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Cardiovascular disease is the leading cause of death worldwide and bears an immense

economic burden. Late-stage heart failure often requires total heart transplantation;

however, due to donor shortages and lifelong immunosuppression, alternative cardiac

regenerative therapies are in high demand. Human pluripotent stem cells (hPSCs),

including human embryonic and induced pluripotent stem cells, have emerged as a

viable source of human cardiomyocytes for transplantation. Recent developments in

several mammalian models of cardiac injury have provided strong evidence of the

therapeutic potential of hPSC-derived cardiomyocytes (hPSC-CM), showing their ability

to electromechanically integrate with host cardiac tissue and promote functional recovery.

In this review, we will discuss recent developments in hPSC-CM differentiation and

transplantation strategies for delivery to the heart. We will highlight the mechanisms

through which hPSC-CMs contribute to heart repair, review major challenges in

successful transplantation of hPSC-CMs, and present solutions that are being explored

to address these limitations. We end with a discussion of the clinical use of hPSC-CMs,

including hurdles to clinical translation, current clinical trials, and future perspectives on

hPSC-CM transplantation.

Keywords: human pluripotent stem cell-derived cardiomyocytes, cardiovascular disease, cell therapy,

regenerative medicine, tissue engineering

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death worldwide (1). In the United States
alone, CVD is responsible for ∼655,000 deaths and contributes to $200 billion in spending each
year (2). CVD can lead to myocardial infarction (MI), also known as a “heart attack,” which
results in restricted blood flow and extensive cell death within the infarct zone. Due to the limited
regenerative capacity of the human heart, infarcted myocardium is replaced by fibrotic scar tissue
with inferior contractile performance. Over time, pathological remodeling leads to ventricular wall
thinning, which can progress to heart failure (3). There is currently no treatment available that
can restore lost cardiomyocytes after MI, and conventional therapies typically only manage the
symptoms (3, 4). Heart transplantation is the only therapy capable of replacing a failing heart,
but the shortage of viable donor organs and need for lifelong immunosuppression presents its
own set of challenges for heart transplantation as a therapy (5). Therefore, alternative approaches
that can restore the function of the patient’s heart and replace infarcted myocardium would be a
transformative development in cardiovascular medicine.
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Stem cell therapy for cardiac regenerative medicine has drawn
major interest due to the promising capacity of stem cells to
differentiate into functional tissue. Several sources have been
investigated for stem cell-mediated cardiac regenerative therapy,
including both human adult stem cells and human pluripotent
stem cells (hPSCs) (6). Unlike adult stem cells, hPSCs have a
proven capacity to derive functional cardiomyocytes, and their
scalable production in vitro has made hPSCs a favorable cell
source for cardiac regenerative medicine (7, 8).

This review will discuss the origins and characteristics of
human pluripotent stem cell-derived cardiomyocytes (hPSC-
CMs) and how they are implemented in transplantation
techniques (Figure 1). Additionally, we will discuss the potential
mechanisms through which these transplantation strategies
improve cardiac function and what challenges limit effective
hPSC-CM transplantation. Finally, we will end with a discussion
of challenges facing clinical translation of these transplantation
strategies (Figure 1), current clinical trials involving hPSC-CMs,
and future considerations in the field of transplantation of hPSC-
CM for cardiac regenerative therapies.

HUMAN PLURIPOTENT STEM CELL
SOURCES AND DIFFERENTIATION INTO
CARDIOMYOCYTES

Human embryonic stem cells (hESCs) are a form of hPSCs
isolated from human blastocysts cultured for in vitro fertilization.
hESCs are capable of unlimited self-renewal and can differentiate
into derivatives of all three germ layers (9). The differentiation
potential of hESCs has been harnessed to reproducibly generate
cardiomyocytes (hESC-CMs) (10). As the production of hESCs
involves the destruction of human embryos, there are many
ethical controversies that accompany the use of hESCs (11). To
overcome these ethical concerns, human induced pluripotent
stem cells (hiPSCs) have been explored as a cardiomyocyte
source. hiPSCs are reprogrammed somatic cells with the capacity
to differentiate into cells of all three embryonic germ layers.
The concept behind the development of hiPSCs was that the
genes that allow a cell to maintain its pluripotency could be
overexpressed in a somatic cell and reprogram it to an ESC-like
state (12). Viral vectors (12, 13) as well as recombinant proteins
(14) and micro RNAs (15, 16) have been used to reprogram adult
human cells to a pluripotent state.

The major methods to derive CMs from hPSCs are embryoid
body differentiation, monolayer differentiation, and inductive
differentiation (17). Common among all of these methods is the
principle of mimicking endogenous embryonic cardiovascular
development, including modulation of Wnt, Activin/Nodal,
TGF-β, and BMP signaling pathways (18–21). Currently, hPSC-
CM purity following differentiation can reach over 90% (18, 19,
21). The phenotype of hPSC-CMs resembles that of fetal CMs.
For instance, they are morphologically small, spontaneously beat,
lack T-tubules, and have underdeveloped and inefficient calcium
handling (22). Developments in methods for differentiation and
culture are working toward the goal of producing hPSC-CMs
with a more mature phenotype, as will be discussed later in
this review.

TRANSPLANTATION STRATEGIES

Delivery routes for cardiac cell therapies have included
intravenous injection, intramyocardial injection, intracoronary
injection, intrapericardial transplantation, and epicardial
patches. Each of these methods have their own strengths and
weaknesses regarding cell retention and functional outcomes
(23). For hPSC-CM transplantation, intramyocardial injection
and epicardial patches have been the most popular delivery
routes in pre-clinical studies and first-in-human clinical trials.
Therefore, we will focus on these two transplantation strategies
in this review.

Intramyocardial Injection
Early studies in the transplantation of hPSC-CM involved
intramyocardial injection of single cell suspensions in mouse
(24), rat (25), guinea pig (26), and swine models (27).
Although hPSC-CMs demonstrated the ability of to partially
remuscularize the animal hearts, cell retention and survival
rates were low, and there was insufficient evidence of functional
integration. To improve hPSC-CM survival post-transplantation,
Murry et al. developed a pro-survival cocktail that led to
enhanced cell survival after transplantation, robust cardiac
remuscularization, and functional improvement in both small
(28–32) and large (33) animal models of ischemic injury. Murry’s
group later showed that hPSC-CM injection in a non-human
primate model of MI results in extensive remuscularization and
electromechanical coupling of grafted cells to host myocardium
(33, 34). They further confirmed the ability of the engrafted
hPSC-CMs to restore function in the non-human primate
heart by demonstrating improved left ventricular ejection
fraction. However, they also observed transient graft-associated
ventricular arrhythmias, which was attributed to the ectopic
pacemaker activity of the engrafted hPSC-CMs (33, 34).

To aid in cell retention following engraftment of hPSC-
CM, recent studies have explored injectable three-dimensional
hPSC-CM microtissues to provide critical cell-cell interactions
and reduce anoikis. For example, Moon et al. demonstrated
reduced fibrosis, improved fractional shortening, and prolonged
survival of 5–10 cell hPSC-CM aggregates injected into infarcted
rat hearts (35). Larger scale hPSC-CM spheroids containing
200,000 cells each have also been implemented to promote
improvement in fractional shortening and engraftment rates
following infarction in amurinemodel (36). Spheroids consisting
of hPSC-CMs have also been implanted into a porcine model
of heart failure, leading to functional improvement (37).
However, graft-associated arrhythmias were observed in the
swine transplanted with hiPSC-CM spheroids.

Epicardial Patches
Epicardial patches refer to engineered heart tissues that are
attached to the outer surface of the heart, usually adjacent to
the infarct region. In addition to providing mechanical support,
epicardial patches function as a scaffold to provide cell-ECM
interactions that promote hPSC-CM survival and engraftment
post-transplantation as well as secretion of cardioprotective
paracrine factors (38, 39). For example, rodent models of
chronic ischemia have been treated with epicardial patches
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FIGURE 1 | hPSC-CMs are differentiated from hiPSCs and hESCs and transplanted into the infarcted heart through intramyocardial injection or epicardial patches as

a cardiac regenerative therapy. Following transplantation, regeneration is driven by paracrine effects of and remuscularization of myocardial tissue by engrafted

hPSC-CMs. However, challenges persist that limit successful transplantation of hPSC-CMs and will need to be addressed to achieve effective clinical translation.

and demonstrated long-term retention of grafts (40). Despite
this progress, patches are not immediately perfused post-
transplantation and can be isolated from host myocardium
by a layer of fibrotic tissue, limiting nutrient diffusion
to cells within the construct post-transplantation (40). To
address this, porous patches seeded with hPSC-CMs have been
investigated to examine whether the porous nature of the
patch would allow sufficient nutrient and oxygen exchange to
engrafted cardiomyocytes (41). Munarin et al. have also recently
demonstrated that the incorporation of alginate microspheres
containing angiogenic factors in hPSC-CM scaffolds could lead
to enhanced host vasculature infiltration into the scaffolds and
improved cell survival when implanted in a rodentmodel of acute
MI (42).

To improve vascular integration with host myocardium,
vascular cells (i.e., endothelial cells) have been incorporated
into epicardial patches with hPSC-CMs. Biodegradable scaffolds
seeded with a triculture of hPSC-CMs, human umbilical
vein endothelial cells (HUVECs), and embryonic fibroblasts
promoted graft vascularization and anastomosis with host
coronary vasculature in rodent hearts (43). Ye et al. combined
the use of biomaterials and multiple cell types to investigate
a 3D fibrin patch loaded with the pro-survival factor insulin-
like growth factor-1 (IGF-1)-encapsulated microspheres seeded
with hPSC-CMs, endothelial cells (ECs), and smooth muscle
cells (SMCs). When implanted in a porcine model of acute MI,
all three cell types integrated with the host, and physiological
improvements were observed in terms of improved left ventricle

function, myocardial metabolism, and ventricular wall stress
(44). Advances in engineered heart tissue have led to the
fabrication of clinical scale human cardiac muscle patches
(hCMP) consisting of 3D fibrin scaffolds seeded with hPSC-
CMs, -ECs, and -SMCs (45, 46). The hCMPs exhibited
10% engraftment at 4 weeks post-implantation and promoted
significant improvement in cardiac function and reduction in
wall stress and infarct size (46).

Scaffold-free approaches have also been used to create
epicardial patches. Cell sheet technology, developed by Okano
et al., involves coating culture dishes with PNIPAAm, a
thermo-responsive polymer, to release cells and produce cell
sheets upon changing temperature (47). This technique was
recently used to fabricate cardiac tissue sheets from hPSCs,
which were then implanted into small and large animal injury
models to demonstrate their therapeutic potential (48–51). In
addition, Murry et al. developed pre-vascularized cell sheets with
enhanced survival and anastomosis with host vasculature upon
transplantation in healthy rodent hearts (52).

MECHANISMS OF IMPROVING CARDIAC
FUNCTION

Remuscularization
Amajor goal of cardiac regenerative medicine is to remuscularize
the infarcted myocardium, restoring the muscle that was lost
to ischemic injury (53). Intramyocardial injection of hPSC-
CMs allows the engrafted hPSC-CMs to integrate with host
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myocardium and directly contribute to contractile function.
Functional integration has been evidenced by the formation of
gap junctions between host and engrafted cardiomyocytes in
various small (28, 29, 39) and large (33, 34) animal models.

Epicardial patches can improve hPSC-CM engraftment,
provide partial remuscularization to infarcted myocardium,
and augment left ventricular function in a dose-dependent
manner (54). However, the fibrotic tissue between the patch
and myocardium can reduce long-term survival of the hPSC-
CMs and prohibit the formation of electromechanical junctions
between the engrafted hPSC-CMs and host myocardium, leading
to unsynchronized contractions (29).

Paracrine Effects
In many instances of intramyocardial hPSC-CM transplantation,
functional recovery has occurred even without significant
hPSC-CM engraftment, leading researchers to hypothesize
that paracrine factors (e.g., cytokines, extracellular vesicles,
etc.) released by the transplanted cells are partially responsible
for improvements in damaged myocardium. This concept
was explored through single-cell profiling of hPSC-CMs
following their transplantation in a murine acute MI model.
Left ventricular function was improved despite limited
engraftment, and hPSC-CMs were found to release high levels of
proangiogenic and anti-apoptotic factors, suggesting functional
benefits came from paracrine activity (55). This is further
supported by similar functional recovery obtained by injection
of hPSC-cardiac cells and hPSC-cardiac cell-secreted exosomes
into infarcted porcine hearts (56). Cardioprotective microRNAs
have been identified in hiPSC-CM-derived extracellular vesicles,
and extended delivery via a hydrogel patch improved cardiac
recovery (57).

Due to subnormal formation of electromechanical junctions
with host myocardium, epicardial patches typically repair injured
hearts through mechanical support and paracrine effects. Given
the fibrotic separation, vascular integration between epicardial
patches and host myocardium may play a critical role in
transporting patch-derived paracrine factors into myocardium
(39, 41).

CHALLENGES TO IMPROVE hPSC-CM
TRANSPLANTATION STRATEGIES

Although progress has been made in the field of hPSC-CM
transplantation, challenges still face transplantation and clinical
translation of hPSC-CM therapies. In the next two chapters,
we will first discuss the challenges that face the development
of successful hPSC-CM transplantation techniques and then
the outstanding challenges that limit safe and effective clinical
translation of these techniques.

Immune Rejection
Transplantation of allogenic cells or tissues can elicit an immune
response that ultimately leads to graft rejection and can have
harmful consequences for the transplant recipient. Solutions
include major histocompatibility (MHC)-matching and the
production of hPSC banks (58). Shiba et al. performed an

MHC matching study in which they transplanted allogenic
non-human primate PSC-CMs 14 days after injury in a
cynomolgus monkey model of MI. They observed improved
cardiac function, along with electrical coupling with the host
myocardium and no evidence of immune rejection in the MHC-
matched PSC-CM group, suggesting the safety of transplanting
MHC-matched, donor-derived hPSC-CMs in humans (59).
Eventually, autologous transplantation of hPSC-CMs would be
ideal and hiPSC-CMs, in particular, offer a promising source of
patient-derived cells. However, manufacturing challenges must
be overcome to make autologous hPSC-CM transplantation
practical for clinical use.

Cell Survival and Retention
Low cell survival and retention after transplantation is a
central obstacle in the development of effective hPSC-CM-based
cardiac regenerative therapy (60, 61). To improve survival of
intramyocardial injected hPSC-CM single cells, a pro-survival
cocktail for injection was developed to address common causes
of graft death (62). A recent study found that co-transplantation
of hiPSC-CMs with ready-made microvessels from adipose
tissue resulted in a six-fold improvement in hiPSC-CM cell
survival (63). To promote cell survival in epicardial patches,
pre-vascularization strategies have been explored to promote
anastomosis of the patches with host vasculature (64, 65). Going
forward, novel bioengineering approaches (e.g., biomaterials and
cellular engineering) could improve hPSC-CM retention (23).

Electromechanical Integration of the Graft
Due to the wound healing response following MI and
intramyocardial injections, fibrosis develops around transplanted
hPSC-CMs. This affects signal propagation and proper
electromechanical integration of the graft, leading to
arrhythmias (66). In studies of hPSC-CM transplantation,
intramyocardial engraftment into non-human primates (33, 59)
and porcinemodels (67) was associated with transient ventricular
arrhythmias (68). To solve these issues, conductive scaffolds can
be used to aid in signal propagation (66). Furthermore, engrafted
hPSC-CMs have an immature phenotype associated with
spontaneous beating, which will affect the electrical signaling in
the heart (68). To decrease the presence of arrhythmias, hPSC-
CM maturation and ventricular subtype-specific differentiation
protocols would be useful to eliminate pacemaker-like activity
from engrafted cells (22, 34). Epicardial transplantation of
hPSC-CM patches has not been shown to elicit arrhythmias in
guinea pig (69) and porcine (46) hearts. However, this could be
due to fibrotic isolation of the graft and lack of electromechanical
coupling with host myocardium (70).

hPSC-CM Maturation
As mentioned, hPSC-CM have an immature phenotype.
Maturation of hPSC-CM involves physiological hypertrophy
associated with organization of sarcomeric structure, along
with presence of T-tubules (71). hPSC-CM maturation
also involves more efficient calcium handling, improved
electrophysiological properties and higher contractile force
(72). Therefore, transplanted CM with properties that more
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closely resemble adult myocardium would reduce the risk of
arrhythmias and have improved contractile properties (73).
Several methods have been investigated for maturation of
hPSC-CM, including long-term culture, changes in the culture
substrate stiffness, electrical stimulation, and biochemical
cues (73). Mechanical loading has also been used to stimulate
maturation in iPSC-derived cardiac tissue (74, 75). Additionally,
tissue engineering methods have been employed to promote
maturation. Engineered heart tissue made from a co-culture
of hESC-CM and hESC-derived epicardium promoted hESC-
CM maturation in terms of enhanced contractility, myofibril
structure, and calcium handling (76). Electrical training of hPSC-
CMs in three-dimensional culture system has also contributed
to advanced morphological maturation of hiPSCs (77). Three-
dimensional culture containing multiple cell types has also been
shown to promote a more mature phenotype of hiPSC-CMs
(78, 79).

CLINICAL APPLICATIONS OF hPSC-CMs

Challenges in Clinical Translation of
hPSC-CMs
There are several safety concerns in the clinical use of hPSC-CM
treatments. In addition to potential tumorigenicity and immune
rejection, a major roadblock for intramyocardial injection is
hPSC-CM graft-associated arrhythmias. Recent evidence has
demonstrated the feasibility of pharmacological therapy for
hPSC-CM-induced arrhythmias after intramyocardial injection
(80). Arrhythmia risk may increase with graft size and, therefore,

thorough cell dose-response studies are needed. While studies
with hPSC-CM epicardial patches have mostly indicated no
arrhythmic burden, the long-term effects of their subnormal
electromechanical integration are unclear (81).

Most cardiac injury models to date can be classified as
acute or subacute MI, with transplantation occurring within
minutes to days after infarction. In a clinical setting, hPSC-
CM therapy would often be performed months to years after
MI as a last resort in patients with chronic heart failure (68).
While hPSC-CM transplantation at 2 weeks post-MI can improve
cardiac function in rats (82), transplantation at 1 month post-
MI showed no functional benefit in rats (83) or guinea pigs
(84). Sawa et al. showed that hPSC-CM cell sheet transplantation
1 month post-MI can improve cardiac function in swine,
but there was no evidence of graft-host electromechanical
integration and very few cells survived long-term (50), which
could be attributed to the established fibrotic environment in
chronic MI. These discrepancies necessitate further evaluation
of animal models of chronic heart failure to determine the
potential of hPSC-CM transplantation in a more clinically
applicable setting.

Scalable manufacturing of clinical-grade hPSC-CMs is also a
serious challenge for clinical use and, therefore, several recent
studies have focused on large-scale production of clinical-grade
hPSC-CMs. Master iPSC cell banks have been developed for
clinically compliant sourcing of PSC-derived cells under current
good manufacturing practice (cGMP) (85). To increase cell
production, PSC aggregate culture and differentiation systems
that produce 109 hPSC-CMs in a 1 L flask have been developed
(86). Serum-free (87) and human serum-based (54) construction

TABLE 1 | Current clinical trials involving hPSC-CM transplantation for heart repair.

Trial ID Sponsor Title Condition Intervention Estimated

enrollment

Start date Country

NCT03763136 Help therapeutics The study of human

epicardial injection with

allogenic induced

pluripotent stem cell-derived

cardiomyocytes in ischemic

heart failure

Heart failure Intramyocardial injection of

allogenic hiPSC-CMs at

time of coronary artery

bypass grafting surgery

5 May 2019 China

jRCT2053190081 Osaka University

Hospital

Clinical trial of human

(allogeneic) iPS cell-derived

cardiomyocytes sheet for

ischemic cardiomyopathy

Ischemic

cardiomyopathy

Human (allogeneic) iPS cell

derived-cardiomyocyte

sheet transplantation

10 January 2020 Japan

NCT04396899 University Medical

Center Goettingen

Safety and efficacy of

induced pluripotent stem

cell-derived engineered

human myocardium as

biological ventricular assist

tissue in terminal heart

failure

Heart failure Implantation of EHM on

dysfunctional left or right

ventricular myocardium in

patients with HFrEF (EF

<35%).

53 February 2020 Germany

jRCTa032200189 Heartseed Inc. Safety study of regenerative

therapy with allogeneic

induced pluripotent stem

cell-derived cardiac spheres

for severe heart failure

(Regenerative cardiac

spheres)

Severe heart failure

patients with NYHA

class III or higher

(HFrEF by Dilated

Cardiomyopathy)

Intramyocardial injection of

5 × 107 iPSC-derived

cardiomyocytes by

open-heart surgery

3 November 2020 Japan
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protocols for engineered heart tissue (EHT) patches have also
been developed to adapt to cGMP for clinical applications.

Finally, there is a lack of consensus on the characterization
and assessment of hPSC-CM differentiation and maturity (i.e.,
cell surface markers). Consistency in the assessment of hPSC-CM
products is necessary to ensure their quality, reproducibility, and
safety for use in humans. To this end, an unbiased integrative
proteomics approach could offer comprehensive assessment of
hPSC-cardiomyocyte maturation (88).

First In-human Clinical Trials With
hPSC-CMs
Despite the outstanding challenges in the field, first-in-human
clinical trials have recently begun involving the transplantation of
hPSC-CMs (Table 1). The first use of hPSC-CMs in humans took
place in 2019 in Nanjing, China, and involved intramyocardial
injection of hiPSC-CMs in patients with chronic ischemic
cardiomyopathy (89). However, cell injection occurred alongside
coronary artery bypass grafting, limiting the ability to delineate
the therapeutic benefits of hiPSC-CM transplantation. In Japan,
a trial at Osaka University is exploring transplantation of
an allogeneic hiPSC-CM cell sheet as a sole therapy for
ischemic cardiomyopathy (90). Heartseed Inc., a Japan-based
biotechnology company led by Prof. Keiichi Fukuda, recently
gained approval for a Phase I/II clinical trial of intramyocardial
injection of three-dimensional hiPSC-CM spheres to treat heart
failure. The largest trial to date has been registered in Germany
at University Medical Center Goettingen, investigating the
remuscularization capacity of engineered heart tissue containing
hiPSC-CMs and stromal cells in patients with heart failure with
reduced ejection fraction (HFrEF).

CONCLUSIONS AND FUTURE
CONSIDERATIONS

Transplantation of hPSC-CMs has proven to be a viable strategy
for cardiac regenerative therapies. Single-cell injection and
tissue-level engineered constructs have served as the basis for

promoting functional improvements in injured myocardium.

Future research needs to focus on addressing the limitations
currently facing the field, as discussed in this review. In
particular, the development of a viable strategy to prevent graft-
associated arrythmia will have immediate clinical impacts for
intramyocardial injection of hPSC-CMs. In addition, paracrine
factors play a central role in hPSC-CM mediated functional
recoveries; therefore, developing methods to enhance hPSC-CM
cardioprotective secretome would have significant impacts to the
field. Lastly, optimal doses of PSC-CMs for heart repair need to
be determined for safe and effective application in humans.

In summary, although the clinical translation of hPSC-CM
transplantation faces several significant limitations, immense
progress has been made in recent years in the development of
potential strategies for hPSC-CM regenerative therapies. It has
been proven that engrafted hPSC-CM can make meaningful
connections with host cardiomyocytes and provide paracrine
factors that stimulate functional recovery of host myocardium.
Furthermore, strategies for producing cells at a clinical scale have
been explored, as well as methods to mitigate immune rejection,
reduce incidence of cardiac arrhythmias, and mature hPSC-CMs.
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