that give rise to
the distinct sensory attributes in various cheese types. The ripen-
ing process and degree of ripening perform a crucial role in the
quality improvement of cheese products with marginal cost and
higher consumer acceptance (Santiago-López et al., 2018;
Khattab et al., 2019). Additional factors, such as the raw materials,
production process, and storage conditions, also significantly alter
the cheese composition/quality (Ochi et al., 2012). Unfortunately,
the domestic cheese industries still rely on traditional methods
of grading and judging in quality control and product development.
A precise study on the intact cheese composition is the utmost con-
cern to obtain efficient quality control and describe the influence of
individual variables. Some studies have focused on discriminating
the cheese types based on specific compounds that affect distinct
sensory attributes (Avsar et al., 2004; Van Leuven et al., 2008).
These studies meant to be an alternative for the laborious, time-
consuming, and inconsistent traditional methods.

The rising consumer awareness towards the quality and safety
of food products obligates the industrial sectors to ascertain and
affirm the identity, and description of the products (Drake and
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Delahunty, 2017). It is very complex in the cheese industry to man-
age cheese quality by grasping scientifically the potential changes
in the production/ripening process and on the target compounds
modifying the cheese quality (Ochi et al., 2013). Metabolite profil-
ing holds promise as an extremely effective tool to explain the
quality in terms of the ingredients, which would be more appropri-
ate in the assessment of the cheese complex to ensure quality and
reveal cheese production in general (Ochi et al., 2012; Scano et al.,
2019a). Recently, the High-Resolution Magic Angle Spinning
Nuclear Magnetic Resonance (HRMAS-NMR) spectroscopy aids as
a powerful and versatile analytical tool for rapid and accurate iden-
tification of the overall metabolite profile in a single step (Mazzei
and Piccolo, 2012). High reproducibility, non-selectiveness, rela-
tively fast measurement, no sample extraction procedures, non-
destructive and easier quantification of metabolites with lower
cost under minimal analysis time are added advantages of
HRMAS-NMR over other mass-spectrometry methods (Emwas
et al., 2019). The metabolite profiles of cheese varieties of Parmi-
giano Reggiano (Shintu and Caldarelli, 2005), Emmental (Shintu
and Caldarelli, 2006) and Mozzarella di Bufala Campana (Mazzei
and Piccolo, 2012) are successfully analysed using HRMAS-NMR.
In recent times, NMR profiles of cheeses combined with multivari-
ate statistical approaches implemented successfully to discrimi-
nate their geographical origin (Consonni and Cagliani, 2008), age
of ripening periods (Shintu and Caldarelli, 2005), brining time
(Ruyssen et al., 2013) and adjunct cultures (Rodrigues et al.,
2011; Piras et al., 2013).

The continuous demand for domestic cheese consumption in
both the consumer market and food processing industry increased
the proportion of local dairy farms for cheese production in South
Korea (Kandasamy et al., 2019). To date, no literature published
regarding the metabolomics studies on Korean cheese types and
in particular, no NMR profile data available or remains scarce. In
present study, the metabolite profiling of different cheese types
of South Korea was determined through 1H HRMAS-NMR analysis
and evaluated for their discrimination based on their sensory qual-
ities, with the ultimate aim of acquiring a powerful tool for rapidly
tracing the quality of cheeses to consumer perception. This study
focused on (i) to reveal the differences of the metabolite profiles
in various cheese types through 1H HRMAS-NMR analysis; (ii) to
evaluate the variations in sensory qualities of cheeses by coupling
the NMR data with multivariate statistical analysis; and (iii) to
classify the potent metabolites that alter the acceptable character-
istics in cheeses.
2. Materials and methods

2.1. Cheese samples

Fifty-two cheese samples, including 11 types (Gouda [34],
Camembert [5], Berg [3], Appenzeller [2], Cheddar [2], Brie [1],
Brown [1], Emmental [1], Frill [1], Quark [1], and Reblochon [1]),
collected from the local dairy farms of seven different provinces
in South Korea were the basis of this study. The numbers in paren-
thesis represent the number of samples in each cheese type, and
their ages ranged from 3 to 6 months. The complete details of
the number of samples in each cheese type and their geographical
origin are available in Table 1.
2.2. Sensory scoring of cheeses

Sensory evaluation was conducted in cheeses using six expert
personnel from different universities, research institutes and
hotels in South Korea. The experts are well qualified in carrying
sensory analysis at a high level of discrimination, sensitivity and
consistency in measurement. The cheese samples were temporar-
ily stored in a refrigerator and placed at room temperature one
hour before tasting. The samples were evaluated by the experts
for sensory scores (Table 2) according to flavours (acidic, bitter,
barny, cooked, feed, fruity, fermented, lipase/rancid, mouldy,
weedy, yeasty), body and textures (curdy, gassy, mechanical holes,
pasty, sponge, weak, abnormal/ heterofermentative), and appear-
ance and colours (cracks in the rind, surface mould, rough surface,
soiled surface, soft spots, huffed). De-ionised water and unsalted
crackers were provided for palate cleaning between each sample.
The score data of all cheese samples were managed and analysed
using Microsoft Excel spreadsheet.

2.3. Sample preparation for NMR analysis

3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP-
d4) and deuterium oxide (D2O) were obtained from Sigma-
Aldrich Co (St. Louis, MO, USA). For NMR analysis, each cheese
sample weighing 20 mg added into a 4 mm NMR nanotube fol-
lowed by addition of 20 lL of 2 mM TSP-d4 solution in D2O.

2.4. NMR data acquisition and processing

The NMR spectral measurements were obtained on a 600 MHz
Agilent HR-MAS (High Resolution-Magic Angle Spinning) NMR
spectrometer (Agilent Technologies, Palo Alto, CA, USA) running
at a 1H frequency of 599.93 MHz, outfitted with a 4-mm gHX
NanoProbe by a spinning rate of 2000 Hz. The presat Carr–Pur
cell–Meiboom–Gill (CPMG) pulse sequence employed to control
the residual water signal and high-molecular-mass compounds.
Throughout the experiments, the sample temperature constantly
maintained at 25 �C (298.15 K). For each sample, 128 transients
acquired with a relaxation delay of 3.0 s, an acquisition time of
3.0 s, the proton 90� pulse (7.075 ls) which resulted in a total
acquisition period of 13 min 9 sec for each sample. The entire spec-
tral data were Fourier-transformed after multiplying the free
induction decays by an exponential weighting function corre-
sponding to a line broadening of 0.5 Hz.

2.5. Targeted metabolite profiling

Identification of metabolites was performed using the Chenomx
Profiler, a module of Chenomx NMR Suite 7.1 professional edition
(Chenomx Inc., Edmonton, Canada). While, the quantification of
metabolites were done using the Chenomx 600 MHz library data-
base from Chenomx NMR Suite 7.1, in which the concentration of
individual metabolites was determined through the signal corre-
sponding to a known concentration of reference (in this case
TSP-d4). Each spectrum was converted to the frequency domain,
phased and baseline corrected, and then the TSP-d4 singlet peak
was calibrated to 0.00 ppm.

2.6. Multivariate statistical analysis

To analyse the variations in the metabolite profile of cheese
samples and within the sensory groups, multivariate statistical
analysis methods viz., PCA (Principal Component Analysis), PLS-
DA (Partial Least-Squares Discriminant Analysis) and OPLS-DA
(Orthogonal PLS-DA) analysis were conducted in the webserver
MetaboAnalyst 4.0 (Chong et al., 2019). Initially, the 1H NMR data
were log-transformed, normalized and Pareto scaling (divide the
mean-centred data by the square root of the standard deviation
for the variable) applied to ensure an unbiased variability between
the samples. Pareto scaling is generally applied when a large
dynamic variation exists in the data set. Compared to unscaling,
Pareto scaling gives greater weight to the variables in the gener-



Table 1
Details about the cheese types and location of all the samples used in study.

Sample Id. Cheese type Location Province Total

1 Gouda Paju-si Gyeonggi-do 18
2 Berg Pocheon-si
4 Gouda Goyang-si
6 Gouda Goyang-si
17 Gouda Yeoncheon-gun
20 Gouda Goyang-si
23 Berg Paju-si
26 Gouda Pocheon-si
29 Gouda Paju-si
30 Gouda Goyang-si
34 Appenzeller Paju-si
35 Gouda Yeoncheon-gun
38 Gouda Goyang-si
39 Gouda Paju-si
42 Gouda Paju-si
43 Gouda - black pepper Paju-si
50 Gouda Goyang-si
51 Gouda Yeoncheon-gun

3 Gouda Cheonan-si Chungcheongnam-do 9
22 Gouda Cheonan-si
28 Camembert Cheonan-si
36 Cheddar Taean-gun
37 Gouda Cheonan-si
40 Camembert Cheonan-si
46 Gouda Cheonan-si
48 Camembert Cheonan-si
12 Gouda Cheonan-si

9 Gouda Yeonggwang-gun Jeollanam-do 13
11 Gouda Jangheung-gun,
52 Brown Yeonggwang-gun
13 Gouda Yeongam-gun
14 Camembert Yeongam-gun
18 Berg Yeongam-gun
19 Gouda Yeonggwang-gun
24 Emmental Yeonggwang-gun
25 Pepper camembert Yeongam-gun
32 Gouda Yeongam-gun
33 Quark Yeonggwang-gun
41 Gouda Hampyeong-gun
44 Gouda Yeongam-gun
49 Brie Yeongam-gun

5 Gouda Hamyang-gun Gyeongsangnam-do 5
16 Frill Hamyang-gun
21 Reblochon Hamyang-gun
31 Bongson Cress (Gouda) Hanan-gun
47 Gouda Hanan-gun

10 Cheddar Gimje-si Jeollabuk-do 4
15 Gouda Jeongeup-si
27 Appenzeller Gimje-si
45 Gouda Gimje-si

7 Gouda Cheorwon-gun Gangwon-do 1

8 Gouda Cheongju-si Chungcheongbuk-do 1

Table 2
Sensory score chart for evaluation of cheese samples.

Sensory properties Score

Flavour 50
Body & Texture 30
Appearance & Colour 20

Total 100
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ated models by increasing the contribution of metabolites with a
lower concentration (Craig et al., 2006).

Among the multivariate models, PCA, an unsupervised dimen-
sionality reduction method was executed initially to detect the
possible outliers and the intrinsic clustering among the groups,
without any bias. Subsequently, the supervised models PLS-DA
and OPLS-DA were performed to obtain a maximum separation
between classes. PLS-DA is a linear classification model predicted
based on accuracy, multiple correlation coefficient (R2), and
cross-validated R2 (Q2) in 10-fold cross-validation. R2 represents
a quantitative measure of the total variation in the data indicating
the goodness of fit and Q2 the goodness of predictability (Worley
and Powers, 2013). The major distinctive features were ranked
based on the scores (�1) of the variable importance in projection
(VIP) of each variable in the PLS-DA model. While OPLS-DA is a
modified PLS-DA method, that explains the variation between
and within the groups, using distinct predictive and orthogonal
components. The S-plot (scatter plot) generated in this model,
visualize the covariance (p) and the correlation structure p(corr)
among the X-variables and the predictive score t[1]. This model
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was estimated using R2X (explained variation in X), R2Y (explained
variation in Y), and Q2Y (predicted variation in Y) using cross-
validation. The values of these parameters are between 0 and 1;
the nearer they approach 1, they can be better predicted or
explained.

Further, using the normalized data, an HCA heat map was pro-
duced to describe the classification ability and the concentration of
each metabolite in all the cheeses. In addition, heat maps based on
the sensory groups were constructed to determine the metabolite
profile difference within the groups.
3. Results and discussion

3.1. Sensory evaluation of cheeses

Sensory evaluation of cheese is of utmost important for ascer-
taining the virtual merits in the cheese-making practices and the
impact of constituents on the precise sensory traits of cheese.
Besides, sensory evaluation is highly essential to govern the effect
of sensory characteristics of the intake attributes of cheese and
consumer satisfaction (Drake and Delahunty, 2017). In this study,
the sensory evaluation was conducted through a group of cheese
experts to calculate the score of acceptability for attributes viz., fla-
vour, body and texture, and appearance and colour, separately for
every cheese sample as described in Section 2.2. The reliable quan-
titative measurement on the evaluation of sensory characteristics
is vital in the food industry to drive the fluctuating needs towards
both consumers and the market (Khattab et al., 2019). Based on an
overall score assessment, the cheese samples were classified under
three different sensory groups (G1, G2, G3) as outlined in Table 3.
The cheese samples scoring 507–457 (G1) was rated as more like-
ness, while 456–406 (G2) as moderate likeness and <406 (G3) as
less likeness. Among the 11 cheese types evaluated, the samples
of Gouda were predominant and distributed in all the groups.
Table 3
Details about sensory scoring and group classification of cheese samples used in multivar

Group & Sensory Score Cheese variety

I
(507–457)

Appenzeller
Frill
Gouda

Quark

II
(456–406)

Appenzeller
Brie
Berg
Camembert

Camembert (Black Pepper)
Cheddar
Gouda

Gouda (Black Pepper)
Gouda (Bongson Cress)
Reblochon

III
<406

Berg
Brown
Camembert
Cheddar
Emmental
Gouda
Interestingly, all Gouda cheese samples of Chungcheongnam-do
province is rated as G1. On the contrary, other cheese samples col-
lected in a single province found disseminated in all three groups.
These results suggest that the sensory attributes of Korean cheese
samples are not greatly affected by their geographical resources.
3.2. 1H HRMAS-NMR analysis and metabolic assignments of cheese
samples

In cheese ripening process, a cascade of microbiological and
biochemical events (glycolysis, lipolysis and proteolysis) preceded
by the starter and adjunct cultures gives rise to several bioactive
compounds that control the organoleptic characteristics
(Santiago-López et al., 2018; Scano et al., 2019a). Metabolite profil-
ing of the intact cheese using HRMAS-NMR allows the direct doc-
umentation of metabolites without prior extraction processes
(Mazzei and Piccolo, 2012). A representative 1H HRMAS-NMR spec-
trum obtained from the cheese samples employed in this study
(Fig. 1), with a total of 29 identified metabolites. The overall infor-
mation concerning the proton NMR assignments, chemical shifts
and peak multiplicity is available in Table 4. The NMR spectra iden-
tified 16 amino acids (alanine, asparagine, aspartate, glutamate,
glutamine, glycine, isoleucine, leucine, lysine, methionine, pheny-
lalanine, proline, serine, threonine, tyrosine and valine); 5 organic
acids (acetate, citrate, lactate, pyruvate and succinate; 2 sugars
(galactose and lactose); 3 amino acid derivatives (choline, creatine
and tyramine); 2 phospholipids (O-phosphocholine and sn-
Glycero-3-phosphocholine); and an alcohol of glycerol. Similar,
metabolite profiles are previously compiled in Parmigiano Reg-
giano (Consonni and Cagliani et al., 2008) and Fossa pit (Scano
et al., 2019b) cheeses. Of all the metabolites, proportion of lactate
and aminoacids are predominant in all the cheese samples. Ochi
et al., (2013) stated that the levels of aminoacids and lactate aids
as strong marker candidates in cheese ripening process. Similar
iate analysis.

Location Samples (nos)

Gyeonggi-do 1 13
Gyeongsangnam-do 1
Chungcheongnam-do 5
Jeollanam-do 2
Jeollabuk-do 2
Gyeongsangnam-do 1
Jeollanam-do 1

Jeollabuk-do 1 23
Jeollanam-do 1
Gyeonggi-do 2
Chungcheongnam-do 1
Jeollanam-do 1
Jeollanam-do 1
Chungcheongnam-do 1
Gyeonggi-do 8
Jeollanam-do 3
Gangwon-do 1
Gyeonggi-do 1
Gyeongsangnam-do 1
Gyeongsangnam-do 1

Jeollanam-do 1 16
Jeollanam-do 1
Chungcheongnam-do 2
Jeollabuk-do 1
Jeollanam-do 1
Gyeonggi-do 6
Jeollanam-do 2
Gyeongsangnam-do 1
Chungcheongbuk-do 1



Fig. 1. Representative 600 MHz 1H HRMAS NMR spectrum of complete (a) and expanded regions (b) of the metabolites in cheeses. The assignments to the functional
molecules are reported in Table 4.
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1H NMR cheeses profile with lactate as the most abundant metabo-
lite is stated earlier by Ruyssen et al. (2013).

3.3. Multivariate analysis

The relevance of HRMAS-NMR metabolite profiles in the differ-
entiation of ripening periods, geographical origin and quality
assessment has been demonstrated earlier in Parmigiano Reggiano
(Shintu and Caldarelli, 2005), Emmental (Shintu and Caldarelli,
2006) and Mozzarella di Bufala Campana (Mazzei and Piccolo,
2012) cheeses. In the current study, we combined 1H HR-MAS
NMR with multivariate statistical methods to examine whether
the metabolite fingerprints of cheese samples are suitably unique
to detect metabolic markers in the sensory group discrimination.
To our knowledge, this is the first study to deal with the metabolite
profiles and intensities of the Korean cheeses using 1H HRMAS-
NMR and to discriminate them based on their sensory qualities.
3.3.1. PCA analysis for cheese samples
The 1H HRMAS-NMR metabolite data matrix obtained for the

cheese samples was assessed initially by Principal component
analysis (PCA) to reduce the dimensionality of the data, visualize
samples grouping and outliers. This untargeted PCA aids in the
detection of any inherent sample clustering devoid of any bias
since it does not require any information on the data sets
(Worley and Powers, 2013). The initial PCA assessed the metabolite
profiles of all the 52 cheese samples, divided into two classes. The
class 1 and 2 represents Gouda type and other types of cheeses,
respectively. The PCA score plot (Fig. 2A) shows large overlapping
and tight clustering among cheese samples in the centre, with total
variance accounting 45.9% as the first principal component (PC1)
and 14.7% as the second principal component (PC2). Nevertheless,
one strong (52 - brown cheese) and one weak (36 - cheddar
cheese) outliers remain outside and on the Hotelling T2 ellipse
(95% confidence region) respectively, are identified for uniqueness



Table 4
1H HRMAS-NMR assignments, identified metabolites and chemical shifts (multiplic-
itya) of distinguishable peaks obtained in D2O of cheese samples.

Assigned
No.

Metabolite Chemical shift (ppm)

1. Acetate 1.9 (s)
2. Alanine 1.5(d), 3.8(m)
3. Asparagine 2.8(q), 2.9(q), 4.0(q), 6.9(s)
4. Aspartate 2.7(q), 2.8(q), 3.9(q)
5. Choline 3.2(s), 3.5(t), 4.1(m)
6. Citrate 2.5(d), 2.7(d)
7. Creatine 3.0(s), 3.9(s)
8. Galactose 3.5(m), 3.6(m), 3.7(m), 3.8(m), 3.9(m), 4.0

(m), 4.1(m), 4.6(d), 5.3(d)
9. Glutamate 2.1(m), 2.4(m), 3.8(m)
10. Glutamine 2.1(m), 2.4(m), 3.8(t), 6.9(s)
11. Glycerol 3.5(q), 3.69(m), 3.8(m)
12. Glycine 3.5(s)
13. Isoleucine 0.9(t), 1.0(d), 1.2(m), 1.5(m), 2.0(m), 3.7(d)
14. Lactate 1.3(d), 4.1(q)
15. Lactose 3.3(t), 3.5–4.4(m), 4.7(d), 5.2(d)
16. Leucine 0.9(t), 1.7(m), 3.7(m)
17. Lysine 1.4(m), 1.5(m), 1.7(m), 1.9(m), 3.0(t), 3.9(t)
18. Methionine 2.1(s), 2.2(m), 2.6(t), 3.8(m)
19. O-Phosphocholine 3.2(s), 3.6(m), 4.2(m)
20. Phenylalanine 3.1(q), 3.3(q), 4.0(m), 7.3–7.4(m)
21. Proline 2.0(m), 2.3(m), 3.3 (m), 3.4(m), 4.1(m)
22. Pyruvate 2.4(s)
23. Serine 3.8(m), 3.9(m), 4.0(m)
24. Succinate 2.5(s)
25. Threonine 1.3(d), 3.6(d), 4.3(m)
26. Tyramine 2.9(t), 3.2(t), 6.9(d), 7.2(d)
27. Tyrosine 3.0(m), 3.2(m), 3.9(m), 6.9(d), 7.2(d)
28. Valine 1.0(q), 2.3(m), 3.6(d)
29. sn-Glycero-3-

phosphocholine
3.2(s), 3.6(m), 3.9(m), 4.0(m), 4.3(m)

a Letters in parenthesis denote the peak multiplicities: s - singlet; m - multiplet;
d - doublet; t – triplet and q – quartet.
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in their metabolite profiles. The brown cheese shows positive con-
tributions on both the axis, while cheddar cheese shows positive in
PC1 and negative in the PC2 axis. The loading plots (Fig. 2B) shows
creatine, galactose, glycerol, lactose, O-phosphocholine and thre-
onine were positive towards both the PCs explaining their higher
levels in brown cheese. Likewise, choline, pyruvate and citrate
are positive in PC1 and negative in PC2 indicating these variables
define the composition of cheddar cheese.

Subsequent PCA analysis after excluding the outliers was chal-
lenging to elucidate since the samples in the class of other types
of cheeses were detected as outliers consistently, may be due to
the dominance of Gouda type cheeses. Hence, we ran a PCA analy-
sis separately for the classes Gouda type and other types of
cheeses, to study their relevant discrimination based on sensory
qualities (see Section 3.1).

In the PCA score plots of both Gouda type (Fig. 2C) and other
types (Fig. 2D) of cheeses, all samples were lying inside the Hotell-
ing T2 ellipse. These plots demonstrated a clear view that each
cheese sample is plotted based on the NMR metabolite composi-
tion, rather than on geographical location. The score plot for the
Gouda type cheeses exhibits a total variance accounting of 39.3%
in PC1 and 16.1% in PC2 (Fig. 2C). The sensory G1 Gouda samples
are noticed to be closely clustering on the negative side of PC1
and positive on PC2. The samples closely clustering together sig-
nify similar metabolite composition, while more distance indicates
greater variation. No clear separation detected among the sensory
G2 and G3 samples. In the loading plot (Fig. 2E), the amino acids
mainly negative correlated in PC1 correlates the higher proportion
of amino acids in G 1 cheese samples. The distantly found variable
citrate contributes negative in PC2 and positive in PC1, outlining its
significance in the separation between sensory groups of Gouda
type cheeses. In Gouda cheese production, citrate acts as a main
source for diacetyl (2,3-butanedione) production by the citrate
metabolising bacteria employed as starter cultures (Van den Berg
et al., 2004). The phospholipids and lactate variables highly influ-
ence the composition of the Gouda-Bongsen Cress (31) that lies
near the boundary of the Hotelling T2 ellipse.

Likewise, in PCA for class other types of cheeses (except Gouda
type), the score plot exhibits a total variance accounting of 34.1%
for PC1 and 16.2% for PC2 (Fig. 2D). In the score plot, the Camem-
bert cheese (40) remains distant from other samples with a posi-
tive contribution to both the PCs. The variable tyramine located
in far and having a positive contribution on both the PCs in the
loading plot (Fig. 2F) is bound for the uniqueness in Camembert
cheese.

3.3.2. PLS-DA of cheese samples
Next, we employed a supervised PLS-DA approach, which max-

imizes the separation between the groups by presenting the high-
est predicted indicator variable. This model on Gouda type cheeses
improved better separation between the groups with a total vari-
ance of 39% and 7.6% in PLS components 1 and 2, respectively.
Compared with PCA, a clear separation of sensory G1, and a certain
degree of separation between G2 and III samples are displayed in
this model (Fig. 3A). The location of G1 cheese samples along the
direction of PLS component 2 is attributed with their higher con-
tent of organic acids (acetate, succinate, aspartate) and amino acids
together with lower levels of glycerol, O-phosphocholine, choline,
citrate, lactate and sn-Glycero-3-phosphocholine (Fig. 3B). The sta-
tistical robustness of the model evaluated by 10-fold cross-
validation shows the determination coefficient (R2) and cross-
validation determination coefficient (Q2) was 0.665 and 0.494,
respectively. Further cross-validation of the model done through
20 permutation tests gives a significant p-value of <0.05. The Vari-
able importance projection (VIP) plot derived in this model pro-
vides a holistic view of significant variables ranked from high to
low VIP scores. The score of each variable is calculated as the
weighted sum of the squared correlation between the initial vari-
ables and PLS-DA components. Variables with VIP scores around
1.0 works well in selection of significant variables, although scores
>1.0 are most relevant in explaining the model (Worley and
Powers, 2013). Fig. 3C shows the metabolites such as citrate, iso-
leucine, lysine, threonine, valine, succinate, proline, O-
phosphocholine, glycine, glutamate, lactate, choline, asparagine
and methionine as the main discriminants in the PLS-DA model.
Among them, citrate yields the largest VIP score attributing to its
highest contribution in sensory group discrimination.

Similar PLS-DA approach for samples of other types of cheese
accounted for a total variance of 25.8% in PLS 1 and 17.0% in PLS
2 components (Fig. 3D) with appreciable group discrimination
between G1 and G3 samples. Higher citrate, lactate and tyramine
levels together with lower amino acids in G3 samples and the
vice-versa of this composition in G1 define the separation between
the groups (Fig. 3E). The VIP plot (Fig. 3F) describes tyramine,
aspartate, asparagine, o-phosphocholine, glutamate, sn-Glycero-
3-phosphocholine, proline, glycine, glutamine, lysine, valine and
citrate as significant metabolites.

3.3.3. Pairwise comparison of sensory groups in Gouda type cheeses
The effect of variation on the ingredients of metabolite profiles

and the concentration of specific metabolites in cheese will reveal
valuable knowledge for product design and process development.
In our study, we adopted a pairwise comparison in PLS-DA and
OPLS-DA tools to obtain the VIP scores and a corresponding loading
plot that outlines the significant metabolites in the discrimination
of each sensory group. The pairwise comparison for the Gouda type
cheese samples using PLS-DA models shows the clear separation of



Fig. 2. Score (left) and loading (right) plots of Principal Component Analysis (PCA) showing the metabolic pattern for all the cheese samples (A, B; 1-Gouda type, 2-other types
of cheeses), only Gouda type (C, E) and remaining types of cheese samples (D, F). In score plots of C and E, 1, 2, 3 represent the groups classified based on sensory evaluation.
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Fig. 3. PLS-DA score, loading and VIP plots derived from the 1H NMR for all the cheese samples in Gouda type (A-C) and samples except Gouda type (D-F). In the score plots (A,
D), 1, 2, 3 represent the groups classified based on sensory evaluation.
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Fig. 4. PLS-DA score (A-C) and VIP (D-F) plots derived from the 1H NMR spectra of Gouda type cheese samples demonstrating the separation between the sensory groups of 1
and 2 (A, B), 1 and 3 (C, D) and 2 and 3 (E, F).

1454 S. Kandasamy et al. / Saudi Journal of Biological Sciences 27 (2020) 1446–1461



S. Kandasamy et al. / Saudi Journal of Biological Sciences 27 (2020) 1446–1461 1455
G1 against G2 and G3 samples (Fig. 4 A-C). Their corresponding VIP
plots (Fig. 4 D-E), unveiled citrate as the most relevant metabolite
involved in the discrimination. A partial separation between the G2
and G3 samples signifies the differences in metabolite profiles
among them were not much better. The R2 and Q2 values were in
the ranges of 0.430–0.748 and �0.284 to 0.447, respectively.

Similar, pairwise comparison on an OPLS-DA (Fig. 5 A-C) exhi-
bits greater separation between the groups, than in PLS-DA.
OPLS-DA provides a clear separation when variation between
groups is greater than the variation within the group in the dataset.
The model employs orthogonal signal correction (OSC) to filter the
information that has no connection with the response matrix (Y)
from the independent variable matrix (X), termed as ‘‘structured
noise”. Thereby, OPLS-DA distinguishes the differences between
groups with improved efficiency and analytical power (Worley
and Powers, 2013). The OPLS-DA models for pairwise comparison
of G1 with G2 and G3 samples illustrate the location of these
groups on the opposite side of the Hotelling T2 ellipse, confirming
higher variations in their metabolite profiles (Fig. 5 A-B). A partial
overlapping prevails between G2 and G3 samples, as similar to
PLS-DA (Fig. 5 C). The R2Y and Q2 values were in the ranges of
0.379–0.783 and �0.166 to 0.928), respectively. The loading plot
of OPLS-DA models illustrates the promising metabolites or dis-
criminant markers involved in the separation of the two groups.
The p[1] and p(corr)[1] in the loading plot, are X- and Y-axes vec-
tors of the predictive components, which define the significance
and consistency of individual variables in X, respectively. The
metabolites distant from the centre axis correspond to the greater
deviation between the groups with more reliability and are rele-
vant in the hunt for biomarkers (Worley and Powers, 2013). Our
loading plots (Fig. 5 D-F) express lower levels of citrate, choline
and O-phosphocholine in GI, higher levels of citrate in G3 and
higher levels of lactate and citrate in G3 impel the separation of
the sensory group among others. These data reveal the potential
of these analytical and statistical approaches in characterizing
Gouda type cheese samples; furthermore, they reveal citrate as
the sole metabolite marker in discrimination of the sensory groups.

3.3.4. Pairwise comparison of sensory groups in other types cheeses
The PLS-DA models showed that samples of G1 are well distin-

guished from the other sensory groups in both G2 and G3 samples
(Fig. 6 A-B). Furthermore, the separation was also observed
between G2 and G3 samples (Fig. 6 C). These results confirmed
the dissimilarity in the metabolite profiles between each sensory
group in other types of cheeses. The VIP of the major metabolites
owing to the separation of the sensory groups in the PLS-DA model
is illustrated in Fig. 6 D-F. The R2 and Q2 values were in the ranges
of 0.606–0.793 and �0.045 to 0.377, respectively. A further exam-
ination based on OPLS-DA score plots showed an improved separa-
tion with good reliability and predictive ability (Fig. 7). In both the
PLS-DA and OPLS-DA models, the sensory groups were on the
opposite side signifying a higher variation in their metabolite com-
position. The R2Y and Q2 values were in the ranges of 0.621–0.958
and 0.263–0.832, respectively. Compounds that contribute to the
separation of sensory groups were extracted in the corresponding
loading plots (Fig. 7 D-F). It is evident that the metabolite profiles
are distinctly different in each sensory group. Higher levels of
phospholipids (O-phosphocholine and sn-glycero-3-
phosphocholine) and amino acids (glycine and asparagine) found
in G I cheese samples greatly influenced their separation from G2
and G3. Likewise, higher levels of proline and glutamine in G2 sam-
ples and the metabolite tyramine in G3 cheese samples signifi-
cantly influences the separation of these groups from others.
These metabolites are also recognized as significant variables in
the VIP plots of the corresponding pairwise comparison of sensory
groups in PLS-DA models.
3.4. Heat map analysis of metabolite profiles

The quality and taste of the cheeses mainly depend upon the
metabolite profiles and the precise balance of concentration of var-
ious metabolites. Identification and quantification of metabolites
that significantly influence the sensory attributes would be much
more informative. Hence, in our study we produced heatmaps to
detect the unique profile of the cheeses and the metabolite varia-
tions among the sensory groups. The heatmap demonstrating the
HR-MAS NMR metabolic profiles for each cheese sample is pre-
sented in Fig. 8A. The heatmap results are consistent with the
results of the multivariate statistical analysis. The strong outlier
(52-brown cheese) in the PCA (Fig. 2A), displays a quite distinct
metabolite profile with higher levels of carbohydrates (lactose,
galactose) and organic acids (citrate, pyruvate), absence of lactate
and lower levels of amino acids. A similar NMR spectrum with
higher levels of lactose and organic acids in probiotic cheeses
was recorded at an early ripening stage (Rodrigues et al., 2011).
Thus, the reduced lactose transformation and proteolytic activity
observed in brown cheese might be associated with the early
ripening conditions. Piras et al. (2013) demonstrated the rapid uti-
lization of primary carbohydrates (lactose, galactose) by the starter
and adjunct cultures in the earlier ripening stage (within 15 days).
In accordance, lactose and galactose are detected only in brown
cheese. Likewise, the weak outlier (36-Cheddar cheese) shows an
elevated pyruvate level along with lower glycine, serine and pro-
line levels (Fig. 2A). Pyruvate, the intermediate in lactose fermen-
tation, was found to be prominent only in the outliers (brown
and cheddar type cheeses). Furthermore, the presence of biogenic
amine, tyramine in the Camembert (40) cheese alone was con-
firmed (Fig. 2).

3.4.1. Metabolite profile discrimination of sensory groups
In this study, we also assessed the variation in the NMR

metabolite levels of the cheese samples based on sensory groups.
The heatmaps demonstrated clear discrimination between each
sensory group in both the Gouda type (Fig. 8B) and other types
of cheeses (Fig. 8C) indicating the metabolite composition of the
cheese samples differs dramatically between the cheese samples
in the different sensory groups. The cheese aroma characteristics
are highly determined by the metabolites that yielded during pro-
teolysis, metabolism of carbohydrates, and lipolysis. The detailed
information about the starter cultures employed in the Korean
dairy farms for the production of the cheese samples used in this
study is summarised in Table 5. The starter culture bacteria
employed in the fermentation process acts as a main supplier of
the enzymes involved in the foresaid pathways. Predominantly,
employment of Lactobacilli and Lactococci starters has been proven
to hasten the cheese ripening process and enhancement of their
organoleptic qualities (McSweeney and Sousa, 2000, Khattab
et al., 2019). Proteolysis is the chief complex biochemical reaction
that occurs during the cheese ripening process, responsible for the
metabolism of milk proteins into small peptides and free amino
acids by the proteolytic enzymes of starter cultures. The amino
acids content acts as an indicator of the proteolytic activity and
for higher contribution in the background texture and flavour of
several cheese varieties (Ruyssen et al., 2013; Khattab et al.,
2019). In our study, the proportion of free amino acids was signif-
icantly higher in all types of cheese samples in G1 comparatively
with G2 or G3. These results were in agreement with earlier stud-
ies (Scano et al., 2019b; Rodrigues et al., 2011) suggesting that
cheese samples in G1 underwent a more extensive proteolysis pro-
cess. A higher degree of proteolytic activity during the initial ripen-
ing period resulted in increased peptide concentration that favours
the microbial activity of aminopeptidases/exopeptidases resulting
in the evolution of free amino acids during the second period of



Fig. 5. OPLS-DA score plots (A-C) and corresponding loading plots (D-F) derived from the 1H NMR spectra of Gouda type cheese samples demonstrating the separation
between the sensory groups of 1 and 2 (A, B), 1 and 3 (C, D) and 2 and 3 (E, F).
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Fig. 6. PLS-DA score (A-C) and VIP (D-F) plots derived from the 1H NMR spectra of all cheese samples (except Gouda type) demonstrating the separation between the sensory
groups of 1 and 2 (A, B), 1 and 3 (C, D) and 2 and 3 (E, F).
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Fig. 7. OPLS-DA score plots (A-C) and corresponding loading plots (D-F) derived from the 1H NMR spectra of all cheese samples (except Gouda type) demonstrating the
separation between the sensory groups of 1 and 2 (A, B), 1 and 3 (C, D) and 2 and 3 (E, F).
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Fig. 8. The HCA heatmap plots based on the 29 characteristic metabolites identified for all the cheese samples (A); clear metabolic differences between sensory groups in
Gouda cheese type (B) and other cheese types (C). Colours from highest (red) to lowest (blue) represent metabolite expression values in different groups.
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ripening (30–60 days) (Rodrigues et al., 2011). Moreover, the levels
of umami tasting amino acids such as glutamate, aspartate and
asparagine that contribute to the taste of cheese were also consid-
erably higher in G1 than the other two groups. This could mean
that the proceeded ripening periods increased the amino acids con-
tent along with subsequent flavour development by amino acids
themselves and as precursors of volatile compounds that lead to
the strong taste and aroma while reducing the bitterness in G1
cheese samples.

In conflict, the relative amount of citrate was lower in G1 in
comparison with the other two groups. These results could be cor-
related to the metabolism of citrate into pyruvate and acetate by
the citrate positive (Cit+) strains. During the cheese-making pro-
cess, most of the soluble citrate (90%) in fresh milk is removed as
whey, while the retained citrate is metabolised as diverse flavour
compounds (acetate, 2,3-diacetyl and acetoin). Since the starters
(Cit+) cannot use citrate as an energy source, co-metabolism of
citrate occurs in the presence of fermentable carbohydrates (Fox
et al., 2017). Furthermore, the CO2 produced during the citrate
metabolism influence the texture imparting the ‘‘eye” structure
in some Gouda cheeses (McSweeney and Sousa, 2000). Studies
on the association between the bovine metabolites and rennet
coagulation properties of milk showed an increasing trend of the
citrate concentration in samples with poor coagulation properties
(Sundekilde et al., 2011).

Similar to citrate, the most dominant metabolite lactate was in
higher levels in G3 than the other two groups. The rapid transfor-
mation of lactose to lactate during the initial ripening process of
cheese is crucial in the production of all cheese varieties. Lactate
certainly promotes the flavour in acid-curd and ripened cheese
varieties via transforming glycolysis or phosphoketolase pathways,
depending upon the utilization of starter cultures (Jo et al., 2018).
Other metabolites such as glycerol, choline and phospholipids (O-
phosphocholine and sn-Glycero-3-phosphocholine) were relatively
in a lower level in sensory G1 of Gouda type cheeses. In contrast,
these metabolites were relatively high in GI cheese samples from
other types of cheeses. The combination of metabolite profiling
and multivariate analysis delivered significant information on the
composition and concentration of metabolites in sensory group
discrimination of cheeses.

4. Conclusion

The current study demonstrates 1H HRMAS-NMR based meta-
bolic fingerprinting as a valuable tool in distinguishing cheese
samples. The NMR data combined with chemometric analysis con-
siderably improves the discrimination of groups based on sensory
qualities and reveals potential biomarkers. Interestingly, our stud-
ies showed the NMR based metabolite profiles of the domestic Kor-
ean cheeses are in agreement with their sensory characteristics. In
contrary to earlier studies, the location of cheese samples in the
multivariate models was based on NMR data set, rather than on
their geographical origin. Amino acids, lactate, citrate and phos-
pholipids were the most relevant variables/markers related to their
sensory qualities. The metabolite variations in the cheeses are
likely to be influenced by the degree of proteolytic and metabolic
activities that occur during cheese ripening. Further, profound
studies on investigating the consistency of metabolic fingerprints
could lead to the establishment of discrimination biomarkers for
sensory determination in the cheese industry. Reliable discrimina-
tion of biomarkers associated with sensory traits will benefit the
cheese industries to improve the taste and quality.



Fig. 8 (continued)

Table 5
Starter strains employed for the production of cheese samples used in this study.

Taxonomy Culture (Company) Sample nos. Cheese type

Lactococcus lactis subsp. lactis,
L. lactis subsp. cremoris,
L. lactis subsp. diacetylactis

MM100
(Danisco)

1,9,14,18,25,28,38,40,44 Gouda

Lactococcus lactis subsp. cremoris,
L. lactis subsp. diacetylactis,
L. lactis subsp. lactis,
Leuconostoc mensenteroides subsp.
cremoris

CHN-11
(Chr.Hansen)

3,4,5,6,7,8,11,12,19,21,29,31,36, 37,41,42,43,45, 49,51 Gouda
13,24,27,39,47 Camembert
48 Brie

MW 046N
(SACCO)

16,30,34,50 Gouda

Provat 322
(Danisco)

10,35 Cheddar
32 Quark
46 Gouda

Lactobacillus delbrueckii subsp. bulgaricus,
Streptococcus thermophilus

Y 083F
(SACCO)

2 Berg

Lactobacillus bulgaricus,
Steptococcus thermophilus

TCC-3
(Chr.Hansen)

17
26 Appenzeller

Streptococcus thermophilus,
Lactobacillus delbrueckii subsp. lactis,
Lactobacillus helveticus

SuCasu
(Danisco)

22 Berg
33 Appenzeller
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Table 5 (continued)

Taxonomy Culture (Company) Sample nos. Cheese type

Lactobacillus bulgaricus,
Steptococcus thermophilus,
Lactobacillus helveticus

TCC-3,
LB-B02
(Chr.Hansen)

15 Frill

Lactobacillus bulgaricus,
Steptococcus thermophilus,
Lactococcus lactis subsp. cremoris,
L. lactis subsp. diacetylactis,
L. lactis subsp. lactis,
Leuconostoc mensenteroides subsp. cremoris

TCC-3,
CHN-11
(Chr.Hansen)

20 Reblochon

Streptococcus thermophilus,
Lactobacillus delbrueckii subsp. lactis,
L. helveticus,
Propionibacterium freudenreichii subsp.shermanii

SuCasu,
Choozit Eyes 2
(Danisco)

23 Emmental
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