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Abstract: Novel therapeutic approaches are emerging to restore dystrophin function in 

Duchenne Muscular Dystrophy (DMD), a severe neuromuscular disease characterized by 

progressive muscle wasting and weakness. Some of the molecular therapies, such as exon 

skipping, stop codon read-through and internal ribosome entry site-mediated translation 

rely on the type and location of mutations. Hence, their potential applicability worldwide 

depends on mutation frequencies within populations. In view of this, we compared the 

mutation profiles of the populations represented in the DMD Leiden Open-source 

Variation Database with original data from Mexican patients (n = 162) with clinical 

diagnosis of the disease. Our data confirm that applicability of exon 51 is high in most 

populations, but also show that differences in theoretical applicability of exon skipping 

may exist among populations; Mexico has the highest frequency of potential candidates for 

the skipping of exons 44 and 46, which is different from other populations (p < 0.001). To 

our knowledge, this is the first comprehensive comparison of theoretical applicability of 

exon skipping targets among specific populations. 
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1. Introduction 

Duchenne Muscular Dystrophy (DMD; MIM# 310200) is a severe neuromuscular disease that 

causes disability and early death due to progressive muscle loss. Advances in molecular diagnosis [1,2] 

and patient management [3] have resulted in extended survival for patients [4]. DMD is caused by the 

lack of functional dystrophin molecules, either due to nonsense mutations in the DMD gene (premature 

stop codons) or by large rearrangements (deletions or duplications) that disturb the reading frame of 

the dystrophin gene and in consequence abolish the production of dystrophin in muscles [5].  

Becker Muscular Dystrophy (BMD; MIM# 300376) is a mild form of the disease [6] in which 

internally-truncated dystrophin molecules are produced as result of in-frame deletions or duplications; 

these incomplete but functional proteins ameliorate the phenotype. Dystrophin is thought to serve as a 

shock absorber protein to protect muscle cells from movement-induced damage [7]. Novel therapeutic 

strategies are in development for DMD, either involving the replacement of the gene (cell-based 

therapies), exogenous delivery of functionally engineered dystrophin gene constructs (gene therapy) or 

by repairing the endogenous locus [8]—this involves strategies such as stop codon read-through [9] 

(using Translarna®/Ataluren, PTC Therapeutics, South Plainfield, NJ, USA), exon skipping (using 

Eteplirsen, Sarepta Therapeutics, Cambridge, MA, USA, or Drisapersen, Prosensa, Leiden, The 

Netherlands) (Figure 1) [10] or the recently described internal ribosome entry site (IRES)-induced 

translation [11]. 

Exon skipping (ES) and stop codon read-through recently gained interest because of the optimistic 

results in clinical trials [12–14]. ES aims to modify the splicing of pre-mRNA dystrophin transcripts 
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converting the severe DMD phenotype into the milder BMD by inducing the production of incomplete 

but functional dystrophins [15]. Where DMD is due to a nonsense mutation, compounds such as 

Gentamicin and Ataluren may allow ribosomal read-through of the premature stop codons in 

dystrophin mRNA. Results of a phase II study of Ataluren showed a moderate clinical benefit in DMD 

patients [16,17]. These gene repair strategies are dependent on the type of mutation; therefore, a 

complete genetic screening that allows the exact characterization of the mutation is of utmost 

importance for future personalized medicine. The location and type of mutation will determine the  

best targets for exon skipping and may differ among populations. Herein we compare the frequencies 

of applicable exon skipping targets among different populations, including original data from  

Mexican-Mestizos, which comprise most of the present day Mexican population (~90%) [18]. 

 

Figure 1. Molecular therapeutic strategies to restore dystrophin expression in Duchenne 

Muscular Dystrophy (DMD) patients. Reading frame restoration could be achieved in 

different combinations; (A) for an exon 45 deletion, the reading frame could be restored  

by targeted skipping of exons 44 or 46; while (B) and (C) show other in-frame 

combinations that allow the production of shorter dystrophins; (D) the IRES-induced 

translation mechanism; alternative initiation codon in exon 6 rescues dystrophin production 

(E) and (F) show the ribosomal read-through of a premature stop codon by the therapeutic 

agent Ataluren.  

2. Results and Discussion 

2.1. Mutation Detection 

Using the Point Mutation Multiplex Ligation-dependent Probe Amplification (PM-MLPA) [2]  

and High Resolution Melting (HRM) techniques, deletions or duplications were found in 105 of the 

162 unrelated DMD patients (see Figure 2) and point mutations were present in another six cases  

(see Table 1) that represent 10.52% of all deletion/duplication negative cases. The overall mutation 

detection rate in DMD cases was 68.52%. Nine of the DMD cases had a novel mutation (see Table 2). 

From the BMD cohort (n = 10), deletions or duplications were found in five unrelated cases:  

three with a deletion of exons 45–47; (ex45ex47del→c.6439−?_6912+?del), one with a deletion of 

exons 45–49 (ex45ex49del→c.6439-?_7200+?del), and one with a duplication of exons 3–9  

(ex03ex09dup→c.94-?_960+?dup).  
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Figure 2. The mutation profile of Mexican-Mestizo patients. The horizontal bars represent the 

exons involved in mutations: deletions (blue), duplications (red) and point mutations (green).  

Table 1. Point mutations found in Mexican-Mestizo DMD patients. 

Exon Change Stop Codon Reported in LEIDEN Database

30 c.4120G > T p.(Glu1374Ter) UAG Novel 
34 c.4693C > T p.(Gln1565Ter) UAG 4 times 
59 c.8713C > T p.(Arg2905Ter) UGA 20 times 
64 c.9337C > T p.(Arg3113Ter) UGA 14 times 
65 c.9380C > G p.(Ser3127Ter) UGA 8 times 
70 c.10171C > T p.(Arg3391Ter) UGA 29 times 

Table 2. Novel mutations found in Mexican-Mestizo DMD patients.  

Involved Exon(s)/Change Prediction 

ex01ex54del→c.(?_-244)_8027+?del No mRNA produced 
ex65ex66del→c.9362-?_9649+?del IN-FRAME duplication 
ex10ex44dup→c.961-?_6438+?dup IN-FRAME duplication 

ex38ex56dup→c.5326-?_8390+?dup OUT-OF-FRAME duplication 
ex41ex50dup→c.5740-?_7309+?dup OUT-OF-FRAME duplication 
ex43ex54dup→c.6118-?_8027+?dup OUT-OF-FRAME duplication 
ex56ex65dup→c.8218-?_9563+?dup OUT-OF-FRAME duplication 

ex63dup→c.9225-?_9286+?dup OUT-OF-FRAME duplication 
ex 30 c.4120G > T p.(Glu1374Ter) Stop codon 

2.2. Genotype-Phenotype Correlation 

DMD is usually caused by mutations that disrupt the reading frame; 89.5% (n = 94) of our patients 

followed this rule, but eleven out of 105 (10.5%) cases with clinical features of DMD had in-frame 

deletions or duplications that would be anticipated to result in BMD. For the BMD cohort, all five 
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cases with a known mutation had in-frame deletions or duplications, so mutations in this group were 

consistent with the expected phenotype (BMD). 

2.3. Theoretical Applicability of Exon Skipping and Stop Codon Read-Through among Populations  

Comparison of applicable exon skipping targets among populations was performed using data from 

the DMD Leiden Open-source Variation Database (LOVD). A inter and intra population comparison 

was performed. The search filters used were: country, phenotype = DMD and technique = MLPA, and 

the combinations of deletions/duplications (single and multiple exon mutations) in which the reading 

frame could be restored with the unique omission of exons 44, 45, 46, 51 and 53 (see Figure 1A–C) [19]. 

Our inter-population analysis showed differences for exons 44 (p < 0.0001) and 46 (p = 0.035, Yate’s 

corrected), but for the other exons (45, 51 and 53) no differences were found (p > 0.05). According to 

our study, Mexico and Germany are the countries with the highest frequency of potential candidates 

for the skipping of exons 44 and 46 (see Table 3). Besides, the intra-population analysis also displayed 

differences; whereas in populations of countries like Belgium, Bulgaria and China, the best target exon 

for skipping therapy is the exon 51, for Serbia/Montenegro the best target is exon 45 and in other 

populations like those in Denmark, France and the Netherlands, among others, all five studied exon 

targets are evenly distributed (Table 4). 

Table 3. Frequencies of applicable exon skipping targets among populations (inter-population analysis). 

Country 
Total of 

Del/Dup 

Exon 

44 45 46 51 53 

Del/Dup % Del/Dup % Del/Dup % Del/Dup % Del/Dup % 

Australia 159 7 4.4 10 6.29 5 3.14 16 10.06 17 10.69 

Belgium 39 0 0 2 5.13 0 0 4 10.26 1 2.56 

Bulgaria 23 1 4.35 2 8.7 1 4.35 4 17.39 1 4.35 

China 491 18 3.67 39 7.94 14 2.85 67 13.65 58 11.81 

Denmark 123 8 6.5 12 9.76 7 5.69 14 11.38 9 7.32 

France 1829 93 5.08 132 7.22 65 3.55 174 9.51 148 8.09 

Germany 95 11 11.58 3 3.16 9 9.47 9 9.47 5 5.26 

Greece 178 5 2.81 8 4.49 4 2.25 36 20.22 19 10.67 

Hungary 110 2 1.82 6 5.45 2 1.82 13 11.82 7 6.36 

Italy 480 34 7.08 27 5.63 28 5.83 40 8.33 37 7.71 

Netherlands 581 45 7.75 47 8.09 33 5.68 61 10.5 42 7.23 

Portugal 50 1 2 3 6 1 2 4 8 2 4 

Romania 62 2 3.23 6 9.68 0 0 12 19.35 8 12.9 

Serbia/Montenegro 71 1 1.41 11 15.49 1 1.41 8 11.27 4 5.63 

Mexico (this study) 105 18 17.14 12 11.43 10 9.52 11 10.48 11 10.48 

p-value - p < 0.0001 p > 0.05 p = 0.035 p > 0.05 p > 0.05 
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Table 4. Comparison of targets for exon skipping by population (intra-population analysis). 

Population Best Target Exon p-Value Frequency (%) Second Best Target Frequency (%) 

Australia N/A p = 0.11 - N/A - 

Belgium Exon 51 p < 0.01 * 10.26 Exon 45 5.13 

Bulgaria Exon 51 p < 0.01 17.39 Exon 45 8.7 

China Exon 51 p = 0.02 13.65 Exon 53 7.94 

Denmark N/A p = 0.67 - N/A - 

France N/A p = 0.49 - N/A - 

Germany N/A p = 0.15 - N/A - 

Greece Exon 51 p < 0.01 20.22 Exon 53 10.67 

Hungary Exon 51 p < 0.01 11.82 Exon 53 6.36 

Italy N/A p = 0.96 - N/A - 

Netherlands N/A p = 0.77 - N/A - 

Portugal Exon 51 p < 0.01 * 8 Exon 45 6 

Romania Exon 51 p < 0.01 19.35 Exon 53 12.9 

Serbia/ Exon 45 p < 0.01 11.27 Exon 51 11.27 

Mexico (this study) N/A p = 0.53 - N/A - 

* Yate’s corrected p-value. 

Recently, potential therapeutic options for DMD have emerged; some, such as gene replacement 

and cell-based therapies would apply for all patients regardless the type of disease-causing mutation. 

These are, therefore, considered the most promising therapeutic options [8]. Conversely, gene repair 

based therapies may only be applicable for a subgroup of patients with particular mutations;  

IRES-induced translation is a novel mechanism by which ribosomes are recruited directly to specific 

sites within mRNA making possible cap-independent translation due to the presence of an alternative 

initiation codon [11] (Figure 1D). This strategy would be useful for patients with mutations within the 

5' exons of the DMD gene where the main initiation site is affected by a mutation. In addition, it has 

been estimated that about 13% [17] of all DMD cases may benefit from treatment with Translarna® 

(Ataluren) an orally-taken compound that targets nonsense mutations. This novel drug, recently 

received the first conditional global approval by international regulatory agencies as an orphan drug 

for combatting nonsense mutations in ambulatory DMD patients aged >5 years [20,21] and it has 

shown a clinical benefit in terms of delayed disease progression in a phase 2b randomized, double-blind, 

placebo controlled study [17]. Hence, the results presented herein regarding the frequency of nonsense 

mutations in Mexican-mestizo patients (10.52%) contribute to a better estimation of the potential 

applicability of this novel compound in our country.  

One of the most widely studied gene repair strategies is ES, in which reading frame restoration can 

be achieved using antisense oligonucleotides. These agents target specific exons excluding them from 

the mature mRNA [22]. The theoretical applicability of exon skipping is estimated at 83% of all DMD 

mutations, with skipping of exon 51 being applicable to 13% of all DMD patients according to an 

overall comparison based on the Leiden database [19]. It should be noted that these percentages are 

global estimates of the potential applicability of ES, rather than a comparison of best exon skipping 

targets among particular populations. Although several studies have shown that DMD mutation 

hotspots are similar worldwide [23,24], the extent and type of the mutations within these hotspots will 
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determine the best targets for exon skipping, and this may differ among populations [25]. A recent 

study in Vietnamese patients showed that 27% of cases would benefit from exon 51 skipping, followed 

by the skipping of exon 45 (20%) and exon 53 (18%), whereas other study revealed that only 9.8% of 

Japanese patients would benefit from exon 51 skipping [24]. Another independent study showed that 

24% of Malaysian DMD patients would benefit from the skipping of exon 45 [26]. All these studies 

suggest that applicability for exon skipping may vary among patients of different ethnic origin in terms 

of the presence of significant differences among frequencies of patients with “skippable” mutations 

among countries, these differences are the result of various combinations of deletions that could be 

repaired by the omission of the same exon. Our results suggest that population differences regarding 

the applicability of exon skipping exist. Mexico and Germany are the countries with the highest 

frequency of potential candidates for the skipping of exons 44 and 46, which is different from other 

populations (p < 0.05). Interestingly, when the frequency of cases for all five target exons are 

compared between Mexico and China, a difference also exists (chi-square = 24.1 degrees of freedom = 4, 

p-value < 0.001) (Table 3).  

It should be noted that deletion/duplication hotspots within the DMD gene are likely to be similar 

among populations because these regions are a selection of the resulting phenotype (DMD/BMD) [27]; 

with a major deletion hotspot around exons 45–52 and a minor hotspot around exons 3–19 [27]; 

conversely, the deletion of exon 16 is not associated to a muscular pathology [28]. On the other hand, 

it has been suggested by some authors that the distribution and frequency of deletions within the 

mutation hotspots of the DMD gene can vary as a result of population-specific intronic sequences [23,29] 

(Alu sequences, short tandem repeats, matrix-associated regions, replication origins, microhomology 

regions) (reviewed in White and den Dunnen 2006) [27] that predispose individuals to preferential 

deletion breakpoints [23,29]. Nevertheless, most studies have failed in demonstrating such differences 

and identifying those sequences because of diverse reasons, such as the techniques employed 

(multiplex PCR, real-time PCR, southern blot) [30], the scarcity of data available from other 

populations and intrinsic limitations in statistical analyses due to the heterogeneity in the presentation 

of data among studies. We do not expect bias in the submission of particular variants that may interfere 

with our results; care was taken regarding the homogeneity of the techniques employed (only MLPA) 

for the detection of the analyzed variants. Even though the number of submissions of the populations 

included in our analysis is a limitation of this study. Currently, the origin of deletion/duplication 

hotspots and breakpoints within the DMD gene is still unclear and the differences in the frequency of 

candidates for exon skipping reported herein reflect existent differences in the mutation profiles of 

populations studied. Therefore, as complete gene screening will become more common and gene 

databases such as LOVD receive more submissions, our knowledge regarding best targets for 

molecular gene-repair strategies in different populations will be more ample. 

In addition to accurate mutation screening in Mexican patients, it is also important to manage 

patients correctly so that they can be easily recruited for appropriate clinical trials or given new orphan 

drugs when changes in public health policies worldwide allow. Patient registries and databases have 

been shown to be effective in facilitating patient recruitment for clinical trials in Japan [24], France 

and the Netherlands, among others [31]. Our initial experience in Mexico concerning DMD 

management was recently reported [32,33], so this study should help to provide better healthcare for 

DMD patients in Mexico, although sustained efforts by researchers, parent’s organizations and the 
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government will still be necessary to achieve successful personalized molecular medicine for DMD 

patients in Mexico and elsewhere. 

3. Experimental Section  

3.1. Data and Sample Collection  

A cohort of 180 patients was referred to our laboratory between 2010 and 2013; 170 with a clinical 

diagnosis of DMD and 10 with BMD; of these, 162 DMD and 8 BMD referrals were unrelated patients 

from the following nonprofit organizations: (i) Asociación de Distrofia Muscular de Occidente A.C. 

(Jalisco State, West, Mexico); (ii) ENLACE- Distrofia Muscular Duchenne Becker A.C. (Chihuahua 

State, North, Mexico); and (iii) Sociedad Mexicana para la Distrofia Muscular A.C. (Mexico City, 

Center, Mexico). Patients’ clinical evaluation included the presence of proximal and/or distal 

weakness, positive Gowers’ maneuver, age at onset, serum creatine kinase (CK) levels, and family history. 

Written informed consent was obtained from parents, according to the organization’s ethical guidelines.  

3.2. DNA Extraction 

Genomic DNA was extracted from peripheral lymphocytes using the CTAB-DTAB method [34].  

A Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was used to 

measure sample concentration and 100 ng of DNA was used to perform MLPA assays. 

3.3. Mutation Detection Using PM-MLPA 

Genetic screening for copy number variations of all exons of the DMD gene was done using MLPA 

according to manufacturer’s instructions (P034/P035, MRC-Holland, Amsterdam, The Netherlands) 

and analyzed using Genemarker V1.91 software as described previously [35] (Figure 3C). Point 

mutation specific MLPA probes were applied for the detection of the twenty three most frequent stop 

codon changes (known variants) in the DMD gene as described previously [2]. 

3.4. Mutation Detection by High Resolution Melting 

In order to identify unknown small nucleotide changes, high-resolution melting curves (HRM) were 

performed on a LightCycler® (Roche, Basel, Switzerland) 480 II platform for 12 exons of the DMD 

gene (exons 4, 8, 12, 13, 17, 19, 47, 49, 59, 58, 70 and 74) with modifications of the reported protocol [36]. 

HRM assay for the three most frequently mutated exons are shown in Figure 3A,B. All changes were 

described using the NG_012232.1 (NM_004006.2) reference sequence and were submitted to the 

Leiden DMD mutation database.  
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Figure 3. High Resolution Melting (HRM) and MLPA. (A) Melting peaks of the three 

exons that account for most frequent stop codon mutations in the DMD gene; (B) Melting 

peaks of a sample (duplicate) with a point mutation in exon 59 compared to a wild-type 

sample; (C) MLPA assay showing a deletion of two exons of the DMD gene.  

3.5. DNA Sequencing 

Confirmation of point mutations found in the study was done by sequencing, using oligonucleotides 

reported by Almomani et al. 2009 [36]. Purified PCR products were sequenced with Big Dye Terminator 

v.3.1 (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s recommendations. 
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3.6. Statistical Analysis 

A Chi-square test was performed on the mutation frequencies (correctable deletions/supplications) 

for the exons that represent targets of current clinical exon-skipping trials (exons 44, 45, 46, 51 and 53). 

Probability values ≤0.05 were considered significant. All analyses were done using STATGRAPHICS 

version 16.1.11 (Centurion XVI software, Warrenton, VA, USA). Yates correction was applied if any 

of the expected values in the calculation were below five. 

4. Conclusions  

In this study, we described the mutation profile of Mexican-mestizo patients with DMD. Unlike 

other countries; Germany and Mexico have similar frequencies for the skipping of exons 44 and 46, 

which were higher than in other populations. As expected, exon skipping of exons 51 and 45 would 

equally benefit all populations studied, since frequencies do not differ among the countries where the 

population data is known. Patient registries and gene databases play a pivotal role in the recruitment  

of patients for novel clinical trials in which multi-ethnic participants from different countries ought  

to be included in order to improve sample size and statistical power. Mutation detection is of  

utmost importance for the development of personalized molecular medicine in Duchenne Muscular 

Dystrophy; our combined PM-MLPA and HRM screening strategy is useful for molecular diagnosis in 

Mexico, although full-gene sequencing would extend our mutation detection capacity. Finally our data 

underlie that differences exist in the applicability of exon skipping among particular populations. 
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