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Abstract

Osteoporosis has a complex etiology and is considered a multifactorial polygenic disease,

in which genetic determinants are modulated by hormonal, lifestyle, environmental, and

nutritional factors. Therefore, investigating these multiple factors, and the interactions

between them, might lead to a better understanding of osteoporosis pathogenesis, and pos-

sible therapeutic interventions. The objective of this study was to identify the relationship

between three blood metals (Pb, Cd, and Al), in smoking and nonsmoking patients’ sera,

and prevalence of osteoporosis. In particular, we focused on gene-environment interactions

of metal exposure, including a dataset obtained through genome-wide association study

(GWAS). Subsequently, we conducted a pathway-based analysis, using a GWAS dataset,

to elucidate how metal exposure influences susceptibility to osteoporosis. In this study, we

evaluated blood metal exposures for estimating the prevalence of osteoporosis in 443 par-

ticipants (aged 53.24 ± 8.29), from the Republic of Korea. Those analyses revealed a nega-

tive association between lead blood levels and bone mineral density in current smokers (p

trend <0.01). By further using GWAS-based pathway analysis, we found nuclear receptor

(FDR<0.05) and VEGF pathways (FDR<0.05) to be significantly upregulated by blood lead

burden, with regard to the prevalence of osteoporosis, in current smokers. These findings

suggest that the intracellular pathways of angiogenesis and nuclear hormonal signaling can

modulate interactions between lead exposure and genetic variation, with regard to suscepti-

bility to diminished bone mineral density. Our findings may provide new leads for under-

standing the mechanisms underlying the development of osteoporosis, including possible

interventions.

Introduction

Osteoporosis is a skeletal disease characterized by reduced bone mass, impaired bone quality,

enhanced bone resorption, and increased fracture risk. Operationally, it is defined as a bone

mineral density (BMD) value� -2.5 SD below the young adult mean for the population. Twin

and family studies have estimated the heritability of BMD as approximately 0.85 [1]. To date,
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genome-wide association studies (GWAS) have identified important loci significantly corre-

lated with disease risk/susceptibility. Recently published clinical and preclinical genetic studies

of osteoporosis generally have utilized GWAS [2]. However, these findings can explain only a

small portion of the heritability of osteoporosis [3], and GWAS have further shown that many

phenotypes are highly polygenic, and influenced by thousands of genetic variants, each having

small individual effects.

Environmental metals also significantly associate with low BMD. For example, exposure to

lead (Pb) and cadmium (Cd) has been associated with a number of adverse health effects,

including deficient bone mass [4–8]. Moreover, the skeletal system is thought to be highly sus-

ceptibile to these adverse effects, because the Pb body burden (roughly 75% of exposure at any

given time) is retained within the mineralized compartment of bone. In addition, recent studies

indicate that Cd may exert both direct and indirect actions on bone turnover, and acts directly

to impair osteoblast and osteoclast function [9, 10]. Exposure to Pb and Cd can occur through

occupational activities, over a lifetime, from water and food consumption and exposure to soil,

dust, and air [11]. Cigarette smoking is also known as a primary source of Cd and Pb [12]. As

well as active smoking, secondhand smoke also associates with increased blood Pb and Cd levels

[13]. Aluminum (Al) interferes with calcium absorption, and has been reported to reduce the

number of both osteroblasts and osteoclasts, resulting in less bone mineralization and bone soft-

ening (osteomalacia) [14]. However, these data have proved inconsistent, and the biological

mechanisms underlying the effects of metals on bone mass, and osteoporosis, remain unclear.

Osteoporosis has a complex etiology and is considered a multifactorial, polygenic disease in

which genetic determinants are modulated by environmental factors. Unexplained osteoporosis

heritability could be due to gene–environment interactions, or more complex pathways involv-

ing multiple genes and other mechanisms, such as epigenetics [15]. For example, an effect of

dysregulation of the COLA1A1 gene (encoding type-1 collegen) on BMD is supported by its

interaction with calcium intake [16], while the vitamin D receptor gene, VDR interacts with

birth-weight to later modulate adult spine BMD [17]. Although recent studies suggest that cir-

culating metals profoundly influence the adult skeleton [4, 18, 19], the interaction of specific

genotypes and environmental factors, in the etiology of osteoporosis, have received limited

attention. Therefore, further investigation of the interaction between environmental factors and

genetic susceptibility (at the genome wide level), within the context of osteoporosis, is urgent.

The objective of this study was to identify relationships between exposure to three metals

(Cd, Al, and Pb), and specific lifestyles, and the prevalence of osteoporosis. Specifically, we

assessed how metal exposure and genetic susceptibility influence the onset and pathogenesis of

osteoporosis, based on genome-wide association studies (GWAS). GWAS data was then sub-

jected to gene-set-enrichment analysis (GSEA), a pathway-based analysis, to illuminate how

metal exposure influences signal transduction in osteoporosis.

Material and methods

Study population

This study population, the Korean Association REsource (KARE) cohort, was described in

detail in our previous report [20]. Briefly, a total of 8,842 participants, aged 40 to 69 years,

were recruited from South Korean rural (Ansung) and urban (Ansan) communities, respec-

tively, at baseline, from 2001 to 2002. Then, we selected 443 non-occupationally metal-exposed

subjects (223 men and 221 women), aged 39 years and older, who had available blood metal

level and BMD measurements. This cohort included a standardized health interview, using

well-established questions, to determine the demographic and socioeconomic characteristics

of all subjects. A comprehensive health examination, includuing evaluation of anthropometric
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indexes, such as blood pressure, and collection of biospecimens for assays, was conducted

every two years, by health professionals trained by a standardized protocol. Physical activity

was quantified by metabolic equivalent (MET) intensity [21]. Educational attainment was cate-

gorized into three groups: less than 7 total years (elementary school graduates), 7–9 years

(middle school graduates), and more than 10 years (high school graduates). Monthly house-

hold income was also categorized into three groups: less than $1,000 USD (in 2014), $1,000–

$2,000, and� $2,000 [22]. This study was reviewed and approved by the Institutional Review

Board of the Korean National Institute of Health.

Measurement of BMD

BMD (g/cm2) and elasticity were assessed by the bone speed of sound (SOS) value [23], mea-

sured at the distal radius and midshaft tibia, using an Omnisense 7000P quantitative ultra-

sound (QUS) device (Sunlight Medical Ltd, Tel-Aviv, Israel). T-scores, represent comparisons

of the BMD measurements of study subjects to normal values of healthy young adults of the

same gender. The T-score is calculated by dividing the difference between the measured and

mean SOS value in a healthy young adult population, and expressing the difference, relative to

standard deviation (SD), of SOS values in a young adult population.

Metal assessment

Blood samples were drawn into trace metal-free tubes, and analyzed by a laboratory procedure

certified by the Korean Ministry of Health and Welfare. Blood lead (Pb) and cadmium (Cd)

levels were determined by atomic absorption spectrometry (SpectrAA-800 Zeeman, Varian,

Australia). Blood aluminum (Al) was analyzed by inductively coupled plasma optical emission

spectrometry (SPECTRO Midex, SPECTRO Analytical Instruments GmbH, Germany). Com-

mercial reference materials were used for internal quality assurance and control (Lyphochek1

Whole Blood Metals Control; Bio-Rad, Hercules, CA, USA). The coefficients of variation for

blood metals were� 10%. External quality control was provided by the Korean Occupational

Safety & Health Agency (KOSHA), and the German External Quality Assessment Scheme

(G-EQUAS). The limits of detection (ng/ml) in blood for this procedure were: Pb (0.02); Cd

(0.01); and Al (0.01). There were no values below limits-of-detection (LOD) levels for the three

metals of interest.

Genotyping

The KARE dataset consisted of the individual SNP chip genotypes, associated with specific epi-

demiological/clinical phenotypes, for studying the genetic components of Korean public

health. DNA was isolated from the peripheral blood of all participants, and genotyped using

the Affymetrix Genome-Wide Human SNP Array 5.0 (Affymetrix Inc, Santa Clara, CA, USA).

The obtained KARE dataset passed quality control criteria and was reported in a previous

GWAS publication [20]. Exclusion criteria for quality control procedures were Hardy-Wein-

berg equilibrium p-values < 10−6, genotype call rates < 95%, and minor allele frequencies

(MAFs) < 0.05. All SNP chromosomal positions were updated to the human genome version

19 (hg19), as annotated in a file supplied by Affymetrix. After filtering for sample and genotype

quality controls, 344,396 SNPs were available for assessing the KARE data.

Pathway-based analysis

Pathway-based approaches, using GWAS data, are now used routinely to study complex dis-

eases [24]. To analyze pathways interacting with blood metal levels, based on GWAS, we used
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an improved Gene Set Enrichment Analysis (GSEA) [25]. This approach has the advantage

that genetic variant associations, mapping to any gene, provide insight into the biological func-

tions, signal pathways, and mechanisms underlying human diseases.

In our study, 344,396 SNPs were mapped to gene-coding regions and their ± 20-kb flanking

regions. Pathways consisting of<20 or>200 genes were excluded from further analysis, to

reduce the multiple-testing issue, and avoid testing overly narrow or broad functional catego-

ries [25]. A false-discovery rate (FDR) was used for multiple testing correction, with q values

<0.05 considered significant. An improved GSEA approach uses a comprehensive pathway/

gene set database from SNP data, with pathways integrated and curated from a variety of

resources, including the KEGG (Kyoto Encyclopedia of Genes and Genomes pathway data-

base), Biocarta, and GO (gene ontology) databases [26].

Statistical analysis

For quantifying the demographics and characteristics of subjects, data were presented as

means ± standard deviations, for continuous variables, or as percentages (%), for categorical

variables (Table 1). Distinctions between subjects in different groups were detected using the

Kruskal-Wallis test, for non-normally distributed continuous variables (PMID: 23075015),

and the chi-square test, for categorical variables.

For investigating possible associations between blood metal levels and BMD, we used linear

regression analysis. Based on their skewed distributions, blood levels of Pb, Cd, and Al were

log-transformed, for further analysis. The results of the multiple linear regression models were

then expressed as regression coefficients, and standard errors adjusted for potential confound-

ing factors. Specifically, we used the Akakie Information Criterion (AIC) for variable selection

for our statistical model [27], because the AIC is a most commonly used criterion for model

selection. The model with the smallest AIC value is usually chosen as a best model. Model 1 was

adjusted for age, sex, and region (AIC = 1169.48). Model 2 was adjusted for age, sex, region,

income, and physical activity (AIC = 1013.40). To explore the co-exposure effect of Pb, Cd, and

Al on BMD, we performed multiple linear regression analyses, including two-way interaction

terms such as Pb�Cd and Pb�Al, or a three-way interaction term, such as Pb�Cd�Al [28].

To test for interactions between SNPs and metals, for the purpose of identifying BMD-

associated genetic variants, we tested gene-environment interactions by performing a

1-degree of freedom (1df) test of H0: βint = 0 (i.e., the context of the linear model: Yi =

β0+β0+β1Ei+β2Gi+ βintG
�Ei+ei), where Yi is the BMD T score for the individual i. The inter-

action term was then used to assess the significance of the interactions between genetic vari-

ants and blood Pb levels.

The critical P values for accessing the significance of interactions were calculated by Bonferroni

correction (P<1.45 X 10−7), or false discovery rate (FDR), with a q-value� 0.05 considered signif-

icant. Quantile-quantile plots of the p-values, for the joint test and interaction analysis, suggested

an inflation factor of 1.16 for the interaction effect. All analyses were performed using R software

version 2.11.1 (www.r-project.org). Data management, descriptive statistics for the covariates and

outcome variates, and regression analyses, were conducted using the R package Stats.

Results

General characteristics of participants

Geometric mean blood heavy metal concentrations varied according to population character-

istics, as shown in Table 1. The mean levels of blood Pb, Cd, and Al were 4.44 ± 1.80 μg/L,

1.14 ± 1.10 μg/L, and 1.26 ± 0.93 μg/L, respectively (median blood levels of Pb, Cd, and Al

were 4.17, 0.84, and 1.1 μg/L, respectively). Blood Pb concentrations were highest in males
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(4.95±1.67 μg/L), followed by current smokers (5.18±1.76 μg/L), urban residents (4.61

±1.60 μg/L), and high education level (4.52±1.80 μg/L). Blood Cd concentrations were also

highest in current smokers (1.28±1.26 μg/L), followed by male gender (4.73 μg/L), while blood

aluminum concentrations were highest in never-smokers (1.33±1.01 μg/L). Broadly, smoking

status, sex, and living area associated with blood heavy metal concentration levels. Smoking

was more prevalent in men, and associated with lower BMI and higher alcohol consumption

(S1 Table). Smokers in women were in menstruation status. We investigated the interaction

between blood metals and smoking status on BMD. However, we observed no interaction

between these variables (beta = -0.64, p = 0.17 for Pb; beta = -0.09, p = 0.45 for Cd; beta =

-0.16, p = 0.32 for Al).

Table 1. Characteristics of study participants.

Variables N Blood Pb (μg/L) Blood Cd (μg/L) Blood Al (μg/L)

means ± SD P value means ± SD P value means ± SD P valuec

Age

≦40 23 4.05±1.86 0.51 0.76±0.97 0.13 1.36±1.01 0.42

>40, ≦60 315 4.48±1.83 1.19±1.04 1.28±1.00

>60 105 4.38±1.68 1.05±1.25 1.16±0.68

Sex

Male 222 4.95±1.67 <0.01 0.97±1.00 0.01 1.19±0.85 0.85

Female in menstruation 50 3.49±1.93 1.30±1.06 1.47±1.06

Female in menopause 121 4.09±1.80 1.30±1.25 1.20±0.86

BMI

<18.5 13 5.19±1.89 0.49 0.96±0.72 0.08 0.79±0.87 0.25

�18.5, <23 124 4.40±1.88 1.34±1.37 1.33±1.06

�23, < 27.5 231 4.40±1.71 1.04±0.95 1.25±0.88

�27.5 75 4.48±1.90 1.12±1.04 1.23±0.86

Smoking

Never-smokers 260 4.08±1.79 <0.01 1.14±1.09 0.25 1.33±1.01 0.08

Ever-smokersa 174 5.00±1.69 1.11±1.13 1.15±0.80

Current smokers 119 5.18±1.76 1.28±1.26 1.14±0.78

Living area

Rural 220 4.26±1.97 0.03 1.42±1.26 <0.01 1.35±0.95 0.04

Urban 223 4.61±1.60 0.86±0.81 1.17±0.91

Education

Elementary school or less 136 4.32±1.89 0.39 1.44±1.31 <0.01 1.26±0.90 0.69

Middle school graduate 66 4.36±1.94 1.09±0.93 1.32±0.97

High school or higher 132 4.52±1.80 0.87±0.98 1.21±0.90

Monthly incomeb

<1000 183 4.41±1.88 0.63 1.32±1.16 0.01 1.24±0.88 0.34

1000–2000 144 4.54±1.81 0.94±0.91 1.34±1.03

�2000 104 4.42±1.68 0.94±0.94 1.16±0.86

Values expressed as means ± SDs (standard deviations) or number (%)
a, formal or current
b104 KRW, Korean Won, equivalent to $1000 USD in 2014.
cp value was examined by the Kruskal-Wallis test or chi square test; BMI, body mass index

https://doi.org/10.1371/journal.pone.0193323.t001
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Correlation between blood metal levels and BMD

Correlations between blood Pb levels, alcohol consumption, and BMD T scores (as assessed by

distal radius) were significant in the smoking groups (ever- and current smokers) (Table 2).

BMD T score negatively associated, while alcohol consumption positively associated, with

blood Pb (but not Cd or Al) levels in ever- and current smokers. Moreover, there was no sig-

nificant correlation between BMD T scores and the other two metals, Cd and Al (data not

shown).

Association between blood metals and BMD score

Linear regression analysis showed that levels of blood Pb and Cd, in all participants, negatively

associated with BMD (Table 3), but did not correlate with lower BMD values in never-smokers,

Table 2. Correlation between blood Pb and measured parameters.

Blood Lead (μg/L)

factors Never-smokers (N = 260) Ever-smokersa

(N = 174)

Current smokers

(N = 119)

Age, years 0.106 0.025 0.060

BMI, kg/m2 0.093 0.096 0.168

Physical activity (MET/hr) -0.087 -0.0003 -0.012

Alcohol consumption (g/day) 0.058 0.267�� 0.226�

BMD T score (distal radius) -0.167� -0.270�� -0.366���

Blood cadmium (μg/L) -0.058 0.068 0.031

Blood aluminum (μg/L) 0.067 0.028 -0.034

Data were spearman correlation coefficients.
a,Smokers were former and current smokers.

BMI, body mass index; MET, metabolic equivalent; BMD, bone mineral density.

�P<0.05

��P<0.01

���P<0.001.

https://doi.org/10.1371/journal.pone.0193323.t002

Table 3. Multivariate linear regression for blood metals (ug/L) and BMD.

Pb Cd Al Pb � Cd Pb � Al Pb � Cd � Al

(beta, SE) P (beta, SE) P (beta, SE) P (beta, SE) P (beta, SE) P (beta, SE) P

All subjects

Model 1 -1.21, 0.44 <0.01 -0.26, 0.13 0.05 -0.06, 0.18 0.74 -0.29, 0.81 0.72 -1.49, 0.93 0.11 1.87, 2.10 0.37

Model 2 -1.27, 0.48 <0.01 -0.35, 0.15 0.02 -0.15, 0.19 0.44 -0.44, 0.85 0.60 -1.51, 0.95 0.12 1.76, 2.14 0.41

Ever Smokers

Model 1 -2.00, 0.78 0.01 -0.24, 0.19 0.21 -0.24, 0.32 0.45 -1.75, 1.43 0.22 -2.34, 2.34 0.32 3.78, 3.88 0.33

Model 2 -2.30, 0.94 0.02 -0.39, 0.23 0.09 -0.32, 0.36 0.37 -0.45, 0.85 0.60 -3.37, 2.64 0.21 2.63, 4.98 0.60

Current Smokers

Model 1 -2.50, 0.85 <0.01 -0.13, 0.23 0.58 -0.57, 0.37 0.13 -2.54, 1.57 0.11 -1.95,2.49 0.44 2.10, 4.20 0.62

Model 2 -2.91, 1.06 <0.01 -0.34, 0.29 0.24 -0.55,0.40 0.17 -3.78, 1.90 0.05 -3.44,2.79 0.22 -1.91, 6.10 0.76

Never smoker

Model 1 -0.78, 0.53 0.14 -0.21, 0.19 0.27 0.05, 0.21 0.80 0.75, 1.00 0.45 -1.27,1.01 0.21 0.64, 2.62 0.81

Model 2 -0.72, 0.55 0.19 -0.26, 0.19 0.18 -0.08, 0.22 0.72 0.62, 1.00 0.54 -1.35,1.00 0.18 0.33, 2.60 0.90

Model 1 is adjusted for age, sex, and regional area; model 2 is adjusted for age, sex, regional area, income, and activity.

https://doi.org/10.1371/journal.pone.0193323.t003
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and only blood Pb negatively associated with BMD, in ever- and current smokers. For joint

effects of metals, we found that co-exposure of Pb and Cd had a borderline significant associa-

tion (p = 0.05) with low BMD, in current smokers, after adjustment for age, sex, region, income,

and physical activity.

Table 4 shows the results of linear regression models exploring the associations of the quar-

tiles of blood Pb exposure with BMD. For ever-smokers, compared to the reference group

(using the lowest interval as a reference), the quartile 3 and 4 groups of blood Pb negatively

correlated with BMD (Table 4, Model 1). Using Model 2, blood Pb levels also negatively associ-

ated with BMI in ever-smokers. Current smoking more significantly associated with low

BMD, after adjusting for the same models. No correlative effects of Cd or Al were found for

BMD (data not shown).

Interaction between blood Pb and BMD, at the pathway level

Based on the association between blood Pb levels and BMD, we further investigated interac-

tion effects of Pb with genetic variants, with regard to BMD. With 352,228 SNPs having signifi-

cant p-values for interaction terms, in the regression models, we first determined the

significance of the interaction between genetic variants and blood Pb in current smokers, at

the SNP DNA level. A list of SNPs associated with Pb-BMD interactions in current smokers, at

P<5 x 10−5, by joint test, is provided in Table 5. Specifically, we identified SNP rs4720530,

located within an intronic region of WIPI2, as the most significant SNP, with P = 3.96×10−7

for blood Pb-to-BMD interaction. Other interesting SNPs were located near (±2 kb) or within

the loci IGF-AS1, LOC107986002,CSRP2BP, and GREM1 (all nominal p values<8 x 10−3).

However, there was no significant interaction between these SNPs and blood Pb levels

(with regard to BMD), as determined by Bonferroni correction of multiple testing (nominal p-

value of 1.42 x 10−7 of 352,228 SNPs)

Based on these findings, we tested pathway level-based interactions between blood Pb and

genetic variation, according to SNPs with significant p values for enriched biological processes,

in BMD. As shown in Table 6, when mapping SNPs were limited to 20kb regions flanking a

gene, two pathways, nuclear receptors and the VEGF pathway, were significantly enriched,

with association signals and FDRs <0.05.

Discussion

To our knowledge, this is the first comprehensive study of interactions between genome-wide

genetic variants and blood metal levels (specifically, lead (Pb), cadmium (CD), and aluminum

(Al)), with regard to susceptibility to osteoporosis. To that end, we investigated the effect of

Table 4. Linear regression of quartile of blood Pb (μg/L) and BMD.

Quartile 1 Quartile 2 Quartile 3 Quartile 4 P trend

Ever smokers

Model 1 reference -0.34(-0.96~0.28) -0.72(-1.34~-0.10)� -0.72(-0.07~-01.38)�� <0.01

Model 2 reference -0.45(-1.14~0.23) -0.99(-1.71~-0.28)�� -0.86(-1.62~-0.10)� <0.01

Current smokers

Model 1 reference -0.78(-0.08~-1.48)� -1.14(-1.83~-0.45)�� -1.08(-1.86~-0.31)�� <0.01

Model 2 reference -1.05(-1.87~0.23)� -1.33(-2.15~-0.51)�� -1.67(-2.56~-0.78)�� <0.01

Data are expressed as beta coefficients (95% CI).

�P<0.05

��P<0.01; Model 1 is adjusted for age, sex, and regional area; model 2 is adjusted for age, sex, regional area, income, and activity.

https://doi.org/10.1371/journal.pone.0193323.t004
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blood metal levels on BMD (bone mineral density), as an endpoint for osteoporosis). In partic-

ular, we considered the interaction between genetic variants and blood metal levels, to identify

comprehensive biological pathways for susceptibility to osteoporosis, due to metal exposure.

Finding no significant correlations with Cd and Al, we exclusively studied the effects of Pb on

BMD.

For our study, we used data from the Korean Association REsource (KARE) cohort (PMID:

19396169), finding that the geometric mean Pb concentration of Asian subjects, 4.44 μg/L, was

almost 25% of the geometric mean of 1.44 μg/dL, in U.S. adults, in the 2001–2002 National

Health and Nutrition Examination Survey (NHANES) [29]. However, the U.S. Centers for

Disease Control (CDC) did not include the possible influence of smoking, and we showed

here that even low blood Pb levels in smokers significantly associated with reduced BMD.

Although average blood Pb levels have recently declined, even chronically low Pb exposures

are now well-recognized as having a persistent negative impact on human health [30]. Serious

Pb-related health issues, notably in the skeleton, can occur even at blood or environmental lev-

els below currently regulated thresholds [19]. Moreover, epidemiological studies have also

reported that low levels of blood lead associate with all-cause mortality [31] and hypertension

[32]. Therefore, in addition to those outcomes, chronic exposure to low Pb levels can also

affect bone density, and this phenomenon requires further investigation.

Table 5. Highest significant (p�0.05) GWAS hits for joint and 1df interaction: Gene–blood Pb interaction on BMD in current smokers.

SNP ID Gene Chr Ref/var Position MAF

Test of interaction

Pjoint Pint

rs4720530 Intron of WIPI2 7q22.1 C/T 5218800 0.358 1.97 x 10−6 3.96 x 10−7

rs1032192 Intron of NAV2 11p15.1 A/G 19473148 0.361 4.58 x 10−6 0.09

rs7103939 Intron of NAV2 11p15.1 C/T 19477837 0.361 4.58 x 10−6 0.09

rs10748094 Intron of IFG-AS1 12q15 C/T 66721583 0.249 6.31 x 10−6 9.96 x 10−5

rs7932250 Intron of NAV2 11p15.1 A/G 19483259 0.361 1.35 x 10−5 0.12

rs10207770 Intergenic near LOC107986002 2q37.3 C/T 237368042 0.056 3.13 x 10−5 2.54 x 10−5

rs1344766 Intergenic near LOC107986002 2q37.3 A/C 237368743 0.056 3.13 x 10−5 2.54 x 10−5

rs934397 Intergenic near LOC107986002 2q37.3 C/T 237371678 0.056 3.13 x 10−5 2.54 x 10−5

rs746667 Intron of CSMD2 1p35.1 C/G 34084766 0.051 3.334 x 10−5 0.27

rs13045938 Intron of CSRP2BP 20p11.23 A/C 18087552 0.280 3.76 x 10−5 2.52 x 10−3

rs934396 Intergenic near LOC107986002 2q37.3 A/G 237371741 0.051 3.81 x 10−5 5.30 x 10−5

rs17816285 Intergenic near GREM1 15q13.3 A/G 30826590 0.046 4.31 x 10−5 7.90 x 10−3

rs7161806 Intron of NTRK3 15q25.3 A/G 86253599 0.458 4.38 x 10−5 0.328

rs2702738 Intron of NAV2 11p15.1 C/T 129618319 0.378 4.48 x 10−5 0.221

https://doi.org/10.1371/journal.pone.0193323.t005

Table 6. Pathway-based analysis of interaction between blood Pb and genetic variation, with regard to BMD, in current smokers.

Database Pathway

Name

Description P value FDR Significant genes/Selected

genes/All genes

Biocarta Nuclear

receptors

Nuclear receptors are transcription factors that are activated upon binding to its ligands. <0.001 0.001 16/33/40

Biocarta VEGF

pathway

Vascular endothelial growth factor (VEGF) is upregulated by hypoxic conditions and

promotes normal blood vessel formation and angiogenesis related to tumor growth or

cardiac disease

<0.001 0.001 10/21/28

352,227 variants input; 185,180 variants used; 15,328 genes mapped; 230 gene sets selected

https://doi.org/10.1371/journal.pone.0193323.t006
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Here, we show that blood Pb affects bone mineral density more strongly in smokers, in

accord with many studies now showing a direct relationship between smoking and bone

health. For example, in one recent study, cigarette smoking associated with low bone den-

sity, and increased the risk of hip fracture, in both women and men [33]. Others have

shown a direct adverse effect of smoking on skeletal remodeling, bone cell health, and

decreased BMD [2, 34]. These findings may partly relate to the influence of smoking on sex

hormones, including estrogen and testosterone [35]. We postulate that this deleterious

effect may be provoked by blood Pb, as smoking is a significant source of environmental Pb,

demonstrating a dose-dependent relationship between tobacco and blood Pb [36]. Thus,

more detailed studies of the mechanisms of synergy of smoking and circulating Pb levels,

on BMD, are warranted.

Secondly, accumulating evidence shows a critical role for the Wnt/β-catenin signaling path-

way in bone mass homeostasis [2]. Recent studies reported that toxic mechanisms of Pb on

bone inhibit Wnt/β-catenin [37, 38] signaling, and a recent phase II trial of an antagonist of

schlerostin, an inhibitor of Wnt signaling, demonstrated efficacy in increasing BMD (PMID:

25196993). However, more definitive mechanisms remain largely unknown, and very few

studies have examined metal exposure as a biological mechanism of osteoporosis [37].

Researchers now recognize that gene-environmental interactions, in risk assessment for a myr-

iad of human diseases, are crucial for studying mechanisms of disease pathogenesis [39, 40].

Toward that objective, we identified blood Pb to significantly associate with BMD in smokers,

using pathway analysis for investigating interaction effects of genetic variants and blood Pb,

on BMD, using a recently improved gene set enrichment analysis (GSEA). Resultantly, we

found that both the nuclear receptor and vascular endothelial growth factor (VEGF) pathways

associate with BMD and bone pathophysiology.

Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that are acti-

vated by steroid hormones, such as estrogen and progesterone, and various lipid-soluble sig-

naling molecules, including retinoic acid, oxysterols, and thyroid hormone [41]. NRs are a

group of transcription factors that, through ligand (mostly, steroid) binding, drive adaptive

gene expression responses to changes in numerous nutritional, environmental, developmental,

pathophysiologic, and endocrine conditions. NRs also function as metabolic sensors that con-

trol a variety of physiological processes, including skeletal homeostasis [42]. Recently, Chen

et al., reported a positive association between blood Pb and reproductive hormone levels, in

men and postmenopausal women [43]. Moreover, experimental and epidemiological studies

have shown that environmental metals (e.g., Pb) may mimic NR ligands (including hormones)

as crucial regulators of development, homeostasis of male and female reproductive organs,

and the maintenance of bone remodeling [44]. Growing evidence supports Pb parody of the

systemic action of lipophilic hormones (e.g., thyroid, vitamin D, etc.) that play a crucial role in

bone development, maintenance, and pathophysiology [45–46]. However, while other recent

studies have delineated many functions of liganded NRs, including their molecular mecha-

nisms of action on bone cells, many questions remain unaddressed.

Vascular endothelial growth factor (VEGF) is a survival factor required for effective cou-

pling of angiogenesis and osteogenesis [47, 48]. For example, VEGF is produced by inflamma-

tory cells, as well as mesenchymal progenitors, that are recruited to sites of bone injury [49],

while also stimulating osteoclast differentiation in the bone marrow. Angiogenesis, the process

mediated by VEGF, plays a key role in homeostatic responses to various toxic insults [50].

Studies similar to ours report that low Pb exposure upregulated VEGF in the bone marrow

[51], increasing angiogenesis [52] and osteoclastogenesis [53]. VEGF is also upregulated in

pathologies such as bone metastasis and rheumatoid arthritis [54], which also diminish BMD

[55]. Recent data indicate that Pb induces VEGF synthesis via PKC/AP-1 pathway signaling,
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while also activating ERK signaling, both of which increase angiogenesis [56, 57] and osteo-

clastogenesis [58]. Therefore, further studies are required to clarify the role of Pb on VEGF

biosynthesis, and other mitogenic pathways, in pathophysiology of bone metabolism.

The Wnt/β-catenin signaling pathway has emerged as a critical regulatory component of

the control of bone formation and downregulation of bone resorption. It is important to

understand that crosstalk between multiple signaling pathways exists to regulate bone density.

For example, estrogen receptor signaling and the Wnt/β-catenin pathway act synergistically in

osteogenic differentiation [59, 60]. Thus, deficiencies in these pathways contribute to low

BMD. In addition, Wnt/β-catenin signaling pathway is an important mediator for tissue fac-

tor-induced VEGF production during the process of angiogenesis [61]. Therefore, we will con-

sider how crosstalk between signaling pathways, inhibited by Pb, might downregulate BMD,

in future studies.

While our findings of genetic variation and blood Pb interactions, at the levels of SNPs, and

their associated pathways, were seemingly inconsistent for specific genes or chromosomal

regions, it is interesting that all the interactions at these two levels implicated genes/pathways

involved in angiogenesis, bone mass, and nuclear receptor signaling, suggesting that several

possible mechanisms underlie the pathogenesis of osteoporosis.

One limitation of our study is the lack of replicate analyses of the interactive effects between

Pb and distinct genes, on BMD. However, our results do provide biological knowledge of path-

ways, involving multiple genes, including responses to smoking and low-level Pb exposure,

thus justifying further studies of Pb toxicity and its effects on BMD. Another limitation is the

small study population. In particular, the small sample size of current smokers (n = 119) pre-

cluded stringent statistical significance. Nonetheless, we identified significant novel pathways

associated with genetic variation and Pb exposure, and their effects on BMD. Further mecha-

nistic studies are required to confirm our findings, both in vivo and in vitro. In addition, we

did not consider other heavy metals that might influence BMD in current smokers. However,

numerous studies indicate that Pb, Cd, and Al associate with bone mineral density, and we

surmise that our studies for genetic association with metals, via the potential mechanisms we

identified, can be applied to other metals.

In conclusion, even low blood Pb levels associate with the prevalence of osteoporosis, after

adjusting for multiple covariates. In particular, Pb negatively associates with BMD in smokers.

Using GWAS-based pathway analysis of genetic variation on BMD susceptibility, we found

that the nuclear receptor and VEGF pathways (e.g., angiogenesis) were significantly enriched,

with regard to blood Pb, in the prevalence of osteoporosis, in current smokers. This association

evokes significant implications for the deleterious effects of environmental metals on human

health, warranting further molecular and cellular experimental investigation.
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